Experimental Study of a Thermal Plume Evolving Inside a Rectangular Tunnel: Effects of the Source Height

Authors

  • Hatem SAAFI Faculty of Sciences of Tunis, Department of Physics, Laboratory of Energizing and Thermal and Mass Transfers, Tunis
  • Ahmedou Ould Mohamed MAHMOUD Faculty of Sciences and Techniques of Nouakchott, Department of Physics, Unité de nouvelle Technologies d’Energie et Systèmes Thermo Fluides BP 5026, Nouakchott
  • Rejeb Ben MAAD Faculty of Sciences of Tunis, Department of Physics, Laboratory of Energizing and Thermal and Mass Transfers, Tunis

Keywords:

Fire plume, fire tunnel, thermal plume, turbulent natural convection

Abstract

The aim of this work is to simulate experimentally a plume of fire placed at different heights evolving inside a horizontal tunnel, in order to determine the effect of the source site on the plume structure. The plume is produced from an electrically heated disc at a constant and uniform temperature. It is then placed inside the tunnel. First, we studied the evolution of the thermal plume while placing the source at a height above the ground. The study of the thermal and dynamic fields of the flow shows the existence of 3 zones during the vertical evolution of the thermal plume. In the first zone, the flow is strongly influenced by the presence of the thermal plume generating source. Followed by a second zone where the plume undergoes a contraction which prepares the flow to be passed in a third zone where the thermal plume divides into 2 parts by touching the ceiling. The first part (backlayering) moves towards the side blocked by the blower and the second moves towards the free side while going along the ceiling. We then determined the effect of the source site compared to the ground level on the behavior of the thermal plume inside the tunnel. For that, 3 sites of the source (h = 2 cm, h = 7, 5 cm and h = 15 cm) were studied. The comparative study shows that the structure of the flow is influenced by the site of the hot source.

doi:10.14456/WJST.2015.15

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

AOM Mahmoud, J Bouslimi and R Ben Maad. Experimental study of the effects of a thermal plume entrainment mode on the flow structure: Application to fire. Fire Saf. J. 2009; 44, 475-86.

L Dehmani. 1990, Influence d’une Forte Stratification de Masse Volumique sur la Structure Turbulente d’un Panache à Symétrie Axiale, Thèse, Université de Poitier, France.

JM Agator. 1983, Contribution à l’étude de la Structure Turbulente d’un Panache à Symétrie Axiale, Thèse, Université de Poitier, France.

AOM Mahmoud. 1998, Etude de l’interaction d’un Panache Thermique à Symétrie Axiale Avec un écoulement de Thermosiphon, Thèse, Université de Tunis II, Tunisia.

AOM Mahmoud, R Ben Maad and A Belguith. Interaction d’un écoulement de thermosiphon avec un panache thermique à symétrie axiale: étude expérimentale. Rev. Ge Therm. 1998; 37, 385-96.

AOM Mahmoud, R Ben Maad and A Belguith. Production of hot air with quasi uniform temperature using concentrated solar radiation. Renew. Energ. 1998; 13, 481-93.

B Guillou. 1984, Etude numérique et expérimentale de la structure d’un panache thermique pur à symétrie axiale, Thèse de Docteur-Ingénieur, Université de Poitier, France.

H Nakagome and M Hirata. The structure of turbulent diffusion in an axisymmetric thermal plume. In: Proceedings of the International Seminar on Turbulent Buoyant Convection, Dubrovnik, Yugoslavia, 1976, p. 361-72.

M Brahimi, L Dehmani and D Kim Son. Structure turbulente d’écoulement d’interaction de deux panaches thermiques. Int. J. Heat Mass Tran. 1989; 32, 1551-9.

WK George, RL Albert and F Tamanini. Turbulence measurements in an axisymmetric buoyant plume. Int. J. Heat Mass Tran. 1977; 20, 1145-54.

J Zinoubi, R Ben Maad and A Belguith. Influence of the vertical source-cylinder spacing on the interaction of thermal plume with a thermosiphon flow: an experimental study. Exp. Therm. Fluid Sci. 2004; 28, 329-36.

J Zinoubi, AOM Mahmoud, T Naffouti, R Ben Maad and A Belguith. Study of the flow structure of a thermal plume evolving in an unlimited and in a semi-enclosed environment. Am. J. Appl. Sci. 2006; 3, 1690-7.

J Zinoubi, R Ben Maad and A Belguith. Experimental study of the resulting flow of plume-thermosiphon interaction: application to chimney problems. Appl. Therm. Eng. 2004; 25, 533-44.

T Naffouti. 2010, Contribution à l’étude de la structure fine de l’écoulement de panache thermique libre et en interaction, Thèse de doctorat, Université de Tunis El Manar, Tunisia.

J Zinoubi. 1998, Etude de l’interaction d’un panache thermique à symétrie axiale avec un écoulement de thermosiphon, Thèse de doctorat, Université de Tunis II, Tunisia.

Y Oka and GT Atkinson. Control of smoke flow in tunnel fires. Fire Saf. J. 1996; 25, 305-22.

Y Wu and MZA Bakar. Control of smoke flow in tunnel fires using longitudinal velocity system-a study of the critical velocity. Fire Saf. J. 2000; 35, 363-90.

PZ Gao, SL Liu, WK Chow and NK Fong. Large eddy simulation for studying tunnel smoke ventilation. Tunnell. Underground Space Tech. 2004; 19, 577-86.

D Kim Son, M Stage and J Coutanceau. Transferts de chaleur entre un fil anémométrique court et un écoulement permanent à faible vitesse. Rev. Gén. Therm. 1975; 168, 951-6.

Downloads

Published

2014-08-15

How to Cite

SAAFI, H., MAHMOUD, A. O. M., & MAAD, R. B. (2014). Experimental Study of a Thermal Plume Evolving Inside a Rectangular Tunnel: Effects of the Source Height. Walailak Journal of Science and Technology (WJST), 12(2), 203–217. Retrieved from https://wjst.wu.ac.th/index.php/wjst/article/view/983