Speiser’s Theorem on the Road

Authors

  • Janyarak TONGSOMPORN School of Science, Walailak University, Nakhon Si Thammarat 80161
  • Jörn STEUDING Department of Mathematics, University of Würzburg, Würzburg 97074

DOI:

https://doi.org/10.48048/wjst.2019.6944

Keywords:

Riemann zeta-function, elliptic curve, Riemann hypothesis, Speiser’s Theorem, regular graphs, Gauss-Lucas theorem

Abstract

In this note we discuss the Gauss-Lucas theorem (for the zeros of the derivative of a polynomial) and Speiser’s equivalent for the Riemann hypothesis (about the location of zeros of the Riemann zeta-function). We indicate similarities between these results and present there analogues in the context of elliptic curves, regular graphs, and finite Euler products.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

EC Titchmarsh, The theory of the Riemann zeta-function, Oxford University Press 1986, 2nd ed., revised

by D.R. Heath-Brown.

A Speiser, Geometrisches zur Riemannschen Zetafunktion, Math. Ann. 1934; 110, 514-21.

A Speiser, Über Riemannsche Flächen, Comment. Math. Helv. 1930; 2, 284-93.

AA Utzinger, Die reellen Züge der Riemannschen Zetafunktion, Dissertation, Zürich, 1934, 31 pp.

J Arias de Reyna, X-Ray of Riemann zeta-function, 2003, Available as arXiv:math/0309433v1.

R Spira, Zero-free regions of (k)(s), J. Lond. Math. Soc. 1965; 40, 677-82.

N Levinson, H.L. Montgomery, Zeros of the derivatives of the Riemann zeta-function, Acta Math. 1974;

, 49-65.

R Šleževičienė, Speiser’s correspondence between the zeros of a function and its derivative in Selberg’s

class of Dirichlet series, Fiz. Mat. Fak. Moksl. Semin. Darb. 2003; 6, 142-53.

R Garunkštis, R Šimėnas, On the Speiser equivalent for the Riemann hypothesis, Eur. J. Math. 2015; 1,

-50.

H Hasse, Beweis des Analogons der Riemannschen Vermutung für die Artinschen und F.K.

Schmidtschen Kongruenzzetafunktionen in gewissen elliptischen Fällen, Nachr. Ges. Wiss. Göttingen,

Math.-Phys. K. 1933, 253-62.

LC Washington, Elliptic Curves, Chapman & Hall / CRCPress, 2003.

A Lubotzky, R Phillips, P Sarnak, Ramanujan graphs, Combinatorica 1988; 8, 261-77.

S Ramanujan, On certain arithmetical functions, Trans. Camb. Phil. Sue. 1916; 22, 159-84.

GA Margulis, Graphs without short cycles, Combinatorica 1982; 2, 71-8.

J Arias de Reyna, Finite fields and Ramanujan graphs, J. Comb. Theory 1997; 70, 259-64.

A Nilli, On the second eigenvalue of a graph, Discrete Math. 1991; 91, 207-10.

P Sarnak, What is an expander?, Notices A.M.S. 2004; 51, 762-3.

HM Stark, A.A. Terras, Zeta functions of finite graphs and coverings, Adv. Math. 1996; 121, 124-65.

Y Ihara, On discrete subgroups of the two by two projective linear group over p-adic fields, J. Math.

Soc. Japan. 1966; 18, 219-35.

T Sunada, L-functions in geometry and some applications, in: Curvature and Topology of Riemannian

Manifolds, Lecture Notes in Mathematics, Springer 1986; 1201, 266-84.

A Terras, HM Stark, Zeta Functions of Graphs. A Stroll through the Garden, Cambridge University

Press, 2011.

CF Gauss, Note appended at end of memoir (186), Werke, Band 3, Göttingen, 1866.

F Lucas, Sur une application de la Mécanique rationnelle à la théorie des équations, Comptes Rendus

de l’Académie des Sciences, 1880; 89, 224-6.

VV Prasolov, Polynomials, Springer, 2010.

EB Van Vleck, On the location of roots of polynomials and entire functions, Bull. A.M.S. 1929; 35,

-83.

B Conrey, Zeros of derivatives of Riemann’s xi-function on the critical line, J. Number Theory 1983;

, 49-74.

T Craven, G Csordas, The Gauss-Lucas theorem and Jensen polynomials, Trans. A.M.S. 1983; 278,

-29.

E Duenez, DW Farmer, S Froehlich, CP Hughes, F Mezzadri, T Phan, Roots of the derivative of the

Riemann-zeta function and of characteristic polynomials, Nonlinearity 2010; 23, 2599-621.

E Landau, Gelöste und ungelöste Probleme aus der Theorie der Primzahlverteilung und der Riemannschen

Zetafunktion, Proc. Fifth Internat. Math. Congr. 1913; 1, 93-108.

H Bohr, E Landau, JE Littlewood, Sur la fonction (s) dans le voisinage de la droite = 1

, Bull. de

l’Acad. royale de Belgique 1913, 3-35.

N Levinson, Almost all roots of (s) = a are arbitrarily close to = 1/2, Proc. Nat. Acad. Sci. U.S.A.

; 72, 1322-4

A Selberg, Old and new conjectures and results about a class of Dirichlet series, Proceedings of the

Amalfi Conference on Analytic Number Theory, Maiori 1989, E Bombieri et al. (eds.), Università di

Salerno 1992, 367-85.

Downloads

Published

2019-05-01

How to Cite

TONGSOMPORN, J., & STEUDING, J. (2019). Speiser’s Theorem on the Road. Walailak Journal of Science and Technology (WJST), 16(9), 635–646. https://doi.org/10.48048/wjst.2019.6944