Differential Expression of miR-101 and miR-744 in Nasopharyngeal Carcinoma in Pahang State of Malaysia

Authors

  • Azmir AHMAD Department of Biomedical Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Jalan Sultan Haji Ahmad Shah, Bandar Indera Mahkota, Pahang
  • Haziq Abdul WAHID Department of Biomedical Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Jalan Sultan Haji Ahmad Shah, Bandar Indera Mahkota, Pahang
  • Wan Ishlah LEMAN Department of Otorhinolaryngology-Head and Neck Surgery, Kulliyyah of Medicine, International Islamic University Malaysia, Jalan Sultan Haji Ahmad Shah, Bandar Indera Mahkota, Pahang
  • Noor Syamila OTHMAN Department of Biomedical Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Jalan Sultan Haji Ahmad Shah, Bandar Indera Mahkota, Pahang
  • Azlina Abdul RAHMAN Department of Pathology, Hospital Tengku Ampuan Afzan, Jalan Tanah Putih, Pahang
  • Kahairi ABDULLAH Department of Otorhinolaryngology-Head and Neck Surgery, Kulliyyah of Medicine, International Islamic University Malaysia, Jalan Sultan Haji Ahmad Shah, Bandar Indera Mahkota, Pahang
  • Siti Aesah Naznin MUHAMMAD Department of Pathology and Laboratory Medicine, Kulliyyah of Medicine, International Islamic University Malaysia, Jalan Sultan Haji Ahmad Shah, Bandar Indera Mahkota, Pahang
  • Mohd. Arifin KADERI Department of Biomedical Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Jalan Sultan Haji Ahmad Shah, Bandar Indera Mahkota, Pahang

DOI:

https://doi.org/10.48048/wjst.2019.6285

Keywords:

Nasopharyngeal carcinoma, miR-101, miR-744, differential expression, diagnostic biomarker

Abstract

Previous study found that microRNA-101 (miR-101) and microRNA-744 (miR-744) were deregulated in head and neck cancers and were implicated in nasopharyngeal carcinoma (NPC) carcinogenesis. Thus, this study aimed to determine the expression of miR-101 and miR-744 in NPC and analyse the utility of these microRNAs (miRNAs) as diagnostic biomarkers. Total RNA was extracted from 31 NPC and 7 non-NPC control formalin-fixed paraffin-embedded (FFPE) samples. Complementary DNA (cDNA) was synthesized from the total RNA and proceeded with quantitative real-time polymerase chain reaction. Differential expression of miR-101 and miR-744 were calculated from quantification cycle (Cq) data using 2-ΔΔCq calculation. The performance of these miRNAs were calculated using receiver operating characteristic (ROC) curve analysis. The differential expression for miR-101 and miR-744 were -1.39 (p < 0.05) and 2.48 (p > 0.05), respectively, where the deregulations were consistent with the previous report. The area under curve for miR-101, miR-744 and combination of miR-101 and miR-744 were 0.654 (95 % CI: 0.465 - 0.844), 0.588 (95 % CI: 0.368 - 0.808) and 0.626 (95 % CI: 0.481 - 0.771), respectively. However, re-analysis using balanced sample size between NPC and non-NPC control group showed the value decreased to 0.653 (95 % CI: 0.347 - 0.959) for miR-101 but increased to 0.827 (95 % CI: 0.601 - 1.000) for miR-744 and 0.758 (95 % CI: 0.576 - 0.939) for the combination of miR-101 and miR-744, indicating the importance of having a balanced sample size. We have successfully determined the expression of miR-101 and miR-744 in NPC samples. We also demonstrated statistically the utility of these miRNAs as diagnostic biomarkers.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

M Azizah Ab, IT Nor Saleha, A Noor Hashimah, ZA, Azmah and W Mastulu. Malaysian National Cancer Registry Report 2007-2011. Ministry of Health, Malaysia. Available at: http://nci.moh.gov.my/index.php/en/announcement/340-malaysian-national-cancer-registry-report-2007-2011, accessed January 2018.

BCR Devi, P Pisani, TS Tang and DM Parkin. High incidence of nasopharyngeal cancer carcinoma in Native People of Sarawak, Borneo Island. Epidemiol. Biomarkers Prev. 2004; 13, 482-6.

GCC Lim, S Rampal and Y Halimah. Cancer Incidence in Peninsular Malaysia, 2003-2005. The Third Report of the National Cancer Registry Malaysia. Ministry of Health, Malaysia. Available at: http://www.moh.gov.my/images/gallery/Report/Cancer/CancerIncidenceinPeninsularMalaysia2003-2005x1x.pdf, accessed January 2018.

K Breving and A Esquela-Krescher. The complexities of microRNA regulation: Mirandering around the rules. Int. J. Biochem. Cell Biol. 2006; 42, 1316-29.

R Schickel, B Boyerinas, SM Park and ME Peter. MicroRNAs: Key players in the immune system, differentiation, tumorigenesis and cell death. Oncogene 2008; 27, 5959-74.

A Esquela-Krescher and FJ Slack. Oncomirs-microRNA with a role in cancer. Nat. Rev. Cancer 2006; 6, 259-69.

S Pfeffer and O Voinnet. Viruses, microRNAs and cancer. Oncogene 2006; 25, 6211-9.

SK Shenouda and SK Alahari. MicroRNA function in cancer: Oncogene or a tumor suppressor? Cancer Metastasis Rev. 2009; 28, 369-78.

T Spence, J Bruce, KW Yip and FF Liu. MicroRNAs in nasopharyngeal carcinoma. Chin. Clin. Oncol. 2016; 5, 17.

J Lu, H Luo, X Liu, Y Peng, B Zhang, L Wang, X Xu, X Peng, G Li, W Tian, ML He, H Kung and XP Li. miR-9 targets CXCR4 and functions as a potential tumor suppressor in nasopharyngeal carcinoma. Carcinogenesis 2014; 35, 554-63.

K Cai, Y Wan, G Sun, L Shi, X Bao and Z Wang. Let-7a inhibits proliferation and induces apoptosis by targeting EZH2 in nasopharyngeal carcinoma cells. Oncol. Rep. 2012; 28, 2101-6.

N Liu, LL Tang, Y Sun, RX Cui, HY Wang, BJ Huang, QM He, W Jiang and J Ma. MiR-29c suppresses invasion and metastasis by targeting TIAM1 in nasopharyngeal carcinoma. Cancer Lett. 2013; 329, 181-8.

JX Zhang, D Qian, FW Wang, DZ Liao, JH Wei, ZT Tong, J Fu, XX Huang, YJ Liao, HX Deng, YX Zeng, D Xie and SJ Mai. MicroRNA-29c enhances the sensitivities of human nasopharyngeal carcinoma to cisplatin-based chemotherapy and radiotherapy. Cancer Lett. 2013; 329, 91-8.

EY Choy, KL Siu, KH Kok, RW Lung, CM Tsang, KF To, DL Kwong, SW Tsao and DY Jin. An Epstein-Barr virus-encoded microRNA targets PUMA to promote host cell survival. J. Exp. Med. 2008; 205, 2551-60.

L Dölken, G Malterer, S Erhard, S Kothe, CC Friedel, G Suffert, L Marcinowski, N Motsch, S Barth, M Beitzinger, D Lieber, SM Bailer, R Hoffmann, Z Ruzsics, E Kremmer, S Pfeffer, R Zimmer, UH Koszinowski, F Grässer, G Meister and J Haas. Systematic analysis of viral and cellular microRNA targets in cells latently infected with human gamma-herpesviruses by RISC immunoprecipitation assay. Cell Host Microbe. 2010; 7, 324-34.

L Cai, Y Ye, Q Jiang, Y Chen, X Lyu, J Li, S Wang, T Liu, H Cai, K Yao, JL Li and X Li. Epstein-Barr virus-encoded microRNA BART1 induces tumour metastasis by regulating PTEN-dependent pathways in nasopharyngeal carcinoma. Nat. Commun. 2015; 6, 7353.

Z Sha, X Zu, N Li, Y Li and D Li. Proto-oncogenic miR-744 is upregulated by transcription factor c-Jun via promoter activation mechanism. Oncotarget 2016; 7, 64977-86.

XR Tang, X Wen, QM He, YQ Li, XY Ren, XJ Yang, J Zhang, YQ Wang, J Ma and N Liu. MicroRNA-101 inhibits invasion and angiogenesis through targeting ITGA3 and its systemic delivery inhibits lung metastasis in nasopharyngeal carcinoma. Cell Death Dis. 2017; 8, e2566.

S Chen, H Wang, WL Ng, WJ, Curran and Y Wang. Radiosensitizing effects of ectopic miR-101 on non-small-cell lung cancer cells depend on the endogenous miR-101 level. Int. J. Radiat. Oncol. Biol. Phys. 2011; 81, 1525-9.

NM Alajez, W Shi, ABY Hui, J Bruce, M Lenarduzzi, E Ito, S Yue, BO Sullivan and FF Liu. Enhancer of Zeste homolog 2 (EZH2) is overexpressed in recurrent nasopharyngeal carcinoma and is regulated by miR-26a, miR-101 and miR-98. Cell Death Dis. 2010; 1, e85.

Q Sun, T Liu, T Zhang, S Du, GX Xie, X Lin, L Chen and Y Yuan. MiR-101 sensitizes human nasopharyngeal carcinoma cells to radiation by targeting stathmin 1. Mol. Med. Rep. 2015; 11, 3330-6.

Y Fang, X Zhu, J Wang, N Li, D Li, N Sakib, Z Sha and W Song. MiR-744 functions as a proto-oncogene in nasopharyngeal carcinoma progression and metastasis via transcriptional control of ARHGAP5. Oncotarget 2015; 6, 13164-75.

Z Sha, X Zhu, N Li, Y Li and D Li. Proto-oncogenic miR-744 is up-regulated by transcription factor c-Jun via a promoter activation mechanism. Oncotarget 2016; 7, 64977-86.

Q Yu, F Zhang, Z Du and Y Xiang. Up-regulation of serum miR-744 predicts poor prognosis in patients with nasopharyngeal carcinoma. Int. J. Clin. Exp. Med. 2015; 8, 13296-302.

AM Nurul-Syakima, C Yoke-Kqueen, AR Sabariah, MS Shiran, A Singh and L Learn-Han. Differential microRNA expression and identification of putative microRNA targets and pathways in head and neck cancers. Int. J. Mol. Med. 2011; 28, 327-36.

T Li, JX Chen, XP Fu, S Yang, Z Zhang, KhH Chen and Y Li. microRNA expression profiling of nasopharyngeal carcinoma. Oncol. Rep. 2011; 25, 1353-63.

N Liu, NY Chen, RX Cui, WF Li, Y Li, RR Wei, MY Zhang, Y Sun, BJ Huang, M Chen, QN He, N Jiang, L Chen, WC Cho, JP Yun, J Zeng, LZ Liu, L Li, Y Guo, HY Wang and J Ma. Prognostic value of a microRNA signature in nasopharyngeal carcinoma: A microRNA expression analysis. Lancet Oncol. 2012; 13, 633-41.

N-SA Mutalib, L Learn-Han, SM Sidik, SA Rahman, ASM Singh. And C Yoke-Kqueen. miR-181a regulates multiple pathways in hypopharyngeal squamous cell carcinoma. Afr. J. Biotechnol. 2012; 11, 6129-37.

YK Cheah, RW Cheng, SK Yeap, CH Khoo and HS See. Analysis of TP53 gene expression and p53 level of human hypopharyngeal FaDu (HTB-43) head and neck cancer cell line after microRNA-181a inhibition. Genet. Mol. Res. 2014; 13, 1679-83.

AB Hui, W Shi, PC Boutros, N Miller, M Pintilie, T Fyles, D McCready, D Wong, K Gerster, L Waldron, I Jurisica, L Penn and FF Liu. Robust global micro-RNA profiling with formalin-fixed paraffin-embedded breast cancer tissues. Lab. Invest. 2009; 89, 597-606.

RS Goswami, L Waldron, J Machado, NK Cervigne, W Xu, PP Reis, DJ Bailey, L Jurisica, MR Crump and S Kamel-Reid. Optimization and analysis of a quantitative real-time PCR-based technique to determine microRNA expression in formalin-fixed paraffin-embedded samples. BMC Biotechnol. 2010; 10, 47.

S Romero-Cordoba, S Rodriguez-Cuevas, R Rebollar-Vega, V Quintanar-Jurado, A Maffuz-Aziz, G Jimenez-Sanchez, V Bautista-Piňa, R Arellano-Llamas and A Hidalgo-Miranda. Identification and pathway analysis of microRNAs with no previous involvement in breast cancer. PloS One 2012; 7, e31904.

Z Vojtechova, J Zavadil, J Klozar, M Grega and R Tachezy. Comparison of the miRNA expression profiles in fresh frozen and formalin-fixed paraffin-embedded tonsillar tumors. PloS One 2017; 12, e0179645.

A Torres, K Torres, P Wdowiak, T Paszkowski and R Maciejewski. Selection and validation of endogenous controls for microRNA expression studies in endometrioid endometrial cancer tissues. Gynecol. Oncol. 2013; 130, 588-94.

K Hajian-Tilaki. Receiver Operating Characteristic (ROC) curve analysis for medical diagnostic test evaluation. Caspian J. Intern. Med. 2013; 4, 627-35.

J Wang, JT Yu, L Tan, Y Tian, J Ma, CC Tan, HF Wang, Y Liu, MS Tan, T Jiang and L Tan. Genome-wide circulating microRNA expression profiling indicates biomarkers for epilepsy. Sci. Rep. 2015; 5, 9522.

MB Wozniak, G Scelo, DC Muller, A Mukeria, D Zaridze and P Brennan. Circulating microRNAs as non-invasive biomarkers for early detection of non-small-cell lung cancer. PloS One 2015; 10, e0125026.

Downloads

Published

2018-12-28

How to Cite

AHMAD, A., WAHID, H. A., LEMAN, W. I., OTHMAN, N. S., RAHMAN, A. A., ABDULLAH, K., MUHAMMAD, S. A. N., & KADERI, M. A. (2018). Differential Expression of miR-101 and miR-744 in Nasopharyngeal Carcinoma in Pahang State of Malaysia. Walailak Journal of Science and Technology (WJST), 16(5), 295–306. https://doi.org/10.48048/wjst.2019.6285