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Abstract

In this article, we present the optimal homotopy asymptotic method (OHAM) and homotopy
perturbation method (HPM) for solving 2-dimensional nonlinear Fredholm integral equations of the
second kind. A comparison is made between these methods to solve 2-dimensional nonlinear Fredholm
integral equations of the second kind. The results show that the presented methods are very powerful and
simple techniques in solving 2-dimensional nonlinear Fredholm integral equations of the second kind.

Keywords: Optimal homotopy asymptotic method, homotopy perturbation method, 2-dimensional
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Introduction

Two-dimensional Fredholm integral equations play an important role in many branches of
mathematics, physics, mechanics and engineering. Therefore, many different techniques are used to solve
2-dimensional linear and nonlinear Fredholm integral equations. Abdou ef al. [1] studied the approximate
solution to a class of nonlinear 2-dimensional Hammerstein integral equations by the Adomian
decomposition and homotopy analysis methods. Chebyshev polynomials were applied by Avazzadeh and
Heydari [2] to approximate 2-dimensional linear and nonlinear integral equations of the second kind.
Also, Babolian ef al. [3] used rationalized Haar functions to obtain the solution of 2-dimensional
nonlinear integral equations of the second kind. Guogiang and Jiong [4] presented the Nystrom method to
solve 2-dimensional nonlinear Fredholm integral equations. Heydari et al. [5] introduced integral mean
value theorem to solve Fredholm integral equations of the second kind and high dimensional problems.
Xie and Lin [6] introduced a collocation method to solve 2-dimensional Fredholm integral equations of
the second kind.

The homotopy perturbation method (HPM) was established and improved by He [7-12] based on a
combination of the homotopy technique from topology and the perturbation method. Many researchers
have studied this method to linear and nonlinear problems. For example, to nonlinear oscillators with
discontinuities [9], boundary value problems [12], Volterra’s integro-differential equation [13], systems
of nonlinear coupled equations [14] and inverse space-dependent heat source [15].

Recently, the optimal homotopy asymptotic method (OHAM) was introduced and developed by
Marinca et al. [16-19]. This method was applied in solving many types of linear and nonlinear problems
for integral and different equations such as Hashmi et al. [20] who used the OHAM for solutions of
weakly singular Volterra integral equations. Anakira et al. [21] applied the OHAM to find the algorithm
of approximate analytic solution of delay differential equations. Almousa and Ismail [22] employed this
method for finding approximate numerical solutions of linear Fredholm integral equations of the first kind
and Mabood et al. [23,24] used this method for heat transfer.
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The aim of this article is to present the OHAM and HPM for solving 2-dimensional nonlinear
Fredholm integral equations of the second kind. Consider the 2-dimensional nonlinear Fredholm integral
equation of the second kind as follows [4];

906, 6) = F(r,0) + [} [ k(e t,5,y,9(s,y))dsdy, (x,t) € [a,b] X [¢,d] M

where g(x,t) is a continuous function, k(x,t,s,y,g(s,y)) and f(x,t) are continuous functions on
N =a,b] x|[c,d].

Analysis of the HPM for 2-dimensional nonlinear Fredholm integral equations of the second kind

To explain the HPM, we consider Eq. (1) as;

N(g) = g(x,t) = fx,t) = [} [ k(x,t,5,7, 9(5,7))dsdy = 0, 2

where N is an integral operator. Using the HPM technique, we have a homotopy v(x,y,p): 2 X [0,1] —»
R for an embedding parameter p € [0,1] which satisfies;

Hw,p) = (1= pv(x,t,p) = 9o, O + p[v(x t.p) = () = [} [T k(x.t,5,7,v(s,y,p))dsdy].  (3)
By choosing a convex homotopy H (v, p) = 0, we obtain;

(1= Pvx t,p) = golx, )] = —p [v(x,t,p) — FCx,0) = [} [ k(e t,5,7,v(s,y, p))dsdy)]. @)
From Eq. (4), when p = 0 and p = 1 it holds that;

H(v,0) =v(x,t,0) — go(x,t) =0

i.e.;

v(x,t,0) = go(x, 1), (5)
and

Hw,1) =v(x,t,1) — f(x,t) — f: fcdk(x, t,s,y,v(s,y,1))dsdy = 0

ie.;

v(x,t,1) = f(x,t) + ff fcdk(x, t,s,y,v(s,y,1)) dsdy, (6)
respectively. We can obtain the HPM solution of Eq. (3) in the form of power series;

U(x, t, p) = Z‘ﬁl=0 Um(x’ t)pm (7)

When the series (7) of v(x, t, p) converges at p = 1, then;

g(x: t) = liInp—»l U(X, t, p) = Z%:O vm(x' t)' (8)
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Inserting Eq. (7) into Eq. (4), one can obtain;

2o Un (6, O™ = go (0, t) — pgo(x,t) + pf G t) +p [ [ k(X 6,5,Y, Xy Vs (5,)p™dsdy.  (9)

For simplicity we choose vy (x,t) = go(x,t) = f(x, t), and replace vy(x, t) into Eq. (7) and then equate
the coefficients of like powers of p.

Analysis of the OHAM for 2-dimensional nonlinear Fredholm integral equations of the second kind

To explain the OHAM, we rewrite Eq. (1) as follows;
b (d
g0, ) = fC,t) = [, [, k(o t,s,,9(s,y))dsdy = 0. (10)
According to the OHAM, a set of equations for an embedding parameter p € [0,1] is given by;
L(g(x t,p) = g(x,t)
b rd
N(g(x,t,p)) =~ [, [ k(x,t,s5,y,9(s,y))dsdy,
which satisfies;
(1=-p[L(gCet,p) = f(x,0)] = HD)[L(g(x, t,p)) = f(x, ) + N(g(x,t,p))], (11)

where g(x,t,p):2 x [0,1] > R and H(p) = XL, ¢ p’ is a nonzero auxiliary function for p # 0 and
H(0) = 0, where ¢j,j = 1,2, ... are constants. Whenp = 0 and p = 1, then;

g(x, t, 0) = go(X, t)’ g(x’ t' 1) = g(x’ t) (12)

respectively. By using Taylor’s series, we expand the solution about p as follows;

g(x, t,p, cj) =go(x,t) + Xm—y gm(x, t, cj)pm,j =1,2,.. (13)
When p = 1, then Eq. (13) becomes;

9(xt,1,¢) = go(x, ) + Trer gm(x.t, 1), j = 1,2, ... (14)

Using Eq. (13) into Eq. (11), we obtain the zeroth order, first order and mth order problems as follows;
0(P):go(x,t) = f(x,1). (15)
0(pY): g1 (6, t) = —cy f), [ k(x,t,5,y, 9o(s,y))dsdly . (16)
0(P™): gm0, 0) = Gna (6, 8) = € [ [ k(x,8,5,7, o (s, ¥))dsdly

+ Z{Z_ll C gm_i(X, t) + Z{Z_ll C; Nm—i( Yo (x, t)' g1 (x' t)' ﬁgm—l(xt t)), m= 2’3: ey (17)

where N,,,( go(x, t), g1 (x, 1), ..., gm (x, t)) are the coefficient of p™ in the expansion of N(g(x,t,p))
about p;
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N (g(x, t,p, cj)) = No(go(x, t)) + Yo Nm(go(x, t), 91(x, 1), ., gm(x, t))pm,j =12,.. (18)
The result of the mth-order approximations are given by;

gm(x, t, cj) =golx, t) + X7, gk(x, t, cj),j =12,..,m (19)
Using Eq. (19) into Eq. (1), we can obtain the residual for j = 1,2, ..;

R(x,t, c]-) = gm(x, t, cj) — f(x,t) - f: fcd k(x,t,s,y,9™(s,y))dsdy . (20)

If fR(x, t, cj) = 0, then gm(x, t, cj) will be the exact solution. For the determination of ¢y, c,, c3, ...,
we can apply least squares method as follows;

J(¢) = 7 [£ R?(x,t, ¢;)dxdt, on

By using Galerkin’s method, we have;

dj _ b d R
o = Jo Jo R(xt,¢) Ser dxdt, (22)
and

a _ 4 _ .. Y _

de;  dey dcm 0, (23)

with the values ¢y, ¢, C3, ..., C, the mth-order solution is well determined.

Numerical examples and discussion

In this section, some examples of 2-dimensional nonlinear Fredholm integral equations of the
second kind are solved to show the applicability and accuracy of both the OHAM and HPM for solving
this type of integral equations and comparing the results in OHAM with HPM. Maple software with long
format and double accuracy was used to carry out the computations.

Example 1 Let us consider the 2-dimensional nonlinear Fredholm integral equation of the second kind

. . 1
with the exact solution g(x,t) = ey [3].

1 X 1,01 x
9000 = ~saan T o Jo o A+ +9)(9(r9)*dyds, (24)

To derive the solution Eq. (24) by using the OHAM, let;
L(g(x, t,p)) = g(x,t) (25)

N(gt.p)) =~ [, [] = (L +y +5)(g(,5))dyds, (26)

1+t
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(1-p) (L(g(x, t,p)) — ((1+x+t)z - ﬁ))

= HP) [L(9C t.0) ~ (o — o) ~ N(9Ge ) |- 27)

(1+x+t)2  6(1+t)

By using Eqgs. (15) - (17), we obtain a series of problems;

0(p°): go(x,t) = ((1+x1+t)2 B 6(1x+t))' .
0(p"):g9:(x,t) = —¢; fol folﬁ (1 +y+5)(go(y, ))*dyds. 2

0(P*):g2(x,t) = (1 +c)ga(x, 1)
~2¢, fy Jy == (L +y +5) 9o, ) g1, 9)dyds —c; [ [y = (1 +y +5)(go(y,5)dyds.  (30)

Hence, the solutions are;

on. _ 1 x
0("): go(x,t) = ((1+x+t)2 6(1+t))'

—0.1199239063¢1 X
1+t ’

0(p1): gl(xi t) =

—0.1199239063¢1 (1+¢1)x N 0.02651698096¢%1x  0.1199239063¢,x
1+t 1+t 1+t '

0(p2): gZ(xf t) =

Now, adding the above equations g, (x, t), g, (x, t) and g,(x, t), we have;

1 X 0.1199239063c1x 0.1199239063¢1 (1+¢1)x + 0.02651698096¢2 1 x 0.1199239063¢cx

g(x,t) = -

(1+x+t)2  6(1+1) 1+t 1+t 1+t 1+t

€2))
By using Galerkin’s method, we can find the values c; and c,, yielding;
¢; = —1.389770162, c, = —1.504385978.

Using the above values ¢; and c, in Eq. (31), the second order approximate OHAM solution is given by;

_ 1 x 01666666667
gGxt) = (1+x+t)2  6(1+8) 1+t ' (32)
To derive solution Eq. (24) by using the HPM, let a convex homotopy be;
Hw,p) = 1 —-p)lv(x,t,p) — go(x, )]
1 1,1
+p vt p) — G~ ) — o fo 1 L4y + 90,5, p)2dyds| = 0. (33)

Substituting Eq. (7) into Eq. (33), one can get;
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0(p°): vo(x, t) = —

(14x+t)2"
1,1
0@ t) = —im+ Jy Jy 7 L+ Y + )Wy, ) dyds = 0.

0 vy (x,t) =2 [ [[ 2= (L+y +5) vo(y,$)vy(¥,5)dyds = 0.

1+t

0(P®):v3(x, t) = fol f01L (1+y+5s) (Zvo(y, v, (y,8) + (v (3, s))z) dyds = 0.

1+t

Again, continuing the procedure, one can obtain;
vy (x,t) = vs(x, t) = vg(x,t) = = 0.

Thus, the solution is given by;

1 1
(1+x+t)2 +0+0+-= (1+x+6)2 "

g, t) = Yoo Um(x, 8) = (34)
This is the exact solution.
Table 1 shows the comparison of the absolute errors obtained by HPM and OHAM. These results

show the efficiency of the methods for 2-dimensional nonlinear Fredholm integral equation of the second
kind.

Table 1 Comparison of absolute errors of Example 1.

(x,t) Errors of HPM Errors O_f OHAM
Zeroth order First order Second order
(0.0,0.0) 0 0 0 0
(0.1,0.1) 0 0.01515151515 0 0
(0.2,0.2) 0 0.02777777778 1x107™" 1x107™"
(0.3,0.3) 0 0.03846153846 1x10™M 1x10™M
(0.4,0.4) 0 0.04761904762 1x10! 1x10!!
(0.5,0.5) 0 0.05555555556 0 0
(0.6,0.6) 0 0.06250000000 1107 110"
(0.7,0.7) 0 0.06862745098 2x107™! 2x107!
(0.8,0.8) 0 0.07407407407 1x101! 1x10"
(0.9,0.9) 0 0.07894736842 1x101! 1x10"
(1.0,1.0) 0 0.08333333333 2x107"! 2x107!!

Example 2 Let us consider the 2-dimensional nonlinear Fredholm integral equation of the second kind
with the exact solution g(x,t) = x cost [2].

g(x,t) = x cos(t) — % - 2—7451n(1) cos(1) — écosz(l) + fol fol(s + ) (g(y, s))?dyds, (35)
To derive the solution Eq. (35) by using the OHAM, let;

L(g(x,t,p) = g(xt) (36)
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N(g(x, t,p)) = = [; [1(s +¥)(g(y,s))?dyds, (37)

which satisfies;
1-p) [L(g(x, t, p)) — (x cos(t) — % — %cosz(l) + ﬁsin(l) cos(l))]

=H(p) [L(g(x, t, p)) — (x cos(t) — % - %cosz(l) + 27—4$ir1(1) cos(1)) — N(g(x, t, p))]. (33)

By using Egs. (15) - (17), we obtain a series of problems;
0(p%): golx,t) = (x cos(t) — é + 2—745in(1) cos(1) — %cosz(l)). (39)

0(p"):9:(x,0) = =1 f; J (s + ) (90, 5))*dlyds. (40)
0(P*):g.(x,0) = (1 + c1)ga(x, 1)
=2¢, J) [1(s + )90, )91 (v, 8)dyds — ¢, f,, [/ (s + ) (go(y,$))?dyds.  (41)
Hence, the solutions are;
0(p%): golx,t) = (x cos(t) — é + 2—745in(1) cos(1) — %cosz(l)).
0(p): g,(x,t) = —0.0956258238¢;.
0(?): g,(x,t) = —0.0956258238 (1 + ¢;)c; + 0.03623145488 ¢,2 —0.0956258238 c,.
Now, adding the above equations g,(x, t), g, (x, t) and g, (x, t), we have;

g(x,t)
= x cos(t) — % + z—lsin(1) cos(1) — 1—12cos2(1) —0.0956258238¢; + 0.03623145488 c,2

—0.0956258238(1 + ¢;)c; — 0.0956258238 c,. (42)
By using Galerkin’s method, we can find the values c; and c,, yielding;
¢, = —2.948294491, ¢, = —2.450686585.
Using the above values ¢; and ¢, in Eq. (42), the second order approximate OHAM solution is given by;
g(x,t) = x cos(t) + 4.5 x 10719, (43)

To derive the solution Eq. (35) by using the HPM, let a convex homotopy as;
H(v,p)

=1 -p)vixt,p)—golx,t)]+p [v(x, t,p) — (x cos(t) — é — 2—745in(1) cos(1) — %cosz(l))

— s+ nE,s, P))Zdyds] = 0. (44)
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Substituting Eq. (7) into Eq. (44), one can get;
0(P%):vy(x,t) = x cos(t).

0(p"):vy(x,t)
=_ % - 27—451n(1) cos(1) — 1—12c052(1) + %cosz(l) + fol fol(s + ¥)(vo(y,5))? dyds = 0.

0@?):v,(x,t) = 2[5 [ (s +¥) vo(y,5)v1 (¥, 5)dyds = 0.

0306 t) = [} [ (s +3) (20003, $)v2(3,9) + (v,(3,9))”) dyds = 0.
Again, continuing the procedure, one can obtain;
vy (x,t) = vs(x, t) = vg(x,t) = = 0.
Thus, the solution is given by;
g, t) =Y o vm(x,t) =xcos(t) + 0+ 0+ --- = x cos(t) . (45)
This is the exact solution.
Table 2 shows a comparison of the absolute errors obtained by HPM and OHAM. Table 3 shows

some numerical results of Example 2 calculated according to HPM and OHAM. This example shows that
the OHAM and HPM solutions are very close to the exact solution.

Table 2 Comparison of absolute errors of Example 2.

Errors of OHAM
(x,t) Errors of HPM
Zeroth order First order Second order
(0.0,0.0) 0 0.2819330900 4.5x1071° 4.5%x10™"°
(0.1,0.1) 0 0.2819330900 4.5x107 4.5x10"
0.2,0.2) 0 0.2819330900 4.5%x10™° 4.5%x10™"
(0.3,0.3) 0 0.2819330900 4.5%x10™° 4.5%x10™"
(0.4,0.4) 0 0.2819330900 4.5%x10™° 4.5%x10™"
(0.5,0.5) 0 02819330900 4.5%107™"° 4.5x10™°
(0.6,0.6) 0 0.2819330900 4.5%10™° 4.5%10™"
(0.7,0.7) 0 0.2819330900 4.5%10° 4.5%10™"
(0.8,0.8) 0 0.2819330900 4.5x107"° 4.5x107°
(0.9,0.9) 0 0.2819330900 4.5%x10"° 4.5%x107"°
(1.0,1.0) 0 0.2819330900 4.5x1071° 4.5x107°
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Table 3 Numerical results of Example 2.

(x,t) Exact solution  Second order HPM solution Second order OHAM solution First order OHAM solution
(0.0,0.0) 0 0 -4.5x1071° -4.5x107°
(0.1,0.1)  0.09950041653 0.09950041653 0.09950041698 0.09950041608
(0.2,0.2) 0.19601331560 0.19601331560 0.19601331600 0.19601331520
(0.3,0.3) 0.28660094670 0.28660094670 0.28660094720 0.28660094620
(0.4,0.4) 0.36842439760 0.36842439760 0.36842439800 0.36842439720
(0.5,0.5) 0.43879128100 0.43879128100 0.43879128140 0.43879128060
(0.6,0.6) 0.49520136890 0.49520136890 0.49520136940 0.49520136840
(0.7,0.7)  0.53538953110 0.53538953110 0.53538953160 0.53538953060
(0.8,0.8) 0.55736536740 0.55736536740 0.55736536780 0.55736536700
(0.9,0.9) 0.55944897150 0.55944897150 0.55944897200 0.55944897100
(1.0,1.0)  0.54030230590 0.54030230590 0.54030230640 0.54030230540

Example 3 Let us consider the 2-dimensional nonlinear Fredholm integral equation of the second kind
with the exact solution g(x,t) = x cost [5].

g(x,t) = x cos(t) + %(cos“(l) -1) - %sin (D (cos?(1) +2)
+Jy Jo O sin(s) + 1)(g (3, 5)°dy ds, (46)

To derive the solution Eq. (46) by using the OHAM, let;
L(g(xt,p)) = g(x,t) (47)

N(g(x,t,p)) = — [, [J (v sin(s) + 1) )(g(v,5))3dyds, (48)

which satisfies;
(1-p) [L(g(x, t,p)) — (x cos(t) + % (cos*(1) — 1) — %sin (1)(cos?(1) + 2))]

= H(p) [L(g(x, t,p)) — (x cos(t) + % (cos*(1) — 1) — %sin (D (cos?(1) + 2)) —N(g(xt, p))].

(49)
By using Egs. (15) - (17), we obtain a series of problems;
0(p%): golx,t) = (x cos(t) + %(cos‘*(l) -1 - %sin (D (cos?(1) + 2)). (50)
0(pY): g:(x,£) = —c, [ [} (v sin(s) + 1)(go(y, 5))*dyds. (51)

0(*):g2(x,t) = (1 + c1)ga(x, 1)

=3¢, [, [y sin(s) + 1)go2 (1, )91 (v, $)dy ds — ¢ [ [} (v sin(s) + 1)(go(v, 5))3dyds.  (52)
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Hence, the solutions are;
0(p%): golx,t) = (x cos(t) + %(0054(1) -1 - %sin (1) (cos?(1) + 2)).
0(pY): g, (x,t) = —0.07089002607c;.

0(p?): g,(x,t) = —0.07089002607¢, (1 + ¢;) + 0.03032616165 ¢;2 —0.07089002607 c,.

Now, adding the above equations g, (x, t), g, (x, t) and g, (x, t), we have;

g(x,t)
= xcos(t) + %(cos‘*(l) -1)- %sin(l) (cos?(1) + 2) — 0.07089002607c; + 0.03032616165 c, >

—0.07089002607c; (1 + c;) —0.07089002607c, . (53)
By using Galerkin’s method, we can find the values ¢, and c,, yielding;
¢, = —1.184796567, ¢, = —1.345964673.
Using the above values ¢; and ¢, in Eq. (53), the second order approximate OHAM solution is given by;
g(x,t) = x cos(t) — 3.9 x 10719, (54)

To derive the solution Eq. (46) by using the HPM, let a convex homotopy as;

H,p) = (1= v t,p) — 9o, O] +p [v(x,t,p) — (55 (cos*(1) = 1) = 15sin (1) (cos? (1) + 2))
— [y Jy O sin(s) + D (, s,p))*dyds| = 0. (55)
Substituting Eq. (7) into Eq. (55), one can get;

0(p®):vy(x,t) = x cos(t).

0(ph):vy(x, t)
= %(cos‘*(l) -1) - f—zsin (1)(cos?(1) +2) + [ [, (wsin(s) + 1)(go(, 5))° dyds = 0.

0):vy(x,t) =3 [ [ (ysin(s) + 1)) (vo(, )2, (¥, s)dyds = 0.

0(p™):vs(x,6) =3 [} f (ysin(s) + 1) ((v6(3,9)) 023, 5) + 1o, )(11(3,5))") dyds = 0.

Again, continuing the procedure, one can obtain;

v (x,t) = vs(x, t) = vg(x,t) =+ = 0.

Thus, the solution is given by;

g, t) =27 _ovn(x,t) =xcos(t) + 0+ 0+ -+ = x cos(t) . (56)

This is the exact solution.
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Table 4 shows some numerical results of Example 3 calculated according to the OHAM and HPM.
It is clear that the solutions obtained by using HPM and OHAM are nearly identical to the exact solution.

Table 4 Comparison of absolute errors of Example 3.

Absolute errors of methods

(x,t) Exact solution -
Second order HPM First order OHAM Second order OHAM
(0.0,0.0) 0 0 0.1224644938 3.9x107"°
(0.1,0.1) 0.09950041653 0 0.1224644938 3.9x10710
0.2,0.2) 0.1960133156 0 0.1224644938 3.9x1071°
(0.3,0.3) 0.2866009467 0 0.1224644938 3.9x1071°
0.4,0.4) 0.3684243976 0 0.1224644938 3.9x1071°
(0.5,0.5) 0.4387912810 0 0.1224644938 3.9x1071°
(0.6,0.6) 0.4952013689 0 0.1224644938 3.9x107"°
0.7,0.7) 0.5353895311 0 0.1224644938 3.9x107"°
(0.8,0.8) 0.5573653674 0 0.1224644938 3.9x107°
(0.9,0.9) 0.5594489715 0 0.1224644938 3.9x1071°
(1.0,1.0) 0.5403023059 0 0.1224644938 3.9x1071°
Conclusions

In this article, the OHAM and HPM have been described to solve 2-dimensional nonlinear
Fredholm integral equations of the second kind. Three examples were given to show the applicability and
accuracy of the presented methods for solving this type of equation. The results obtained by HPM were
compared with OHAM. It is clear that the solutions obtained by using HPM and OHAM are nearly
identical to the exact solution and it is shown that the presented methods are accurate, effective and
simple for solving these types of equations.
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