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Abstract 

By using the ))(exp( ηφ− -expansion method, abundant exact traveling wave solutions for the fifth 
order (1+1)-dimensional Kaup-Kupershmidt equation are obtained in a uniform way. The obtained 
solutions in this work are imperative and significant for explanation of some practical physical 
phenomena. It is shown that the ))(exp( ηφ− -expansion method, together with the first order ordinary 
differential equation, provides a progress mathematical tool for solving nonlinear partial differential 
equations. Numerical results, together with graphical representation, explicitly reveal the complete 
reliability and high efficiency of the proposed algorithm. 

Keywords: The ))(exp( ηφ− -expansion method, the fifth order (1+1)-dimensional Kaup-Kupershmidt 
equation, traveling wave solutions, nonlinear evolution equation 
 
 
Introduction 

Most scientific problems and physical phenomena occur nonlinearly. Nonlinear differential 
equations take place in a diverse range of physical phenomena, including propagation of shallow water 
waves, long wave and chemical reaction-diffusion models, fluid mechanics, physics, astrophysics, solid 
state physics, chemistry, various branches of biology, astronomy, hydrodynamics, nuclear physics, and 
applied and engineering sciences. In recent years, the exact solutions of nonlinear partial differential 
equations (PDEs) have been investigated by many researchers (see [1-42]) who were concerned with 
nonlinear physical phenomena, and many powerful and efficient methods have been used by them. 
Among non-integrable nonlinear differential equations, there is a wide class of equations that are referred 
to as partially integrable, because these equations become integrable for some values of their parameters. 
Recently, many kinds of powerful methods have been proposed to find exact solutions of nonlinear PDEs, 
e.g. the homotopy analysis method [1,2], the 3-wave method [3], the extended homoclinic test approach 
[4], the improved F-expansion method [5], the projective Riccati equation method [6], the Weierstrass 
elliptic function method [7], the Jacobi elliptic function expansion method [8,9], and the tanh-function 
method [10-13]. For integrable nonlinear differential equations, the inverse scattering transform method 
[14], the Hirota method [15], the Backlund transform method [16] and the Exp-function method [17-20], 
the truncated Painlevé expansion method [21], the extended tanh-method [22,23], the homogeneous 
balance method [24-26], and other methods [27-33], are used for searching for the exact solutions. Zhao 
and Li [34] proposed a direct and concise method, called the ))(exp( ξΦ− -expansion, for solving 
nonlinear evolution equations to find new types of solution. 
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The objective of this article is to implement the ))(exp( ηϕ− -expansion method to construct the 
exact solutions for nonlinear evolution equations in mathematical physics via the fifth order (1+1)-
dimensional Kaup-Kupershmidt equation for the first time. 
 
Description of the ))(exp( ηφ− -expansion method 

In this section, we describe the main steps of the ))(exp( ηφ− -expansion method for finding the 
traveling wave solutions of nonlinear evolution equations [42]. Consider that a nonlinear equation in 2 
independent variables x  and t  is given by; 
 

0),,,,,,( =ttxtxxtx UUUUUUP               (1) 
 
where ),( txUU =  is an unknown function, P is a polynomial in ),( txUU = , and its various partial 
derivatives in which the highest order derivatives and nonlinear terms are involved. 
 
Step 1 Combining the independent variables x  and t  into one variable wtx −=η , we suppose that; 
 

)(),( ηutxU = , wtx −=η ,                 (2) 
 
the traveling wave variable (2) permits us to reduce Eq. (1) to an ODE for )(ηuu = ; 
 

( , , , ... ... ...) 0′ ′′ =P u u u                  (3) 
 
Step 2 Suppose that the solution of ODE (3) can be expressed by a polynomial in ))(exp( ηφ− as follows; 
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where )(ηφ′  satisfies the ODE in the form; 
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then the solutions of ODE (5) are; 
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When 0,042 ===− λµµλ , then )ln()( E+= ηηφ             (9) 
 

When 042 <− µλ , then 
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, , ; 0, ... ...,λ =ia w i m  and µ  are constants to be determined later, 0≠ma , and the positive integer m  

can be determined by considering the homogeneous balance between the highest order derivatives and 
nonlinear terms appearing in ODE (3). 
 
Step 3 By substituting (4) into Eq. (3) and using the ODE (5), collecting all terms with the same order of 

))(exp( ηφ−  together, the left hand side of Eq. (3) is converted into another polynomial in ))(exp( ηφ− . 
Equating each coefficient of this polynomial to zero yields a set of algebraic equations 
for , ..., , ; 0,... ...,λ =ia w i m  and µ .  
 
Step 4 Assuming that the constants , ..., , ; 0,... ...,λ =ia w i m  and µ  can be obtained by solving the 
algebraic equations in step 3, since the general solutions of ODE (5) are well known to us, then 
substituting , ..., ; 0,... ...,=ia w i m , along with the general solutions of Eq. (5), into (4) completes the 
determination of the solution of Eq. (1). 
 
New exact solutions to the fifth order (1+1)-dimensional Kaup-Kupershmidt equation 

In this section, the ))(exp( ηφ− -expansion method is employed to construct some new traveling 
wave solutions for the fifth order (1+1)-dimensional Kaup-Kupershmidt equation, which is a very 
important non-linear evolution equation (NLEE) in mathematical physics and engineering. The Kaup-
Kupershmidt equation is the nonlinear fifth-order partial differential equation. It is the first equation in a 
hierarchy of integrable equations with Lax operator. It has properties similar (but not identical) to those of 
the better-known KdV hierarchy. Fifth-order KdV type equations occur naturally in modeling many 
different wave phenomena, such as gravity-capillary waves, the propagation of shallow water waves over 
a flat surface, and magneto-sound propagation in plasmas [35]. Although the fifth order (1+1)-
dimensional Kaup-Kupershmidt equation is completely integrable [36] and has bilinear representations 
[37,38]. Salas et al. [39] used the projective Riccati equations method and the Cole-Hopf transformation 
to find the traveling wave solutions. Goodarzian et al. [40] applied the Exp-function method to the Kaup-
Kupershmidt equation to find exact solutions. Feng and Li [41] used the Fan sub-equation method to 
construct exact traveling wave solutions of the (1+1)-dimensional Kaup-Kupershmidt equation. Shakeel 
and Mohyud-Din [42] used the alternative )/( GG′ -expansion method with generalized Riccati equation 
for finding some exact traveling wave solutions of the fifth order (1+1)-dimensional Kaup-Kupershmidt 
equation. Let us now consider the fifth order (1+1)-dimensional Kaup-Kupershmidt equation; 

 
0202510 2 =++++ xxxxxxxxxxxxxt UUUUUUUU             (11) 

 
Upon using the transformation; 
 

)(),( ηutxU = ; wtx −=η                (12) 
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where w is speed of travel, Eq. (11) is transferred to; 
 

0202510 2)5( =′+′′′+′′′++′− uuuuuuuuw              (13)

          
 

Integrating Eq. (13) with respect to, η we have; 
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where the prime denotes differentiation with respect to η . By balancing the orders of u′  and 2u  in Eq. 
(14), we have 2=m . So, Eq. (14) has the following solution; 
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where wtxutxU −== ηη),(),(  and 02 ≠a  

Substitute (5) and (15) into (14), letting the coefficient of (exp( ( ))) , ( 0,1, 2,...,6)ϕ η− =i i  be zero, yields a 
set of algebraic equations about wai , as follows; 
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Solving the above sets of algebraic equations, we obtain 2 sets of solutions as follows;  
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Set 2 ,
3

1352208
3

832 64223 λµλµλµ −+−=C  ,8811176 242 µλλµ −+=w    

 ,82
0 µλ −−=a λ121 −=a  and 121 −=a     

 
Substituting solution set-1 into (15), we have; 
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Respectively substituting (6), (7), (8), (9) and (10) into formula (16), we have 5 traveling wave solutions 
of the fifth order (1+1)-dimensional Kaup-Kupershmidt Eq. (11), as follows: 
when 0,042 ≠>− µµλ , then; 
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where E is an arbitrary constant. 

When 0,0,042 ≠≠=− λµµλ , we obtain the traveling solution; 
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,
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When 0,0,042 ===− λµµλ , we obtain the non-traveling solution; 
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Again, substituting solution set-2 into (15), we have; 
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Respectively substituting (6), (7), (8), (9), and (10) into formula (22), we have 5 traveling wave solutions 
of the fifth order (1+1)-dimensional Kaup-Kupershmidt Eq. (11), as follow: 
when 0,042 ≠>− µµλ , then; 
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( )2 4 2176 11 88 ,η µ λ µλ= − + −x t where E is an arbitrary constant. 

 
When 0,042 =>− µµλ , then; 
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where E is an arbitrary constant.

 When 0,0,042 ≠≠=− λµµλ , we obtain the traveling solution; 
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When 0,0,042 ===− λµµλ , we obtain the non-traveling solution; 
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( )2 4 2176 11 88 ,η µ λ µλ= − + −x t where E is an arbitrary constant. 
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Graphical representation of solutions 

The graphical illustrations of the solutions are given below in Figures 1 - 10, with the aid of Maple. 
 

 
Figure 1 Traveling wave solution )(

11 ηU when   

,1=µ  ,3=λ  1=E  and 10,10 ≤≤− tx .  
 

 
Figure 2 Traveling wave solution )(

21 ηU when    

,0=µ  ,2=λ  1=E  and 10,10 ≤≤− tx . 
 

 
Figure 3 Traveling wave solution )(

31 ηU when    

,1=µ  ,2=λ  1=E  and 10,10 ≤≤− tx .  
 

 
Figure 4 Traveling wave solution )(

41 ηU when    

,0=µ  ,0=λ  1=E  and 10,10 ≤≤− tx .  
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Figure 5 Traveling wave solution )(

51 ηU when    

,1=µ  ,1=λ  1=E  and 10,10 ≤≤− tx .  
 

 
Figure 6 Traveling wave solution )(

12 ηU when    

,1=µ  ,3=λ  1=E  and 10,10 ≤≤− tx .  
 

 
Figure 7 Traveling wave solution )(

22 ηU when    

,0=µ  ,2=λ  1=E  and 10,10 ≤≤− tx .  
 

 
Figure 8 Traveling wave solution )(

32 ηU when    

,1=µ  ,2=λ  1=E  and 10,10 ≤≤− tx .  
 

 
Figure 9 Traveling wave solution )(

42 ηU when    

,0=µ  ,0=λ  1=E  and 10,10 ≤≤− tx . 

 
Figure 10 Traveling wave solution )(

52 ηU when    

,1=µ  ,1=λ  1=E  and 10,10 ≤≤− tx .  
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Conclusions 

In this work, we have applied the ))(exp( ηφ− -expansion method to handle the Kaup-Kupershmidt 
equation. In fact, we have presented ten new solutions for the fifth order (1+1)-dimensional Kaup-
Kupershmidt equation. The results of the current work illustrates that the ))(exp( ηφ− -expansion method 
is indeed a powerful analytical technique for most types of nonlinear problems, and several such 
problems in scientific studies and engineering may be solved by this method. This study shows that the 
method is quite efficient and well suited practically to be used in finding the exact solutions of NLEEs. 
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