Model for Modified Holographic Ricci Dark Energy in Gravitation Theory of Branc Dicke


  • Archana DIXIT Department of Mathematics, Institute of Applied Sciences and Humanities, GLA University, Mathura 281406, Uttar Pradesh, India
  • Shilpi SINGHAL Department of Mathematics, DIT University, Mussoo Diversion Road, Dehradun 248009, India
  • Mohd. ZEYAUDDIN Department of General Studies (Mathematics), Jubail Industrial College, Jubail Industrial City, Kingdom of Saudi Arabia



Branc-Dicke theory, MHRDE, Cosmological parameters


In this cosmological model, we have studied the spatially homogeneous and anisotropic Bianchi type and axially symmetric model filled with dark matter and dark energy in Brans-Dicke’s [1] theory of gravitation. Here, we consider the modified holographic Ricci dark energy defined by Chen and Jing [21] as the suitable condition of dark energy. To obtain a solution we assumed the scale factor  used Mishra et al. [43]. We have solved field equations of Brans-Dicke theory of gravitation with the help of an axially symmetric anisotropic Bianchi-type space-time. We have determined the cosmological parameters, namely, EoS parameter, MHRDE density, matter density, skewness parameter, and BD scalar field. Here the various phenomena like the expanding universe, and shift from anisotropy to isotropy are observed in this model. A detailed physical discussion of these dynamical parameters are presented graphically. Some physical and geometrical behaviours of the models are also discussed and found to be in good agreement with the recent observations (OHD+JLA) datasets.


Download data is not yet available.


Metrics Loading ...

Author Biography

Archana DIXIT, Department of Mathematics, Institute of Applied Sciences and Humanities, GLA University, Mathura 281406, Uttar Pradesh, India

Department of Mathematics

Assistatnt Professor


C Brans and RH Dicke. Mach’s principle and a relativistic theory of gravitation. Phys. Rev. 1961; 124, 925.

T Singh and AK Agarwal. Some Bianchi-type cosmological models in a new scalar-tensor theory. Astrophys. Space Sci. 1991; 182, 289.

T Singh and AK Agarwal. Bianchi type-II, VIII, and IX in certain new theories of Gravitation. Astrophys. Space Sci. 1992; 191, 61.

DRK Reddy and MVS Rao. Axially symmetric cosmic strings and domain walls in Lyra geometry. Astrophys. Space Sci. 2006; 302, 157.

DRK Reddy, RL Naidu and VUM Rao. Axially symmetric cosmic strings in scalar-tensor theory. Astrophys. Space Sci. 2006; 306, 185.

J Socrro and M Sabido. Anisotropic cosmology in Saez-Ballester theory: Classical and quantum solutions. Revista Mexicana 2010; 56, 166.

M Jamil, S Ali and D Momenia. Bianchi type I cosmology in generalized Saez-Ballester theory via Noether Gauge Symmetry. Eur. Phys. J. C 2012; 72, 1998.

DRK Reddy, P Govinda and RL Naidu. Five dimensional domain walls in a scalar tensor theory of gravitation. Int. J. Theor. Phys. 2008; 47, 2966.

A Pradhan. Interacting two-fluid viscous dark energy models in a non-flat universe. Res. Astron. Astrophys. 2013; 129, 139.

N Ali. Axially symmetric Bianchi type-I Bulk-Viscous cosmological models with Time-Dependent Λ and q. Astrophys. Astro 2013; 34, 259.

VUM Rao and UD Prasanthi. Bianchi type-I and-III modified holographic Ricci Dark energy models in Saez-Ballester theory. Eur. Phys. J. Plus 2017; 132, 64.

CP Singh and A Kumar. Holographic Ricci Dark Energy with constant bulk viscosity in f (R, T) Gravity. Gravitat. Cosmol. 2019; 25, 58.

S Sankar and CR Mahanta. Holographic dark energy model with quintessence in Bianchi type-I space-time. Int. J. Theor. Phys. 2013; 52, 1482.

S Sankar. Holographic dark energy model with linearly varying deceleration parameter and generalized Chaplygin gas dark energy model in Bianchi type-I universe. Astrophys. Space Sci. 2014; 349, 985.

DRK Reddy, RS Kumar and TVP Kumar. Bianchi type-III dark energy model in f (R, T) gravity. Int. Theor. Phys. 2013; 52, 239.

L Susskind. The world as a hologram. J. Math. Phys. 1995; 36, 6377.

X Zhang. Holographic Ricci dark energy: Current observational constraints, quintom feature, and the reconstruction of scalar-field dark energy. Physic. Rev. D 2009; 79, 103509.

W Fischler and L Susskind. Holography and cosmology. 1998.arXiv:hep-th/9806039.

AG Cohen, DB Kaplan and AE Nelson. Effective field theory, black holes, and the cosmological constant. Phys. Rev. Lett. 1999; 82, 4971.

LN Granda and A Oliveros. Infrared cut-of proposal for the holographic density. Phys. Rev. B 2008; 669, 275.

S Chen and J Jing. Dark energy model with higher derivative of Hubble parameter. Phys. Rev. B 2009; 679, 144.

M Li. A model of holographic dark energy. Phys. Lett. B 2004; 603, 1.

SD Hsu. Entropy bounds and dark energy. Phys. Lett. B 2004; 594, 13.

C Gao, F Wu, X Chen and YG Shen. Holographic dark energy model from Ricci scalar curvature. Phys. Rev. D 2009; 79, 043511.

P Mukherjee, A Mukherjee, HK Jassal, A Dasgupta and N Banerjee. Holographic dark energy: constraints on the interaction from diverse observational data sets. Eur. Phys. J. C 2019; 134, 147.

LN Granda and A Oliveros. New infrared cut-of for the holographic scalar fields models of dark energy. Phys. Rev. B 2009; 671, 199.

S Ehsan and B Vakili. A new holographic dark energy model in Brans-Dicke theory with logarithmic scalar field. Astrophys. Space Sci. 2018; 363, 13.

CP Singh and M Srivastava. Minimally coupled scalar field cosmology in anisotropic cosmological model. Pramana 2017; 88, 22.

EJ Copeland, M Sami and S Tsujikawa. Dynamics of dark energy. Int. J. Mod. Phys. D 2006; 15, 1753.

MP Ryan and LC Shepley. Homogeneous Relativistic Cosmologies. Princeton University Press, Princeton, New Jersey, 1975.

R Bali and S Jain. The Bianchi type V magnetized string dust cosmological model in General Relativity. Int. J. Modern Phys. D 2007; 16, 1769.

R Bali and S Jain. The Bianchi type III non- static magnetized cosmological model for perfect fluid distribution in general relativity. Astrophys. Space Sci. 2007; 311, 401

R Bali, KN Singh and S Jain. Bianchi type 1 non-static magnetized barotropic perfect fluid cosmological model in general relativity. Proc. Nat. Acad. Sci. India Sec. A 2006; 76, 339.

A Sepehri, A Pradhan and S Shoorvazi. Bouncing cosmology with future singularity in brane-anti-brane system. Astrophys. Space Sci. 2016; 261, 58.

L Marder. Gravitational waves in general relativity I. Cylindrical waves. Proc.R. Soc. London 1958; 246, 133.

R Raushan, AK Sukla, R Chaubey and T Singh. The general class of Bianchi cosmological models in f (R, T) gravity with dark energy in viscous cosmology. Pramana J. Phys. 2019; 92, 79.

KD Naidu, DRK Reddy and Y Aditya. Dynamics of axially symmetric anisotropic modified holographic Ricci dark energy model in Brans-Dicke theory of gravitation. Eur. Phys. J. Plus 2018; 133, 303.

CB Collins and J Wainwright. Role of shear in general-relativistic cosmological and stellar models. Phys. Rev. D 1983; 27, 1209.

KS Thorne. Primordial element formation primordial magnetic fields and the isotropy of the universe. Astrophys. J. 1967; 148, 51.

A Pradhan, H Amirhashchi and R Jaiswal. A new class of LRS Bianchi type-II dark energy models with variable EoS parameter. Astrophys. Space Sci. 2011; 334, 249.

K Jotania P Yadav and SA Faaruqi. Magnetized string cosmology in anisotropic Bianchi-II space-time with variable cosmological term Λ. It. Int. J. Theor. Phys. 2011; 50, 1424.

Ö Akarsu, S Kumar, R Myrzakulov, M Samic and L Xu. Cosmology with hybrid expansion law: Scalar field reconstruction of Cosmic history and observational constraints. J. Cosmol. Astropart. Phys. 2014; 1, 22.

RK Mishra, A Pradhan and C Chawla. Anisotropic viscous fluid cosmological models from deceleration to acceleration in string cosmology. Int. J. Theor. Phys. 2013; 52, 2546.

DC Maurya, R Zia and A Pradhan. Dark energy models in LRS Bianchi type-II spacetime in the new perspective of time-dependent deceleration parameter. Int. J. Geom. Meth. Mod. Phys. 2017; 14, 1750077.

H Amirhashchi and S Amirhashchi. Constraining Bianchi type I universe with type Ia supernova and H (z) data. Phys. Dark Univ. 2020; 29, 100557.

H Yu, B Ratna and FY Wang. Hubble parameter and baryon acoustic oscillation measurement constraints on the Hubble constant, the deviation from the spatially at ΛCDM model, the deceleration. Astrophys. J. 2018; 856, 3.

D Komatsu. Electrodeposition of inorganic/organic hybrid thin films. Astrophys. J. Suplim. 2009; 180, 330.

Y Aditya and DRK Reddy. FRW type Kaluza-Klein modified holographic Ricci dark energy models in Brans-Dicke theory of gravitation. Eur. Phys. J. C 2018; 78, 619.

O Farooq, FR Madiyar, S Crandall and B Ratra. Hubble parameter measurement constraints on the redshift of the deceleration {acceleration transition. Astrophys. J. 2017; 835, 26.

R Bousso. A covariant entropy conjecture. J. High Energ. Phys. 1999; 7, 4.




How to Cite

DIXIT, A. ., SINGHAL, S. ., & ZEYAUDDIN, M. . (2021). Model for Modified Holographic Ricci Dark Energy in Gravitation Theory of Branc Dicke. Walailak Journal of Science and Technology (WJST), 18(3), Article 6986 (15 pages).