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Abstract 

Tuna is a renewable resource that has been managed regionally, but its worldwide capacity for 
regeneration is still little known. A time-series dataset of tuna catches was used to develop nonlinear 
univariate models for monitoring the sustainability of tuna catches. Two approaches were compared: 1) 
fitting an ARIMA-spline model to the volume of annual tuna catches and 2) combining neural networks 
with an ARIMA model to fit the annual changes in volume. These models offer competitive forecasting 
performance with small percentage errors. By averaging results of the best model developed in each of 
these approaches, our ensemble forecast predicts that world tuna catches will reach the optimal level of 
5.09 million tons in 2025, remain stable thereafter until 2033, and start decreasing about 0.78 % annually. 
These models could be used by regional fishery management groups to discover discrepancies between 
such projections and other science-based estimations of the maximum sustainable output. 

Keywords: ARIMA-spline model, Ensemble forecasts, Neural networks, Nonlinear univariate 
forecasting, Tuna catches 
 
 
Introduction 

Tuna is a widely traded commodity around the world. It is fished in all oceans, processed in many 
countries, and marketed around the world. The growing demand for nutrient-rich food, especially in 
developed countries, drives tuna species’ high economic value as does the increase in multinational 
vessels fishing for tuna. With advanced fishing and storage technologies, tuna fisheries have expanded 
rapidly since the 1950s into all oceanic areas to which tuna migrates. Purse-seine fishing with drifting fish 
aggregating devices (FADs) has become the dominant means of catching tuna due to the more than 90 % 
success rates [1,2]. Consequently, the global capture of the principal commercial tuna species increased 
dramatically, from 0.4 million tons in 1950 to the 1st hit at 5 million tons in 2014 [3]. Of the total tuna 
catches in 2015 (4.8 million tons), 80 % came from 18 major countries, which fished, altogether, almost 4 
million tons. The top 5 countries were Indonesia (11.8 %), Japan (8.0 %), Taiwan (6.7 %), Ecuador (6.6 
%) and Korea (6.5 %). Almost half of the tuna caught were sourced from the Western Pacific Ocean. 
These tunas were shipped to and processed in several countries, especially Thailand, the world’s leading 
tuna processing country since the 1980s [4]. 

Economically, the overall volume of tuna catches accounted for more than 10 billion US dollars in 
landed value [5], importantly contributing to economies of more than 100 countries. Ecologically, 
however, there have been global concerns about the rapid depletion of tuna stock over the past 2 decades. 
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The tuna stock assessment in 2014 showed that 39 % of tuna stocks were overfished [6]. By 2015, 
especially skipjack, the most caught species (58 % of total catches), was no longer plentiful, having been 
moderately exploited in all oceans, even though it has a 1-year maturity span [7]. Currently, there are 5 
regional fishery management organizations (RFMOs) active in governing tuna fishing and controlling the 
health of tuna stocks through international law [8]. They are in charge of tuna management and 
conservation in their respective areas of jurisdiction, consisting of 1) Inter-American Tropical Tuna 
Commission (IATTC); 2) International Commission for the Conservation of Atlantic Tuna (ICCAT); 3) 
Commission for the Conservation of Southern Bluefin Tuna (CCSBT); 4) Indian Ocean Tuna 
Commission (IOTC); and 5) Western and Central Pacific Fisheries Commission (WCPFC). 

These tuna RFMOs have implemented a series of regulations and measures toward achieving their 
conservation goals, such as requiring 1) FAD-free fishing to prevent overfishing and the catching of 
juvenile tunas; 2) catch certification to expose illegal, unreported, and unregulated (IUU) fishing; and 3) 
extending the duration of FAD closures for purse-seine fisheries [9,10]. However, such marine policy 
implementation is not simple and has raised concerns of success in conserving tuna stock particularly in 
the Pacific Ocean, which is the largest source of tuna [11], as it involves monitoring multiple fishing 
fleets over distant waters under different national jurisdictions. 

Despite the fact that tuna is a renewable resource that is managed regionally, the sustainability of 
global tuna populations has remained dubious, and the future stability of tuna supply is in doubt. Thus, 
the goal of this research is to create a trustworthy dynamic statistical model for tracking patterns in global 
tuna catches that have consequences for long-term fishery management. In time-series analysis, both 
linear and nonlinear statistical methods have been applied to estimate future catches of different marine 
species. By using no explanatory variable apart from variables which are solely functions of time, the 
time series model fundamentally is applicable to forecast over the long horizon. If explanatory variables 
are used as leading indicators, the forecasting would be limited by the availability of the explanatory 
variables unless these are also forecasted [12]. Thus, to accommodate the uncontrollable conditions in 
fisheries management, such as environmental changes, variations in fishery capacity, and natural resource 
governance, different statistical methods were combined to improve forecasting accuracy. These methods 
involve combining autoregressive integrated moving average (ARIMA) models and neural networks 
[13,14] and using multiple linear regression models [15,16]. Moreover, spline functions have been well-
applied to smooth time series data in several scenarios [17-21]. Some of those methods were explored and 
integrated into our approach to develop nonlinear models which provide the most plausibility of forecasts 
for world tuna catches. 
 
Materials and methods 

The world tuna-catch time-series used in this study were retrieved from the Global Fishery and 
Agriculture Statistics [22]. The dataset contained annual captures in tonnage from 1950 to 2015 of all 7 
commercially important species, including skipjack, yellowfin, bigeye, albacore, Pacific bluefin, Atlantic 
bluefin and Southern bluefin. The data of all 7 tuna species aggregated into total annual tuna catches were 
used to develop the statistical models. 

First, a linear regression model was fit to the volume of annual catches to investigate the trend. The 
model was also fit to the changes in the volume of annual catches to examine variation patterns in global 
tuna catches. Then, the need for data transformation was identified by using a Box-Cox transformation 
[23]. Both the Autocorrelation Function (ACF) and the Partial Autocorrelation Function (PACF) were 
plotted to identify appropriate orders of the ARIMA model [24,25]. Ramsey’s RESET test [26] and 
Tsay’s test [27] were used to verify the necessity of nonlinear models. Additionally, White’s test [28] was 
executed to validate the appropriate use of neural networks for handling nonlinearity in the time series. 

To take advantage of both perspectives of the time series, 2 nonlinear approaches were conducted 
and compared as diagramed in Figure 1. Approach 1 is modeling the volume of tuna catches with the 
ARIMA-spline model and approach 2 is modeling the changes in the volume of tuna catches by 
combining neural networks and the ARIMA model. All data analyses and modeling were carried out by 
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using the R program [29]. In addition, the SAS [30] was used to simultaneously estimate residuals for 
identifying subset ARIMA models. 
 

Approach 1: Modeling the volume of tuna catches  
In this 1st approach, the goal was to model both the signal (linear regressions with spline) and the 

noise (autoregression) of the volume of tuna catches at the same time. A natural spline function was 
added as an external regression vector into the arima () function in the R program [31] to smooth change 
points within the time series without loss of information [32]. However, instead of the commonly used 
cubic spline [33], a quintic spline was proposed to integrate into the ARIMA model. Because the reason 
was that a quintic spline provides quadratic rather than linear extrapolation [19], which more plausibly 
represents the long-term trend in global tuna catches. 

The ARIMA-quintic spline model is constructed as follows: 
 

𝑌𝑌𝑡𝑡 = 𝑆𝑆(𝑡𝑡) + 𝑧𝑧𝑡𝑡                  (1) 
 
where t is time (year), 𝑌𝑌𝑡𝑡 are total tuna catches at time t, 𝑧𝑧𝑡𝑡 are errors identified from stationary processes, 
and S(t) is a quintic spline function for time t expressed below: 
 

 

 

 

 

 

 
 
where p is number of knots, 𝑡𝑡1 <  𝑡𝑡2 < ... <  𝑡𝑡𝑝𝑝 are specified time knots, and (t − tk)+  is t − tk for t > tk 
and 0 otherwise, and 𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑1,𝑑𝑑2, . . . ,𝑑𝑑𝑝𝑝−3 are model coefficients.   

Using this quintic spline smoothing in the model offers multiple forecasting outcomes because 
positions of the knots are free parameters. To avoid overfitting, only 4 -- the minimum number of knots -- 
were implemented in the quintic spline, and results of the ARIMA-quintic-spline model with different 
combinations of 4 knots were computed and compared. As equispaced knots or equal distance of knot 
positions are commonly used [34] for spline interpolation, they are considered as criteria for knots 
selection of the spline model. The tests for model validity include Akaike Information Criteria (AIC), 
Root Mean Square Errors (RMSE), Mean Absolute Percentage Errors (MAPE) and adjusted r-squared. 
Besides such goodness-of-fit validation, the plausibility of forecasts is also essential to finalize the 
forecasting model.  

Furthermore, a Monte Carlo simulation was implemented to test the consistency of forecasting 
performance through Bootstrap [35]. The reason for this rigorous validation is to ensure the model 
performance for long-term forecasting. There are the following steps: 1) A set of 100 residuals was 
randomly sampled (with replacement) from the fitted model, and 100 annual tuna catches were generated. 
2) Those first 66 tuna catches were modeled, and the last 34 catches were held in reserve as future 
observations. 3) Using the fitted model, the next 34-step-ahead tuna catches were forecast and compared 
with those future observations. 4) Steps 1 - 3 were repeated 1,000 times, and the mean and the standard 
deviation of the relative forecast errors were calculated to measure the model’s performance. 
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Approach 2: Modeling the changes in the volume of tuna catches 
In this approach 2, the purpose was to apply neural networks, capable of modeling nonlinear 

relationships among resource and environmental variables associated with non-controllable changes in 
fisheries [36,37], especially when predicting complicated phenomena [38]. Thus, a neural network was 
combined into a model, fitting the changes in the volume of tuna catches, essentially to improve the 
estimations of errors from the model. For comparison purposes, 2 neural networks were constructed:  

 
𝑊𝑊𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1𝑡𝑡 + (1−𝜃𝜃1𝐵𝐵1−𝜃𝜃2𝐵𝐵2−⋯−𝜃𝜃𝑞𝑞𝐵𝐵𝑞𝑞)

(1−∅1𝐵𝐵1−∅2𝐵𝐵2−⋯−∅𝑝𝑝𝐵𝐵𝑝𝑝)
𝑎𝑎𝑡𝑡                 (3) 

 
𝑊𝑊𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1𝑡𝑡 + 𝑧𝑧𝑡𝑡                   (4) 

where t is time (year); 𝑊𝑊𝑡𝑡 is the changes in the volume of tuna catches at time t; B is backshift operator; p 
and q denote orders of autoregressive and moving average respectively; 𝑎𝑎𝑡𝑡 are residuals series from the 
ARIMA model (Eq. (3)); 𝑧𝑧𝑡𝑡 are residuals series from the linear regression model (Eq. (4)), and 𝛽𝛽 , ∅  
and 𝜃𝜃  are model coefficients. 

 

 
 
Figure 1 Two nonlinear approaches for forecasting world tuna catches. 
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In this application, some lagged residuals from the linear regression and ARIMA models were used 
as input variables, as they explain the nonlinear autocorrelation structure of the data. However, there was 
no specific theory dictating the specific number of lagged observations we should choose to input in 
neural network modeling [39]. Thus, we conducted experiments to find an appropriate number of lagged 
residuals providing minimal forecasting errors. For each neural network structure, the neural net () 
function in the R program [29] was applied to train up to 10 artificial neurons in a single hidden layer 
with 30 repetitions. This neural training used the backpropagation algorithm to get linearly-predicted 
residuals as an output of the simple nonlinear regression model as diagramed in Figure 1, step 4 of 
approach 2. Such repetitions of neural network training were recommended to obtain the best plausible 
model with 99 % confidence [40]. RMSE was the key measure assessing neural network performance. 
With the least error estimations of noise, the forecasts of changes in the volume of catches were generated 
and calculated into the volume of catches. As outlined in Figure 1, there are 4 forecasting results from 
approach 2; two are from linear regression and ARIMA models alone and the other 2 are from those 
models combined with neural networks. The MAPEs of each model were then compared. 
 

 
Figure 2 World tuna catches 1950 - 2015 (a) and changes in world tuna catches 1951 - 2015 (b). 
 
 
Results and discussion 

Results from 1st fitting the linear regression model to the 66-year volume of tuna catch demonstrated 
an upward trend with very high goodness-of-fit, adjusted r-squared 96.88 % as shown in Figure 2(a). 
When exploring the rates of tuna catches, this procedure demonstrated a downward trend as depicted in 
Figure 2(b). The opposite directions of these trend analyses showed that the growth in rates of annual 
tuna catches could soon reach the optimal level of catches, the highest volume of catches before 
decreasing. Just how soon was one of the key findings from results described in the following 2 
approaches:  
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Results from approach 1: Modeling the volume of tuna catches 
As illustrated in Figure 3(a), the Box-Cox transformation plot of tuna catches time-series shows 

that the optimal λ, an estimate of power transformation was close to 0.5, meaning that a squared-root was 
needed for data transformation. The normal Q-Q plot in Figure 3(b) illustrates that the studentized 
residuals from modeling the squared-root transformed tuna catches were stabilized. Even though the 
squared-root transformation improved the data variability of the model up to adjusted r-squared 98.59 %, 
both Tsay’s test and Ramsey’s RESET test of the time series resulting in p-values < 0.05 indicated the 
presence of nonlinearity in annual tuna catches. This confirmed the necessity of nonlinear models. 
Meanwhile, the ACF and PACF plots of square-root-transformed tuna catch in Figures 4(a) - 4(b) 
revealed that there was a linear relationship between past and future volumes of tuna catches at lag-1, lag-
5 and lag-10. In the iterative process, the ACF and PACF of residuals from the AR(1) model as illustrated 
in Figures 4(c) - 4(d) still showed the existence of residual autocorrelations. Finally, this procedure 
identified that the subset ARIMA([1,9],0,4) model was the appropriate orders of the ARIMA model to 
remove all significant autocorrelation as shown in Figures 4(e) - 4(f), the ACF and PACF of residuals 
from ARIMA([1,9],0,4) model. 

Thus, the integrated ARIMA([1,9],0,4)-quintic-spline model was the designated nonlinear method 
to model both the signal and the noise of the annual tuna catches, and the quintic spline function helped 
smooth the data represented of the slow-down in the catching rates after the year of 2000. Based on the 
Eq. (1), the ARIMA([1,9],0,4)-quintic-spline model can be re-expressed in Eq. (5), where 𝑌𝑌𝑡𝑡 are square-
root-transformed catches. 

 
𝑌𝑌𝑡𝑡 = 𝑆𝑆(𝑡𝑡) + (1−𝜃𝜃4𝐵𝐵4)

(1−∅1𝐵𝐵−∅9𝐵𝐵9)
𝑎𝑎𝑡𝑡                 (5) 

 
 

 
Figure 3 A Box-Cox transformation plot of tuna catches time-series (a) and a normal Q-Q plot after 
fitting the linear model to squared-root transformed tuna catches (b). 
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Figure 4 ACF and PACF plots of data modeling square-root-transformed tuna catches. 
 
 

Then, this model equation was used to generate forecasting results with statistical measures for each 
combination of 4 knots. For knots selection of the spline model, AIC was the 1st consideration. As 
exhibited in Table 1, the smallest AIC was 643.91, resulting from the model M1 with the 4 knots at 1990, 
1999, 2000 and 2010. This model M1 predicts that the optimal catches of tuna will reach 5.49 million 
tons in year 2025 before dropping significantly at the rate of –0.47 %. However, this forecast may not 
correspond to catchability under sustainable fishing management. Thus, the least change after the optimal 
catches was the 2nd consideration since it would explain the plausible long-term trend better. The model 
M2 with 4 knots at 1983, 1992, 2004 and 2012, meets the 2nd criteria with the least change, –0.000004 %, 
whereas its AIC, 644.28 has no significant difference from M1’s. This model M2 predicts higher optimal 
catches of 5.7 million tons. When considering equally distanced knots as the 3rd criteria, model M3 shown 
in Figure 5(a) with 7-year equispaced knots at 1990, 1997, 2004 and 2011, has the smallest AIC, 643.93, 
and its forecast of the optimal catches is 5.45 million tons, 40,000 tons lower than the model M1’s 
forecasts. However, the model M3 has sharply decreasing rates, –0.59 % after the optimal catches, not 
meeting the 2nd criteria whereas the model M4 exhibited in Figure 5(b) with 9-year equispaced knots at 
1984, 1993, 2002 and 2011, satisfies all 3 criteria. It predicts the optimal catches reaching 5.69 million 
tons, about the same as M2’s forecasts. All these 4 spline models (M1 - M4) have high goodness-of-fit. 
Their adjusted r-squared is between 99.59 to 99.62 % and they have low mean errors, MAPE ranged from 
1.85 to 1.90 % and RMSE ranged from 30.45 to 31.61. These validation measures have no statistically 
significant difference. Thus the model M4 was selected for approach 1 and named in short “A1: ARIMA-
spline” as expressed below: 
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𝑌𝑌𝑡𝑡 = 584.94 + 27.22𝑡𝑡 − 0.000009𝑆𝑆(𝑡𝑡) +
(1 − 0.51919𝐵𝐵4)

(1 − 0.6961𝐵𝐵 + 0.2637𝐵𝐵9)
𝑎𝑎𝑡𝑡  

 

From the Monte Carlo simulation, the relative forecast errors also confirm that the model 
outperformed. By comparing the next 34 stepped-ahead simulated annual tuna catches with future catches 
generated from the model, the mean of forecast errors ranged from –0.073 to 0.709 % and the standard 
deviations were between 0.0130 and 0.0538. Furthermore, the model diagnostics of the residuals do not 
indicate any heteroscedasticity and autocorrelation of errors.  

Based on existing tuna fishery implications, the ARIMA-spline model predicted that the total tuna 
catches of the 7 major commercial species in 2016 would be 4.81 million tons, slightly decreasing from 
4.86 million tons in 2015 before slightly rising 2.7 % annually to the optimal volume of catches at 5.69 
million tons in 2025 (Table 1).  
 
 
Table 1 Forecasts and parameter estimations from different knots position in the ARIMA([1,9],0,4)-
quintic spline model. 
 

Model 
Coefficients 

AIC MAPE RMSE 
% 

Adj. 
r-squared 

Forecasts of  
tuna catches (Million MT) 

%change 
after  

optimal 
catches intercept year spline ar1 ar9 ma4 2016 2017 2018 2019 2020 2025 

M1 585.74 27.14 -0.000028 0.682 -0.269 0.5148 643.91 1.86 30.63 99.62 4.79 4.99 5.09 5.24 5.36 5.49 -0.472829 

M2 585.02 27.22 -0.000007 0.697 -0.263 0.5196 644.28 1.90 31.61 99.59 4.81 5.02 5.15 5.31 5.44 5.70 -0.000004 

M3 586.12 27.12 -0.000026 0.682 -0.270 0.5148 643.93 1.85 30.45 99.62 4.79 4.97 5.09 5.23 5.34 5.45 -0.591688 

M4 584.94 27.22 -0.000009 0.696 -0.263 0.5191 644.23 1.90 31.60 99.59 4.81 5.02 5.14 5.30 5.44 5.69 -0.000262 

 

 
Figure 5 Graphical forecasts of tuna catches from ARIMA([1,9],0,4)-quintic spline models with different 
equispaced knots. 
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Results from approach 2: Modeling the changes in the volume of tuna catches 
As illustrated in Figure 2(b), the changes in the volume of tuna catches during 1951 - 2015 

fluctuated between –0.0864 and 0.2235, and demonstrated a downward trend. Based on Eq. (4), this trend 
linear regression model labeled as “A2: TLR” has the following formula: 

  
𝑊𝑊𝑡𝑡 = 1.9019234 − 0.000939𝑡𝑡 + 𝑍𝑍𝑡𝑡 
 

From autocorrelation diagnoses, the ACF and PACF plots in Figures 6(a) - 6(b) show results from 
the initial linear model while the plots in Figures 6(c) - 6(f) exhibit significant correlations that remained 
after fitting ARIMA(1,0,0) and ARIMA(1,0,8) models respectively. Last, only lag-23 remains 
significantly correlated as identified in Figures 6(e) - 6(f). This iterative process demonstrated that 
ARIMA(1,0,[8,23]) was the most appropriate subset ARIMA model to eliminate all serially correlated 
noise. The parameters for this subset ARIMA model were simultaneously estimated as expressed below 
in Eq. (3). This forecasting model of changes in the volume of tuna catches was labeled “A2: ARIMA”.  

 

𝑊𝑊𝑡𝑡 = 1.917963 − 0.00095𝑡𝑡 +
(1 − 0.32938𝐵𝐵8 − 0.60693𝐵𝐵23)

(1 + 0.41642𝐵𝐵)
𝑎𝑎𝑡𝑡 

 
The results from White’s test with p-value < 0.001 confirmed that there was nonlinearity in the 

annual changes of tuna catches and this validation indicated the suitable use of neural networks to handle 
such nonlinear data. From experiments using neural network implementation with different 
autoregressive lags in the initial 2 models (“A2: TLR” and “A2: ARIMA”), it was found that 1-year 
lagged residuals were preferred for both neural network structures. It is obvious that both combined 
neural network models, either “A2: TLR-NN” or “A2: ARIMA-NN” greatly improve the forecasting 
performance of annual changes in the volume of tuna catches. The results from model testing also show 
outperformance, with a small MAPE of 0.37 % for “A2: TLR-NN” and 0.41 % for “A2: ARIMA-NN”. 

As shown in Figure 7(a), the “A2: TLR-NN” model predicts that annual changes in the volume of 
tuna catches will linearly decrease to close to zero in 2025, while in Figure 7(b), the “A2: ARIMA-NN” 
model forecasts fluctuating changes with a very slightly decreasing trend, which will be close to zero in 
2033. Based on these predicted changes, we calculated the forecasts for the volume of tuna catches 
exhibited in Table 2. The projections of the optimal volume of tuna catch derived from “A2: TLR-NN” 
and “A2: ARIMA-NN” models will be 4.77 and 4.51 million tons respectively. Among the 4 models from 
this approach 2, “A2: ARIMA-NN” model obtains the lowest MAPE 4.62 %, a little bit higher than the 
“A1: ARIMA-spline” (MAPE 3.59 %). 
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Figure 6 ACF and PACF plots of data modeling changes in tuna catches.  

 
 

 
Figure 7 Graphical results from data modeling changes in tuna catches. 
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Table 2 Forecasts of world tuna catches from alternative models of the 2 approaches. 

Models MAPE 2016 2017 2018 2019 2020 2025 2026 2027 2033 2034 2035 
A1: ARIMA-spline 3.59 4.81 5.02 5.14 5.30 5.44 5.70 5.70 5.68 5.49 5.46 5.45 
A2: TLR 12.04 5.50 5.52 5.57 5.60 5.63 5.71 5.70 5.70 5.55 5.50 5.46 
A2: TLR-NN 5.17 4.62 4.64 4.68 4.70 4.73 4.77 4.77 4.76 4.62 4.58 4.54 
A2: ARIMA 7.67 5.25 5.21 5.37 5.33 5.20 5.22 5.11 5.11 5.30 5.26 4.98 
A2: ARIMA-NN 4.62 4.57 4.52 4.66 4.62 4.50 4.49 4.39 4.38 4.51 4.47 4.22 
Average†   4.69 4.77 4.90 4.96 4.97 5.09 5.04 5.03 5.00 4.97 4.84 

Notes: Forecasts are in million tons and bold values are smallest MAPE of each approach. The Average† 
is an ensemble forecasts by averaging results from A1: ARIMA-spline and A2: ARIMA-NN models.  
 
 

Graphing the forecasts from all 5 alternative models in Figure 8, A1: ARIMA-spline is the 
ARIMA([1,9],0,4)-quintic spline model and A2: ARIMA-NN is the ARIMA(1,0,[8,23])-neural network 
model. It clearly shows that the models with neural networks combined in the statistical calculations offer 
much more conservative results even though they improve model performance statistically. To take 
advantage of the unique strengths of the 2 approaches, we, therefore, propose the ensemble forecasts for 
world tuna catches by averaging results from the first 2 outstanding models (ARIMA-spline and ARIMA-
NN models). As illustrated in Figure 8, the black bold line, named “Avg+” is averaged results of those 2 
outstanding models and the 2 vertical-cyan-dashed lines are optimal years, the highest level of predicted 
catches before declining trends. 2025 is the year of optimal catches for A1: ARIMA-spline, A2: TLR, and 
A2: TLR-NN models and 2033 is the year of optimal catches for A2: ARIMA and A2: ARIMA-NN 
models. These ensemble forecasts predict that world tuna catches would fall 3.6 % in 2016 before 
beginning the rise of an average 0.9 % to the level of optimal catches at 5.09 million tons in 2025 and 
remaining relatively stable at 4.9 - 5 million tons thereafter till 2033. Then, total tuna catches are expected 
to slowly decrease by about 0.78 % annually during 2034 - 2040. 

In 2019, the Food and Agriculture Organization (FAO) reported that global tuna captures of 2016 - 
2017 were 4.91 and 5.07 million tons respectively [41]. The actual catches were 5 % higher than the 
ensemble forecast whereas the actual catches were 2 % higher than the forecasts from the ARIMA-spline 
model. With this small difference, it is convinced that there might be an effort to sustainably manage the 
global tuna capture at 5 million tons per year, maximum. Knowing this optimal expected global supply of 
tuna would encourage stakeholders to employ tuna fishery management practices that could ecologically 
secure global tuna stock and consequently sustain world tuna industries. Moreover, in the future, if a 
statistically based projection of maximum sustainable yield (MSY) of all tuna species in all oceans was 
publicly available, we could identify gaps between that projected MSY and our forecasts. Such gaps 
would be useful for reviewing the adequacy of existing tuna-related conservation measures and would 
help support decisions made by the tuna RFMOs.  

At the time of revising this paper in 2021, the global tuna captures of 2018 - 2019 were reported 
5.52 and 5.72 million tons respectively [42]. These catch rates dramatically increased 9 and 3.6 % 
subsequently. The volume of these 2-year catches was 14 % greater than the ensemble forecasts and 8 % 
higher than the forecasts from the ARIMA-spline model. This could be further investigated whether such 
catch abilities were under controllable fishing quota. Industry groups expressed the need for transparency 
in management practices from the WCPFC, the fifth RFMO governing tuna fisheries in the Western and 
Central Pacific Ocean (WCPO), the area that provides the largest tuna resources in the world. Industry 
groups have requested that the WCPFC share information on decisions made regarding compliance with 
conservation measures since these groups believe tuna conservation progress has been undermined [43]. 
Considering this communication gap in information on tuna governance, our nonlinear approaches could 
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also be a tool dynamically refined further to fit data quantifying catches of specific tuna species or catches 
in specific fishing areas like the WCPO to help explain a situation by fact and statistics. 
 

 
 
Figure 8 Graphical forecasts for world tuna catches 2016 - 2040. 

 
 

Conclusions 

The tuna ecosystem remains imbalanced and the nonlinear relations in global tuna catch result from 
multiple interacting factors, including exploitation intensity, environmental changes, economic dynamics 
and/or interventions to facilitate sustainable fishery management. Researchers face daunting challenges 
when trying to capture and interpret existing information within an available dataset. Both scientific and 
statistical approaches are needed to improve technical procedures for dealing with uncertainty in fisheries 
management [44].  

Given the multiple uncertainties and complex interaction of variables, forecasting tuna catches in 
this study was also no simple task. Thus, a diverse set of techniques had to be adopted and combined to 
obtain the most plausible forecasts. Model validation and rigorous testing are crucial, and the 2 criteria 
always considered for model selection are 1) how well the model fits past data and 2) how plausible the 
model forecasts future data. It is obvious that integrating a spline function into an ARIMA model and 
combining neural networks with an ARIMA model have similar accuracy and offer competitive 
forecasting performance for modeling tuna catches data in our study. As the primary interest of the 
research is the plausibility of long-term forecasts, rather than making both approaches competitive, the 
results of both models were averaged. These ensemble forecasts ultimately give a convincing picture of 
the future of world tuna catches that has implications for fishery sustainability management. The forecasts 
these models enable will be useful not only for monitoring long-term sustainable fisheries of tuna 
regionally or globally but also for reformulating future allocation programs for internationally shared 
fisheries.  
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