Electrical Characterization by Impedance Spectroscopy of Double Perovskites of Y2NiMnO6 Ceramics

Thanapong SAREEIN, Naphat ALBUTT

Abstract


Impedance spectroscopy was used in order to investigate the electric properties of double perovskites of the Y2NiMnO6 ceramics, which were prepared by thermal decomposition at 800 °C for 6 h followed by sintering at 1400 °C for 6, 12, 18 and 24 h. Consequently, the electric characterization of the Y2NiMnO6 ceramics was performed at temperature from -50 to 200 °C, in the frequency range from 102 to 108 Hz. Results in the activation energy relaxation ( ) are significantly increased from 0.1723 to 0.3813 eV and the conductivity activation energy ( ) in the grain boundary are dramatically increased from approximately 0.3599 to 0.6260 eV at 24 h. Dispersion was observed in the variation of impedance values with frequency. Possible reasons for these observations are discussed.


Keywords


Impedance, dielectric, perovskites, grain size

Full Text:

PDF

References


J Wu, CW Nan, Y Lin and Y Deng. Giant dielectric permittivity observed in Li and Ti doped NiO. Phys. Rev. Lett. 2002; 89, 217601.

JB Wu, J Nan, CW Nan, Y Lin, Y Deng and S Zhao. Analysis of AC electrical properties of (Li and Ti) doped NiO. Mater. Sci. Eng. B 2003; 99, 294-7.

F Amaral, LC Costa and MA Valente. Decrease in dielectric loss of CaCu3Ti4O12 by the addition of TiO2. J. Non-Cryst. Solids 2011; 357, 775-81.

EA Patterson, S Kwon and CC Huang. Effects of ZrO2 additions on the dielectric properties of CaCu3Ti4O12. Appl. Phys. Lett. 2005; 87, 182911-3.

Z Yang, L Zhang, X Chao, L Xiong and J Liu. High permittivity and low dielectric loss of the Ca1-xSrxCu3Ti4O12 ceramics. J. Alloys Compd. 2011; 509, 8716-9.

CM Wang, SY Lin, KS Kao, YC Chen and SC Weng. Microstructural and electrical properties of CaTiO3-CaCu3Ti4O12 ceramics. J. Alloys Compd. 2010; 491, 423-30.

L Ramajo, R Parraa, JA Varela, MM Reboredo, MA Ramire and MS Castro. Influence of vanadium on electrical and microstructural properties of CaCu3Ti4O12/CaTiO3. J. Alloys Compd. 2010; 497, 349-53.

S Kumar, G Giovannetti, JVD Brink and S Picozzi. Theoretical prediction of multiferroicity in double perovskite Y2NiMnO6. Phys. Rev. 2010; 82, 134429.

RJ Booth, R Fillman, H Whitaker, A Nag, RM Tiwari, KV Ramanujachary, J Gopalakrishnan and SE Lofland. An investigation of structural, magnetic, and dielectric properties of R2NiMnO6 (R=rare earth, Y). Mater. Res. Bull. 2009; 44, 1559-64.

M Mouallem-Bahout, T Roisnel, G Andre, D Gutierrez, C Moure and O Pena. Nuclear and magnetic order in Y(Ni,Mn)O3 manganites by neutron powder diffraction. Solid State Comm. 2004; 129, 255-60.

KD Chanadrsekhar, AK Das and A Venimadhav. Magnetic properties of La2NiMnO6 nanoparticles. Solid State. Phys. 2012; 1447, 1237-38.

YQ Lin, XM Chen and XQ Liu. Relaxor-like dielectric behavior in La2NiMnO6 double perovskite ceramics. Solid State Comm. 2009; 149, 784-7.

WZ Yang, MM Mao, XQ Liu and XM Chen. Structure and dielectric relaxation of double-perovskite La2CuTiO6 ceramics. J. Appl. Phys. 2010; 107, 124102.

JV den Brink and DI Khomskii. Multiferroicity due to charge ordering. J. Phys. Condens. Matter. 2008; 20, 434217.

DJ Singh and CH Park. Polar behavior in a magnetic perovskite from a-site size disorder: A density functional study. Phys. Rev. Lett. 2008; 100, 087601.

MT Anderson, KB Greenwood, GA Taylor and R Poeppelmeier. B-cation arrangement in double perovskites. Prog. Solid State Chem. 1993; 22, 197-233.

MP Singh, KD Truong, S Jandl and P Fournier. Magnetic properties and phonon behavior of Pr2NiMnO6 thin films. Appl. Phys. Lett. 2011; 98, 162506.

K Yoshii, N Ikeda and M Mizumaki. Magnetic and dielectric properties of the ruthenium double perovskites La2MRuO6 (M=Mg, Co, Ni, and Zn). Phys. Status Solidi A 2006; 203, 2812-7.

Y Hiramitsu, K Yoshii, Y Yoneda, J Mizuki, A Nakamura, Y Shimojo, Y Ishii, Y Morii and N Ikeda. Magnetic and dielectric properties of Tb0.5Ca0.5MnO3. Jpn. J. Appl. Phys. 2007; 46, 7171-4.

CR Serrao, A Sundaresan and CNR Rao. Multiferroic nature of charge-ordered rare earth manganites. J. Phys. Condens. Matter. Lett. 2007; 9, 496217.

JR Sahu, CR Serrao, A Ghosh, A Sundaresan and CNR Rao. Charge-order-driven multiferroic properties of Y1-xCaxMnO3. Solid State Comm. 2009; 149, 49-51.

DV Efremov, JVD Brink and DI Khomskii. Bond-versus site-centred ordering and possible ferroelectricity in manganites. Nat. Mater. 2004; 21, 853-6.

S Theeranum, CH Naphat, M Chivalrat and Y Teerapon. Synthesis, characterization, and dielectric properties of Y2NiMnO6 ceramics prepared by a simple thermal decomposition route. J. Mater. Sci. Mater. Electron. 2014; 25, 1361-8.

DC Sinclair and AR West. Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance. J. Appl. Phys. 1989; 66, 3850-6.

RW West, TB Adams, FD Morrisom and DC Sinclair. Novel high capacitance materials:- BaTiO3:La and CaCu3Ti4O12. J. Eur. Ceram. Soc. 2004; 24, 1439-48.

J Liu, CG Duan, WN Mei, RW Smith and JR Hardy. Dielectric properties and Maxwell-Wagner relaxation of compounds ACu3Ti4O12 (A=Ca, Bi2/3, Y2/3, La2/3). J. Appl. Phys. 2005; 98, 093703.


Refbacks

  • There are currently no refbacks.




http://wjst.wu.ac.th/public/site/images/admin/image012_400

Online ISSN: 2228-835X

http://wjst.wu.ac.th

Last updated: 20 June 2019