Production of volatile fatty acid in biogas digester with coal media

Authors

  • Ellin HARLIA Universitas Padjadjaran, Sumedang 45363
  • Tomi Lilo PRIAMBUDI Universitas Padjadjaran, Sumedang 45363
  • Eulis Tanti MARLINA Universitas Padjadjaran, Sumedang 45363
  • Khairunnisa Nur RAHMAH Universitas Padjadjaran, Sumedang 45363
  • Yuli Astuti HIDAYATI Universitas Padjadjaran, Sumedang 45363
  • Roni RIDWAN Universitas Padjadjaran, Sumedang 45363

Abstract

The need for environmentally friendly energy can be sought by using a consortium of microorganisms originating from dairy cow feces in a biogas digester with sub-bituminous coal media. This study aims to determine the effect of adding consortium from dairy cow feces on coal media in biogas digester on pH of digester and volatile fatty acid production. This study used an experimental method using a randomized block design consisting of four treatments based on the consortium microorganism inoculum given (P1 = powder inoculum (mixture of inoculum from coal and dairy cow feces), P2 = inoculum from coal, P3 = inoculum from dairy cow feces, and P4 = without using inoculum) and six groups based on fermentation time (I = 10th day, II = 20th day, III = 30th day, IV = 40th day, V = 50th day, and VI = 60th day). The pH conditions of the digester in all treatments ranged from 6.438 -6.597, and the production of volatile fatty acids ranged from 153.083-162.333 mM. The results of the analysis in this study indicated that the addition of various types of consortium microorganism inoculums in the biogas digester medium produced similar pH conditions and volatile fatty acids. The production of increased concentrations of volatile fatty acids was directly proportional to the decrease in pH conditions.

References

American Society for Testing And Materials. (2004). Annual Book of ASTM Standard section five Petroleum, Lubricants, and Fossil Fuels, Vol. 05.06. Philadelphia: ASTM International.

Baily, JE., & Ollis D.F. (1986). Biocemical Engineering Fundamental. 2nd eds. New York: McGraw-Hill.

Guo, H., Yu, Z., Liu, R., Zhang, H., Zhong, Q., & Xiong, Z. (2012). Methylutropic methanogenesis governs the biogenic coal bed methane formation in Eastern ordos basin, China. Applied Microbiology and Biotechnology 96(6), 1587-1579.

Ilaboya, I.R., Asekhame, F.F., Ezugwu, M.O., Erameh, A.A., & Omofuma, F.E. (2010). Studies on biogas generation from agricultural waste; analysis of the effects of alkaline on gas generation. World Applied Sciences Journal 9(5), 537-545.

Jones, E.J.P., Voytek, M.A., Corum, M.D., & Orem, W.H. (2010). Stimulation of methane generation from nonproductive coal by addition of nutrients or a microbial consortium. Applied and Environmental Microbiology 76(21), 7013-7022.

Kementerian Energi dan Sumber Daya Mineral. (2015). Rencana strategis kementerian energi dan sumber daya mineral 2015-2019. Kementerian Energi dan Sumber Daya Mineral, Jakarta.

Ogimoto, K., & Imai, S. (1980). Atlas of rumen microbiology. Tokyo: Japan Scientific Societies Press.

Schink, B. (1997). Energetics of syntrophic cooperation in methanogenic degradation. Microbiology and Molecular Biology Reviews 61(2), 262-280.

Seadi, T.A., Rutz, D., Prassl, H., Köttner, M., Finsterwalder, T., Volk, S., & Janssen, R. (2008). Biogas Handbook (pp. 21-28). Denmark: University of Southern Denmark Esbjerg.

Sutardi, T., Sigit, N.A., & Toharmat, T. (1983). Standarisasi mutu protein bahan makanan ruminansia berdasarkan parameter metabolismenya oleh mikroba rumen. Bogor: Fakultas Peternakan Institut Pertanian Bogor.

Tillman, A.D., Hari, H., Soedomo, R., Soeharto, P., & Soekanto, L.D. (1991). Ilmu makanan ternak dasar. Fakultas Peternakan UGM: Gadjah Mada University Press.

Tuti, H. (2006). Biogas: Limbah peternakan yang menjadi sumber energi alternatif. Bogor: Balai Penelitian Ternak.

Zieminski, K., & Frac, M. (2012). Methane fermentation process as anaerobic digestion of biomass: Transformations, stages, and microorganism. African Journal of Biotechnology 11(18), 4127-4139.

Downloads

Published

2019-03-01