Non-negative Solutions of the Nonlinear Diophantine Equation (8^n)^x + p^y=z^2 for Some Prime Number p
DOI:
https://doi.org/10.48048/wjst.2021.11719Keywords:
Catalan’s conjecture, Mersenne prime number, Nonlinear Diophantine equation, Non-negative solutionAbstract
In this paper, we explain all non-negative integer solutions for the nonlinear Diophantine equation of type 8x + py= z2 when p is an arbitrary odd prime number and incongruent with 1 modulo 8. Then, we apply the result to describe all non-negative integer solutions for the equation (8n)x + py = z2 when n ≥ 2. The results presented in this paper generalize and extend many results announced by other authors.
HIGHLIGHTS
- Studying a new series of the equation 8x + py= z2 when p is prime which is not congruent to 1 modulo 8
- Describing all non-negative integer solutions of the equation (8n)x + py = z2 which is a generalization of the equation 8x + py= z2
- The equation 8x + py= z2 has at most 3 non-negative integer solutions when p is congruent to 1 modulo 8 and p ≠ 17
Downloads
Metrics
References
R Crocker. Application of Diophantine equations to problems in chemistry. J. Chem. Educ. 1968; 45, 731.
S Gao and R Heindl. Multivariate public key cryptosystems from Diophantine equations. Des. Codes Cryptogr. 2013; 67, 1-18.
S Okumura. A public key cryptosystem based on Diophantine equations of degree increasing type. Pac. J. Math. Ind. 2015; 7, 1-13.
B Poonen. Computing rational points on curves. In: Proceedings of the Millennial Conference on Number Theory, University of Illinois at Urbana-Champaign, 2000.
E Brown and B Myers. Elliptic curves from model to Diophantus and back. Am. Math. Mon. 2002; 109, 639-49.
DA Cox. Introduction to Fermat's last theorem. Am. Math. Mon. 1994; 101, 3-14.
D Acu. On a Diophantine equation 2x + 5y = z2. Gen. Math. 2007; 15, 145-8.
A Suvarnamani, A Singta and S Chotchaisthit. On two Diophantine equations and . Sci. Tech. RMUTT J. 2011; 1, 25-8.
A Suvarnamani. On a Diophantine equation . Int. J. Math. Sci. Appl. 2011; 1, 1415-9.
K Laipaporn, S Wananiyakul and P Khachorncharoenkul. On the Diophantine equation Walailak J. Sci. Tech. 2019; 16, 647-53.
B Peker and S Cenberci. On the Diophantine equations of type. Am. J. Math. Sci. 2012; 1, 195-9.
B Sroysang. More on the Diophantine equation . Int. J. Pure Appl. Math. 2012; 81, 601-4.
JFT Rabago. On an open problem by B. Sroysang. Konuralp J. Math. 2013; 1, 30-2.
B Sroysang. On the Diophantine equation . Int. J. Pure Appl. Math. 2013; 84, 111-4.
B Sroysang. On the Diophantine equation . Int. J. Pure Appl. Math. 2014; 90, 69-72.
B Sroysang. More on the Diophantine equation . Int. J. Pure Appl. Math. 2014; 91, 139-42.
L Qi and X Li. The Diophantine equation . Sci. World J. 2015; 2015, 306590.
S Asthana and MM Singh. On the Diophantine equation . Int. J. Algebra. 2017; 11, 225-30.
N Makate, K Srimud, A Warong and W Supjaroen. On the Diophantine equations and (in Thai). Math. J. 2019; 64, 24-9.
P Mihailescu. Primary cyclotomic units and a proof of Catalan’s conjecture. J. Reine Angew. Math. 2004; 27, 167-95.
MAA Khan, A Rashid and MS Uddin. Non-negative integer solutions of two Diophantine equations and . J. Appl. Math. Phys. 2016; 4, 762-5.
E Catalan. Note extraite d’une lettre adresse´e a` l’e´diteur par Mr. E. Catalan, Re´pe´titeur a` l’e´cole Polytechnique de Paris. J. für die Reine und Angew. Math.1844; 27, 192.
DM Burton. Elementary number theory, Tata McGraw-Hill Publishing Company Limited, New York, 2006.
Academic Dictionaries and Encyclopedias, Available at: https://en.academic.ru/dic.nsf/enwiki/759292, accessed August 2020.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Walailak University

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.