Synthesis of Patterned Media by Self-Assembly of FePt Nanoparticles

Authors

  • Komkrich CHOKPRASOMBAT Molecular Technology Research Unit, School of Science, Walailak University, Nakhon Si Thammarat 80161, Thailand

Keywords:

Patterned media, FePt nanoparticles, magnetic nanoparticles, magnetic recording media, magnetic storage, self-assembly

Abstract

Patterned media is one of the most promising candidates for ultrahigh magnetic storage. Commonly, electron beam lithography is used to synthesize a very high areal density media beyond 1 Tb/in2. However, such techniques require very high budgets and are time consuming. Self-assembly of magnetic nanoparticles, especially FePt nanoparticles, has been realized as another prominent technique. Nevertheless in order to successfully exploit FePt nanoparticle self-assembly in patterned media fabrication, FePt nanoparticles of proper composition with the desired size and shape as well as a technique to control the assembled behavior of the particles in long range order are required. This review is focused on the chemical synthesis of FePt nanoparticles and how the particles self-assemble into regular arrays.


Graphical abstract


https://wjst.wu.ac.th/public/site/images/admin/image013_1200

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

D Weller and A Moser. A thermal effect limits in ultrahigh-density magnetic recording. IEEE Trans. Magn. 1999; 35, 4423-39.

ZZ Bandić and RH Victora. Advances in magnetic data storage technologies. Proc. IEEE 2008; 96, 1749-53.

Toshiba Corporation. Toshiba boosts performance with industry-leading areal density on 1TB 2.5-inch hard disk drive for PC consumer electronics applications, Available at: http://www.toshibastorage. com/, accessed August 2011.

A Moser, K Tanako, DT Margulies, M Albrecht, Y Sonobe, Y Ikeda, S Sun and EE Fullerton. Magnetic recording: advancing into the future. J. Phys. D: Appl. Phys. 2002; 35, R157-R167.

BD Terris and T Thomson. Nanofabricated and self-assembled magnetic structures as data storage media. J. Phys. D: Appl. Phys. 2005; 38, R199-R222.

R Sbiaa and SN Piramanayagam. Patterned media towards nano-bit magnetic recording: fabrication and challenges. Recent Pat. Nanotechnol. 2007; 1, 29-40.

CA Ross, HI Smith, T Savas, M Schattenburg, M Farhoud, M Hwang, M Walsh, MC Abraham and RJ Ram. Fabrication of patterned media for high density magnetic storage. J. Vac. Sci. Technol. B. 1999; 17, 3168-76.

BD Terris. Fabrication challenges for patterned recording media. J. Magn. Magn. Mater. 2009; 321, 512-7.

CA Ross. Patterned magnetic recording media. Annu. Rev. Mater. Res. 2001; 31, 203-35.

A Girardino, ED Fabrizio, A Nottola, S Cabrini, G Giannini, L Mastrogiacomo, G Gubbiotti, P Candeloro and G Carlotti. Electron-beam lithography patterning of magnetic nickel films. Microelectron. Eng. 2001; 57-58, 931-7.

HH Solak. Nanolithography with coherent extreme ultraviolet light. J. Phys. D: Appl. Phys. 2006; 39, R171-R188.

F Rousseaux, D Decanini, F Carcenac, E Cambril, MF Ravet, C Chappert, N Bardou, B Bartenlian and P Veillet. Study of large area high density magnetic dot arrays fabricated using synchrotron radiation based x-ray lithography. J. Vac. Sci. Technol. B. 1995; 13, 2787-91.

SY Chou, PR Kraus and PJ Renstrom. Imprint of sub-25 nm vias and trenches in polymers. Appl. Phys. Lett. 1995; 67, 3114-6.

T Bublat and D Goll. Large-area hard magnetic L10-FePt nanopatterns by nanoimprint lithography. Nanotechnology 2011; 22, 315301.

SB Darling, NA Yufa, AL Cisse, SD Bader and SJ Sibener. Self-organization of FePt nanoparticles on photochemically modified diblock copolymer templates. Adv. Mater. 2005; 17, 2446-50.

S Sun. Recent advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles. Adv. Mater. 2006; 18, 393-403.

S Sun, CB Murray, D Weller, L Folks and A Moser. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 2000; 287, 1989-92.

CB Rong, N Poudyal, GS Chaubey, V Nandwana, R Skomski, YQ Wu, MJ Kramer and JP Liu. Structural phase transition and ferromagnetism in monodisperse 3 nm FePt particles. J. Appl. Phys. 2007; 102, 043913.

M Chen, JP Liu and S Sun. One-step synthesis of FePt nanoparticles with tunable size. J. Am. Chem. Soc. 2004; 126, 8394-5.

M Chen, J Kim, JP Liu, H Fan and S Sun. Synthesis of FePt nanocubes and their oriented self-assembly. J. Am. Chem. Soc. 2006; 128, 7132-3.

V Nandwana, KE Elkins, N Poudyal, GS Chaubey, K Yano and JP Liu. Size and shape control of monodisperse FePt nanoparticles. J. Phys. Chem. C 2007; 111, 4185-9.

L Colak and GC Hadjipanayis. Chemically synthesized FePt nanoparticles with controlled particle size, shape and composition. Nanotechnology 2009; 20, 485602.

N Poudyal, GS Chaubey, CB Rong and JP Liu. Shape control of FePt nanocrystals. J. Appl. Phys. 2009; 105, 07A749.

T Maeda, T Kai, A Kikitsu, T Nagase and J Akiyama. Reduction of ordering temperature of a FePt-ordered alloy by addition of Cu. Appl. Phys. Lett. 2002; 80, 2147-9.

S Kang, JW Harrell and DE Nikles. Reduction of the fcc to L10 ordering temperature for self-assembled FePt nanoparticles containing Ag. Nano Lett. 2002; 2, 1033-6.

CL Platt, KW Wierman, EB Svedberg, RV Veerdonk, JK Howard, AG Roy and DE Laughlin. L10 ordering and microstructure of FePt thin films with Cu, Au, and Au additive. J. Appl. Phys. 2002; 92, 6104-9.

C Liu, X Wu, T Klemmer, N Shukla, D Weller, AG Roy, M Tanase and D Laughlin. Reduction of sintering during annealing of FePt nanoparticles coated with iron oxide. Chem. Mater. 2005; 17, 620-5.

S Yamamoto, Y Morimoto, Y Tamada, YK Takahashi, K Hono, T Ono and M Takano. Preparation of monodisperse and highly coercive L10-FePt nanoparticles dispersible in nonpolar organic solvents. Chem. Mater. 2006; 18, 5385-8.

J Kim, C Rong, Y Lee, JP Liu and S Sun. From core/shell structured FePt/Fe3O4/MgO to ferromagnetic FePt nanoparticles. Chem. Mater. 2008; 20, 7242-5.

B Jeyadevan, A Hobo, K Urakawa, CN Chinnasamy, K Shinoda and K Tohji. Toward direct synthesis of fct-FePt nanoparticles by chemical route. J. Appl. Phys. 2003; 93, 7574-6.

K Sato, B Jeyadevan and K Tohji. Preparation and properties of ferromagnetic FePt dispersion. J. Magn. Magn. Mater. 2003; 266, 227-30.

K Elkins, D Li, N Poudyal, V Nandwana, Z Jin, K Chen and JP Liu. Monodisperse face-centered tetragonal FePt nanoparticles with giant coercivity. J. Phys. D: Appl. Phys. 2005; 38, 2306-9.

D Li, N Poudyal, V Nandwana, Z Jin, K Elkin and JP Liu. Hard magnetic FePt nanoparticles by salt-matrix annealing. J. Appl. Phys. 2006; 99, 08E911.

X Teng and H Yang. Synthesis of face-centered tetragonal FePt nanoparticles and granular films from Pt@Fe2O3 core-shell nanoparticles. J. Am. Chem. Soc. 2003; 125, 14559-63.

KE Elkins, TS Vedantam, JP Liu, H Zeng, S Sun, Y Ding and ZL Wang. Ultrafine FePt nanoparticles prepared by the chemical reduction method. Nano Lett. 2003; 3, 1647-9.

C Liu, X Wu, T Klemmer, N Shukla, X Yang, D Weller, AG Roy, M Tanase and D Laughlin. Polyol process synthesis of monodispersed FePt nanoparticles. J. Phys. Chem. B 2004; 108, 6121-3.

V Nandwana, KE Elkins and JP Liu. Magnetic hardening in ultrafine FePt nanoparticle assembled films. Nanotechnology 2005; 16, 2823-6.

S Sun, S Anders, T Thomson, JEE Baglin, MF Toney, HF Hamann, CB Murray and BD Terris. Controlled synthesis and assembly of FePt nanoparticles. J. Phys. Chem. B 2003; 107, 5419-25.

LE Howard, HL Hguyen, SR Giblin, BK Tanner, I Terry, AK Hughes and JS Evans. A synthetic route to size-controlled fcc and fct FePt nanoparticles. J. Am. Chem. Soc. 2005; 127, 10140-1.

M Grzelczak, J Vermant, EM Furst and LM Liz-Marzán. Directed self-assembly of nanoparticles. ACS Nano. 2010;4, 3591-605.

SO Kim, HH Solak, MP Stoykovich, NJ Ferrler, JJ de Pablo and PF Nealey. Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates. Nature 2003; 424, 411-4.

JY Cheng, AM Mayes and CA Ross. Nanostructure engineering by templated self-assembly of block copolymers. Nat. Mater. 2004; 3, 823-8.

YS Sung and CA Ross. Orientation-controlled self-assembled nanolithography using a polystyrene-polydimethylsiloxane block copolymer. Nano Lett. 2007; 7, 2046-50.

YS Jung, JB Chang, E Verploegen, KK Berggren and CA Ross. A path to ultranarrow patterns using self-assembled lithography. Nano Lett. 2010; 10, 1000-5.

R Ruiz, H Kang, FA Detcheverry, E Dobisz, DS Kercher, TR Albrecht, JJ de Pablo and PF Nealey. Density multiplication and improved lithography by directed block copolymer assembly. Science 2008; 321, 936-9.

S Park, DH Lee, J Xu, B Kim, SW Hong, U Jeong, T Xu and TP Russell. Macroscopic 10-Terabit-per-square-inch arrays from block copolymers with lateral order. Science 2009; 323, 1030-3.

Y Zhao, K Thorkelson, AJ Mastroianni, T Schilling, JM Luther, BJ Rancatore, K Matsunaga, H Jinnai, Y Wu, D Poulsen, JMJ Fréchet, AP Alivisatos and T Xu. Small-molecule-directed nanoparticle assembly towards stimuli-responsive nanocomposites. Nat. Mater. 2009; 8, 979-85.

V Aleksandrovic, D Greshnykh, I Randjelovic, A Fromsdorf, A Kornowski, SV Roth, C Klinke and H Weller. Preparation and electrical properties of cobalt-platinum nanoparticle monolayers deposited by the Langmuir-Blodgett technique. ACS Nano. 2008; 2, 1123-30.

DR Talham, T Yamamoto and MW Meisel. Langmuir-Blodgett films of molecular organic materials. J. Phys.: Condens. Matter. 2008; 20, 184006.

XY Chen, JR Li and L Jiang. Two-dimensional arrangement of octadecylamine-functionalized gold nanoparticles using the LB technique. Nanotechnology 2000; 11, 108-11.

S Chen. Langmuir-Blodgett fabrication of two-dimensional robust cross-linked nanoparticle assemblies. Langmuir 2001; 17, 2878-84.

A Tao, P Sinsermsuksakul and P Yang. Tunable plasmonic lattices of silver nanocrystals. Nat. Nanotechnol. 2007; 2, 435-40.

Q Gou, X Teng, S Rahman and H Yang. Patterned Langmuir-Blodgett films of monodisperse nanoparticles of iron oxide using soft lithography. J. Am. Chem. Soc. 2003; 125, 630-1.

DK Lee, YH Kim, CW Kim, HG Cha and YS Kang. Vast magnetic monolayer film with surfactant-stabilized Fe3O4 nanoparticles using Langmuir-Blodgett technique. J. Phys. Chem. B 2007; 111, 9288-93.

F Mammeri, YL Bras, TJ Daou, J-L Gallani, S Colis, G Pourroy, B Donnio, D Guillon and S Begin-Colin. Formation of ferromagnetic films with functionalized magnetic nanoparticles using the Langmuir-Blodgett technique. J. Phys. Chem. B 2009; 113, 734-8.

Y Wang, B Ding, H Li, X Zhang, B Cai and Y Zhang. Fabrication and transformation of FePt nanoparticle monolayer. J. Magn. Magn. Mater. 2007; 308, 108-15.

RN Patel, AT Heitsch, C Hyun, D-M Smilgies, A de Lozanne, Y-L Loo and BA Korgel. Printed magnetic FePt nanocrystal films. ACS Appl. Mater. Interfaces. 2009; 1, 1339-46.

AT Heitsch, RN Patel, BW Goodfellow, D-M Smilgies and BA Korgel. GISAXS Characterization of order in hexagonal monolayers of FePt nanocrystals. J. Phys. Chem. C 2010; 114, 14427-32.

Downloads

Published

2011-11-06

How to Cite

CHOKPRASOMBAT, K. (2011). Synthesis of Patterned Media by Self-Assembly of FePt Nanoparticles. Walailak Journal of Science and Technology (WJST), 8(2), 87–96. Retrieved from https://wjst.wu.ac.th/index.php/wjst/article/view/19

Issue

Section

Review Article