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Abstract 

Geo-distributed data centers (GDCs) house computing resources and provide cloud services across 
the world. As cloud computing flourishes, energy consumption and electricity cost for powering servers 
of GDCs also soar high. Energy consumption and cost minimization for GDCs has become the main 
challenge for the cloud service providers. This paper proposes a resource management framework that 
accomplishes resource demand prediction, ensuring service level objective (SLO), electricity price 
prediction, and energy-efficient and cost-effective resource allocation through GDCs. This paper also 
proposes an energy-efficient and cost-effective resource allocation (EECERA) algorithm which deploys 
energy efficiency factors and incorporates the electricity price diversity of GDCs. Extensive evaluations 
were performed based on real-world workload traces and real-life electricity price data of GDC locations. 
The evaluation results showed that the resource demand prediction model could predict the right amount 
of dynamic resource demand while achieving SLO, and also, the electricity price prediction model could 
provide promising accuracy. The performances of resource allocation algorithms were evaluated on 
CloudSim. This work contributes to minimizing the energy consumption and the average turnaround time 
taken to complete the task and offers cost-saving. 

Keywords: CloudSim, Geo-distributed data centers, Resource management, Service level objective, 
Energy-efficient and cost-effective resource allocation, Power management techniques 
 
 
Introduction 

Cloud computing services are built on GDCs, which are spread worldwide to provide better 
performance and reliability. The service providers face high energy consumption and operating cost as 
servers in data centers consume a tremendous amount of energy. It is estimated that the electricity 
demand for data centers may rise more than 66 % over 2011 - 2035 [1], and the annual electricity bill is 
over $40M [2]. Energy-related costs may amount to 41.6 % [3], which leads to the high operational cost 
of GDCs. Thus, it has been recognized as an emergent issue. 

Resource management is crucial for efficient operation in large-scale data centers that contain 
thousands of servers. The resource management process has many aspects to consider, including handling 
workload dynamism, achieving SLO that user requirements are met, and allocating the requests to the 
available resources energy-efficiently and cost-effectively [4-6]. 

The amount of resources needed to allocate the requests is often dynamic due to its workload 
demand. Accurate resource demand prediction is essential to allocate resources dynamically and 
effectively. The cloud provider must ensure they have enough resources to meet the resource amount 
needed for incoming requests. Resource provisioning with the right amount of dynamic resource demand 
while achieving SLO becomes a critical issue [7]. Energy cost can be minimized at the geo-distributed 
level by distributing more workloads to the data center with a lower price since GDCs in multi-regional 
electricity markets are with various prices. Predicting the electricity price for GDCs in multi-regional 
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markets is required to reduce the electricity cost of GDCs. Machine learning (ML) is a method of 
computational learning that has shown promising results in the domain of prediction. ML algorithms 
build the models by extracting knowledge from the data, and ML model predictions allow making highly 
accurate estimates.  

Resource allocation is the main cloud computing technology that uses computing resources to 
facilitate various user jobs. Both the energy efficiency of the servers inside data centers and the location-
based electricity prices diversity need to be considered to reduce the total operational cost. CloudSim [8] 
is a generalized and extensible simulation toolkit that allows for cloud infrastructure modeling. It provides 
a user-defined policy for allocating virtual machines (VMs) to servers (hosts). 

This paper proposes an energy-efficient and cost-effective resource management framework with 
four components: resource demand prediction, ensuring SLO, electricity price prediction, energy-
efficient, and cost-effective resource allocation. The resource demand prediction model is developed by 
using ML techniques and SLO analysis is performed. Predicting electricity prices of GDCs in multi-
regional electricity markets is performed to deploy for cost minimization of GDCs. EECERA algorithm is 
proposed based on the comparative results of two energy-saving resource allocation algorithms that 
consider energy efficiency factors and the electricity prices diversity of GDCs. EECERA algorithm is 
implemented on CloudSim to allocate GDCs’ resources to support higher energy efficiency and lower 
electricity cost. 

 
Literature review 
This section discusses previous research and techniques related to predicting resource demand and 

ensuring SLO, predicting electricity price, and resource allocation methods that reduce energy 
consumption and lower the energy cost of data centers. 

Rayan and Nah [9] applied ML techniques to predict the daily workload: the amount of power 
consumption (PC) and the number of physical machines (PMs) required to fulfill the demands. They 
observed that Random Forest Regression among three different ML methods provides the best 
performance, with an error of 11.68 for PMs and 4869.08 for PC prediction. Verma et al. [4] studied the 
prediction of the future CPU demand. They analyzed the performance of 5 ML algorithms and found that 
Reduced Error Pruning Tree produced a better result with 97.05 % accuracy. 

Bobroff et al. [10] presented an Autoregressive (AR) prediction model to accommodate allocation 
decisions based on predicted resource demand and proposed the algorithm for dynamic allocation. The 
algorithm proactively adapts to demand changes while providing SLO guarantees. They solved the over-
provision problem on the predicted resource demand. Their algorithm could provide a specified rate of 
SLO violations by reducing the amount of physical capacity required for a given workload and could 
achieve a substantial reduction in resource consumption up to 50 % compared to the static allocation. 

Wormstrand [11] applied ML algorithms to predict the future electricity price of the Norwegian 
market. They compared the performance of 7 ML algorithms and found that the support vector machine is 
the best algorithm for their datasets, with an average error of 3.14 %. Filho et al. [12] used data mining 
techniques based on clustering and the Decision Tree algorithm to predict the electricity price of 4 
markets: Center-east, Northeast, South, and North in Brazil. The overall accuracies of the classification 
and prediction for the short-term electricity price of the four markets are 94.02, 87.87, 89.55, and 97.01 
%, respectively. 

Hicham and Chaker [13] discussed the allocation algorithms: Shortest Job First (SJF) and First 
Come First Serve (FCFS). They evaluated the performance of these algorithms on CloudSim, and the 
results showed that SJF takes minimum average turnaround time compared to FCFS. Ali et al. [14] 
proposed an energy-efficient VM placement algorithm by selecting the most energy-efficient host first. 
They also applied power management techniques to their algorithm. Their algorithm achieved 9, 23, and 
23 % more power-efficient than Minimum Power Difference, Best Resource Selection, and Round Robin 
algorithms. 

Khosravi et al. [15] presented different energy and carbon-aware dynamic VM allocation methods 
that consider the parameters: availability of renewable sources, dynamic PUE, and changes of energy 
consumption that affect in reducing the total energy and carbon cost, and also the brown energy usage of 
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GDCs. Rawas and Zekri [16] proposed the Location-Aware and Energy-Efficient (LAEE) data-intensive 
workloads in GDCs. They combined the DVFS technique in LAEE to minimize the energy consumption 
of servers. Their proposed allocation method is evaluated using CloudSim. The results showed 
enhancements in the user’s QoS, minimizing the total turnaround time as well as reducing the energy 
consumption of the data centers. 

The above-mentioned resource demand prediction papers [4,9,10] did not consider enhancing the 
accuracy of the prediction model. In this paper, the resource demand prediction model is developed and is 
enhanced by hyper-parameter optimization to achieve a highly accurate predictor. This paper focuses on a 
higher priority to avoid under-provision than to avoid over-provision solved in [10] since the former is 
more likely to cause SLO violations. In this paper, the SLO analysis was performed in the prediction 
system and guaranteed SLO to meet the requested amount of CPU cores. 

This paper illustrates price prediction for GDCs in US multi-regional electricity markets using ML 
techniques as the papers [11,12]. It also considers the time zone of the regions as [17]. After analyzing the 
performance of 3 ML algorithms, the most suitable prediction model is chosen to predict the future prices. 
Moreover, the predicted prices are applied in resource allocation for saving energy costs by incorporating 
the electricity price differences of GDCs.  

Each of the mentioned papers [13-16] focused on minimizing the turnaround time for each request, PC 
of servers, energy consumption, and cost of data centers, respectively. This paper proposes the resource 
management framework to minimize energy consumption and also cost of data centers while satisfying 
SLO. For saving energy, it considers energy efficiency factors: allocation policies and power management 
technique in the proposed allocation algorithms, to minimize the turnaround time as well as to save the 
PC of the servers. For lowering the cost, it also exploits the electricity price diversity of GDCs. 
 
Energy-efficient and cost-effective resource management framework 

To manage the resources of GDCs in an energy-efficient and cost-saving manner while satisfying 
SLO, the proposed framework is implemented with four components: resource demand prediction, 
ensuring SLO, electricity price prediction, and energy-efficient and cost-effective resource allocation. It is 
illustrated in Figure 1, and the function of each component is as follows. 

Resource Demand Prediction - It predicts the amount of resource (CPU core) for on-demand 
resource planning and efficient resource management of dynamic workload. 

Ensuring SLO - SLO analysis is performed over the resource demand prediction results to avoid 
SLO violations.  

Electricity Price Prediction - Electricity prices through GDCs in multi-regional electricity markets 
are predicted to reduce the energy cost by directing the requests to the favor of data center with minimal 
electricity price. 

Energy-Efficient and Cost-Effective Resource Allocation - It allocates the workload requests with 
the proposed EECERA algorithm in energy-efficient and cost-effective manner. It monitors the power 
usage of resources and energy consumption of data centers using energy-saving techniques. It also 
attempts to reduce energy cost by exploiting the electricity price differences across GDCs. 
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Figure 1 Proposed energy-efficient and cost-effective resource management framework. 
 
 
Experimental environment 

This section describes system specification for testing environment. It also presents the description 
of real workload traces and electricity price traces for the experiments.  

 
System specification 
The experiments were conducted on Intel ® Core i7-7500U CPU @ 2.90GHz, 8GB Memory, 1TB 

Hard Disk, HP machine. 
 
Workload traces 
The evaluation of the prediction model was conducted using data center workload traces of jobs 

submitted to an HPC (High-Performance Computing) Cluster available from the Parallel Workload 
Archive [18]. The summary of experiment workload traces (datasets) and their features are shown in 
Table 1. 

 
  

Resources in Distributed 
Data Centers

Energy-Efficient And Cost-Effective  Resource Allocation

DC3

DC1
DC2

Prediction Result

SLO Guaranteed 
Predicted Resource Usage

Ensuring SLO

Workload Requests

Incorporating Electricity 
Prices Diversity of GDCs

Electricity Prices
 (Multi-Region Electricity Markets)

Considering Energy 
Efficiency Factors

Resource Demand Prediction

Electricity Price Prediction
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Table 1 Summary of experiment workload traces and their features. 

Datasets No. of Jobs Features 
DAS  

(Distributed ASCI in Netherlands Supercomputer) 
225,711 

 
JobID 
SubmitTime 
RunTime 
NumCPUs 
UsedMemory 

RICC  
(RIKEN Integrated Cluster of Clusters) 

447,794 JobNo. 
ArrivalTime 
RunTime 
ReqCPUs 
ReqMemory 

MetaCentrum  
(Czech National Grid Infrastructure MetaCentrum) 

103,656 JobID 
SubmitTime 
RunTime 
NumCPUs 
UsedMemory 

 
 

Electricity price traces 
In the United States, electricity prices may vary per hour in some regions with deregulated 

electricity markets, while in most regions, electricity prices stay unchanged in a day [19]. To better 
capture the electricity price variations, it is assumed 3 GDCs in different regions where dynamic 
electricity prices are available under competitive electricity markets. 

As the electricity prices for each data center, this research uses the publicly available data from the 
markets [20]: Electricity Market of Independent System Operator New England (ISONE), California 
(CAISO), and Electric Reliability Council of Texas (ERCOT) obtained from New England, California, 
and Texas, respectively. Hourly electricity prices ($/MWh) in the years: 2016 and 2017 datasets for each 
of 3 markets are experimented. These datasets include 3 features: Date with time, Locational Marginal 
Price (LMP), and name of regional Hub. 
 
Materials and methods 

This research proposes SLO guaranteed, energy-efficient, and cost-effective resource management 
framework. The resource demands for the workload requests are predicted with the highly accurate 
resource demand prediction model, and it ensures SLO to meet the requested amount of CPU cores. SLO-
guaranteed resource usage is applied in resource allocation for preparing the correct type of resources and 
planning the resource requirements in advance. The electricity prices of GDCs in multi-region electricity 
markets are predicted with the developed electricity price prediction models to route the incoming 
requests to the cheapest data center for minimizing the cost. The workload requests are allocated energy-
efficiently and cost-effectively through GDCs. The detailed procedures of the components in the 
proposed framework and their evaluation results are described below. 

 
Resource demand prediction 
When VMs are statically provided according to the peak resource demand, it causes high resource 

cost for users and low resource utilization for cloud providers. So, it is important to implement a proactive 
resource provision to guarantee users’ requirements. Accurate resource demand prediction becomes a key 
feature for efficient resource management of dynamic workload. 

This section describes the development of the resource demand prediction model to predict the 
number of CPU cores for user requests. The CPU resource demand prediction model is developed on the 
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Decision Tree (DT) ML algorithm, where the hyper-parameter optimization was performed to achieve the 
prediction model with a high accuracy. The evaluation of the prediction model was conducted using real 
data center workload traces. 

The performance of the model was measured by the mean absolute error (MAE) as in Eq. (1). The 
accuracy of a predictor was estimated by computing an error based on the difference between the 
predicted value yi’ and the actual known value yi for each of test instances, where d is the number of 
instances. 

 
(1) 

 
 
 
Resource demand data pre-processing 
This involves pre-processing historical workload traces by filtering out unnecessary information 

from raw data. It identifies or removes the outliers, and also resolves inconsistencies. The experimental 
workload traces are divided into 2 disjoint parts: training data and testing data. 
 

Resource demand prediction model development 
The resource demand prediction models are generated using the DT algorithm based on all possible 

combinations of hyper-parameters pairs and all features provided in training data. DT works reasonably 
well with default hyper-parameter values specified in software packages. The values of hyper-parameters 
affect the accuracy of the prediction model, and finding the best combination of hyper-parameters values 
for the DT plays a critical role in building the accurate predictor. 

Hyper-parameter Optimization - It needs to determine the optimal hyper-parameter setting for the 
learning algorithm to produce the model with a minimum error rate. For the DT hyper-parameter setting, 
the parameters chosen for optimization are Maximum tree depth (MaxDepth) [21] and Minimum 
Information Gain (MinInfoGain) [22]. Many possible combinations of hyper-parameters (31 MaxDepth 
values: 0 - 30 and 11 MinInfoGain values: 0 - 1) are observed. The numbers of 341 models are developed 
using all possible combinations, as shown in lines 3 - 5 of Figure 2. 

The resource demand prediction model with the lowest error rate is selected by analyzing the 
accuracy of the models generated with all possible combinations of hyper-parameter values as line 6 
of Figure 2. The best model with minimum MAE is selected to predict the future CPU resource demand 
as line 10 of Figure 2. The procedure of resource demand prediction model development by hyper-
parameter optimized DT algorithm is shown in Figure 2. 

 
  

𝑀𝐴𝐸 = ∑ �𝑦𝑖−𝑦𝑖
′�d

i=1
𝑑
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Procedure: Resource_Demand_Prediction 
Input: pre-processed workload traces 
Output: predicted resource demand 

1  BEGIN 
2  Develop the prediction model by using default hyper-parameter values of DT 

-Evaluate model accuracy (minMAEMAE) 
3  for (MaxDepth=0, MaxDepth<=30, MaxDepth ++) 
4     for (MinInfoGain=0, MinInfoGain<=1, MinInfoGain+=0.1) 
5 Develop the prediction model by using MaxDepth and MinInfoGain for DT 

 -Evaluate model accuracy (print MAE) 
6       if (minMAE >MAE) then minMAEMAE 
7       end if  
8      end for// MinInfoGain 
9    end for// MaxDepth 
10   Predict resource demand by the selected model with minMAE 
11  END 

 
Figure 2 Resource demand prediction procedure. 
 
 

Experiment and result discussion of resource demand prediction 
The accuracy varies depending on each set of parameter values and the characteristics of the 

workload dataset. Each set of all different combination parameter sets for each dataset are input to the DT 
algorithm to generate the prediction models based on the training data. The prediction performances of 
the considered models are evaluated on the testing data. The MAE results of the generated models against 
some combinations of hyper-parameter set pairs (0 to 10 MaxDepth values and 0.0 to 1.0 MinInfoGain 
values) among 341 models for the DAS dataset are shown in Table 2. 
 
 
Table 2 MAE Results of Generated Models using Different Combinations of Hyper-Parameters (for 
DAS). 

Max 
Depth 

 MinInfoGain 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

0 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16 
1 5.96 5.96 5.96 5.96 5.96 5.96 5.96 5.96 5.96 5.96 5.96 
2 2.37 2.37 2.37 2.37 2.37 2.37 2.37 2.37 2.37 2.37 2.37 
3 1.93 1.93 1.93 1.93 1.93 1.88 1.88 1.88 1.88 1.88 1.88 
4 1.49 1.49 1.49 1.49 1.49 1.59 1.59 1.59 1.59 1.59 1.59 
5 1.59 1.59 1.52 1.52 1.51 1.60 1.60 1.60 1.60 1.60 1.60 
6 1.34 1.34 1.46 1.46 1.46 1.55 1.55 1.55 1.55 1.55 1.55 
7 1.26 1.28 1.46 1.46 1.46 1.56 1.56 1.56 1.56 1.56 1.56 
8 1.27 1.18 1.45 1.46 1.46 1.55 1.55 1.55 1.55 1.56 1.56 
9 1.80 1.17 1.44 1.44 1.44 1.54 1.54 1.55 1.55 1.54 1.54 
10 1.92 1.20 1.46 1.47 1.47 1.52 1.52 1.54 1.54 1.54 1.54 

 
 
After analyzing the MAE results of 341 generated models for the DAS dataset having the maximum 

MAE = 13.16 and the minimum MAE = 1.17, the model which has the minimum MAE is observed in 
MinInfoGain = 0.1 as shown in Table 2. For all MaxDepth values, the MinInfoGain value 0.5 and 
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beyond these cannot change the error rates significantly. The model, which has the minimum MAE for 
RICC dataset and MetaCentrum dataset are observed in MinInfoGain = 0.0. The MAE results of the 
generated models against 31 different MaxDepth values with the optimal MinInfoGain for each of 3 
datasets are shown in Figures 3 to 5. 
 

Figure 3 MAE results of the models generated using different MaxDepth values with MinInfoGain = 0.1 
(for DAS). 
 
 

 
 

Figure 4 MAE results of the models generated using different MaxDepth values with MinInfoGain = 0 
(for RICC). 
 

Figure 5 MAE results of the models generated using different MaxDepth values with MinInfoGain = 0 
(for MetaCentrum). 

 

 
0.98 

Walailak J Sci & Tech 2021; 18(13): 9619 
 
8 of 24 



Resource Management for Minimizing Energy & Cost of GDCs Moh Moh THAN 
http://wjst.wu.ac.th 

From comparing the prediction accuracy of the generated models for the DAS dataset, the model 
with hyper-parameter pair (MaxDepth = 9 and MinInfoGain = 0.1) gives a better result MAE = 1.17. 
After analyzing the MAE results of 341 generated models (for the RICC dataset having the maximum 
MAE = 21.69 and the minimum MAE = 0.98, for the MetaCentrum dataset having the maximum MAE = 
0.72 and the minimum MAE = 0.25), the minimum MAE is observed in the optimal hyper-parameter pair 
(MaxDepth = 7 and MinInfoGain = 0.0 for RICC dataset and MaxDepth = 11 and MinInfoGain = 0.0 for 
MetaCentrum dataset). The best prediction model with the lowest error rate was selected for the 
corresponding dataset.  

Figure 6 presents MAE comparisons of prediction models generated by setting default hyper-
parameters (MaxDepth = 5 and MinInfoGain = 0) and optimal hyper-parameters (that has the least MAE 
presented in Figures 3 to 5) for each dataset. 

 
 

Figure 6 MAE comparisons of prediction models with default and optimal hyper-parameters. 
 
 
The MAE value of the generated models with default hyper-parameters is 1.59, 1.35, 0.38 and with 

optimal hyper-parameters is 1.17, 0.98, 0.25 for DAS, RICC and MetaCentrum dataset respectively. 
Thus, setting the optimal hyper-parameters can significantly affect the resulting model’s performance. 
The results show that setting the optimal hyper-parameters saves MAE 26, 28 and 35 % for the 
corresponding datasets respectively. 

 
Ensuring SLO 
The cloud provider must ensure they have enough resources to meet the customer demand. 

Otherwise, the provider will need to pay compensation to those customers whose performance criteria 
have not been met. This paper presents SLO based on the criteria to meet the requested CPU cores of the 
submitted jobs. 

Predictive models that have a good predictive accuracy may generate prediction errors due to 
underestimation or overestimation. In order to avoid this risk, the predicted value generated from the 
model can be adjusted to accommodate these prediction errors. Under-provision due to underestimation 
causes SLO violations. Thus, SLO analysis is performed in the prediction system and guarantees 
SLO. Figure 7 shows the under-provisioning frequencies after analyzing the actual and predicted value of 
the three datasets. 
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Figure 7 Under-provisioning frequency of predicted values for 3 datasets. 
 
 

According to the results shown in Figure 7, the proposed predictors are more under-provision than 
over-provision. It eliminates the under-provisioning of the prediction system by padding a small 
percentage of the maximum predicted value to avoid SLO violations. The predicted value is increased 
with a small amount (1 - 5 % in our experiment) of the maximum predicted value. The increasing value is 
calculated as in Eq. (2). SLO analysis results evaluated on resource demand prediction results of 3 
workload traces over one-day interval are shown in Figure 8. 

 
 

 
Figure 8 SLO analysis result of 3 workload datasets (one-day interval). 

 

The fraction of the predicted to the actual value for a one-day interval greater than or equals one 
means it meets SLO. The analysis results in Figure 8 shows that it can remove under-provisioning and 
meet SLO by increasing a small percentage with 3 % of the maximum predicted value. The amount of 
SLO guaranteed predicted resource usage is applied for planning the resource requirements in advance. 

 
Electricity price prediction 
The cloud provider can reduce energy costs by directing the requests to the data center with a cheaper 

price if the electricity prices of GDCs in multi-regional electricity markets are predicted in advance. This 
section describes predicting electricity prices of GDCs in US multi-regional electricity markets to exploit 
in our proposed resource allocation algorithm. 
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Electricity price data pre-processing 
Ideally, information about all the days for the whole period should be available, but some of this 

information was missing and some records duplicated. Electricity price datasets are pre-processed by 
deleting duplicated records to replace the missing value with the most commonly occurring value for that 
feature or with the most probable statistical value. 

In this step, electricity price data is adjusted to refer to the time in the Eastern Time Zone as [17]. 
Three GDCs located in 3 different markets, e.g., New England, California, and Texas, are GMT-7, GMT-
8, and GMT-6, respectively. It takes the time in the Eastern Time Zone for time-keeping and therefore 
adjusts the time difference for New England, California, and Texas by 0, 3, and 1 h, respectively. 

The electricity price dataset for 2016 is divided into 90 % used for training and 10 % used for 
testing in each of the three markets to conduct the ML evaluation process. Validating dataset of the year 
2017 for each of 3 markets is used for the selected model assessment. 

 
Electricity price prediction model selection 
The prediction models are generated using three different ML algorithms: M5P, Linear Regression, 

and Decision Table. This was applied by using training and testing data for every dataset. It uses the same 
input attributes for each dataset, which will make it easy to compare the results and decide which 
algorithm is the most accurate. After comparing the MAE results of the models generated using 3 ML 
algorithms, the most accurate model is selected to predict the future electricity price. The obtained model 
for each market is evaluated by applying the newly validating data in the same period for all markets to be 
compared for GDCs. 

 
Experiment and result discussion of electricity price prediction 
The comparative MAE results of the predictive models generated by 3 ML algorithms: M5P, Linear 

Regression and Decision Table for each of 3 electricity markets: ISONE, CAISO and ERCOT are 
presented in Figure 9. 

 
 

Figure 9 MAE comparisons of different ML algorithms for 3 electricity markets. 
 
 

The models developed by the M5P algorithm achieve less MAE value than Linear Regression and 
Decision Table for all 3 markets datasets. As a result, the predictive model for each market generated by 
the M5P algorithm is selected to predict future electricity prices. 

Electricity prices in each data center for one-day intervals are generated by applying to the obtained 
electricity price-prediction models. Figure 10 illustrates the 24-hour real-life and predicted electricity 
price sequences of these data centers in 3 electricity markets on January 2, 2017. 
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Figure 10 Electricity prices of GDCs in multi-regional electricity markets on January 2, 2017. 
 
 

It can be observed that the relative order of the predicted electricity price sequences matches the 
relative order of the respective real-life electricity price sequences, although there is a little difference in 
real and predicted price values of each data center. As long as the relative order condition mentioned 
above holds, the data center with cheaper electricity price can be selected correctly at any time in a day. 
Using the predicted electricity price sequences of GDCs, energy cost minimization can be concerned. 

 
Energy-efficient and cost-effective resource allocation 
Energy-efficient and cost-effective resource allocation means allocating the incoming requests 

(tasks) to the servers through VMs in particular toward goals of saving energy and lowering cost. 
 

By considering the parameter of energy consumption (E) expressed in Eq. (3), it can be minimized 
by reducing the power consumption (P) as well as also the time period (T) needed to turn on the servers. 

Energy consumption is reflected in the energy cost consumed by the system during the period of 
operation, which is the main component of a data center's operating cost. To save energy and cost of data 
centers, this paper deploys energy efficiency factors and electricity prices differences across GDCs 
depending on their locations. 

 
Energy efficiency factors 
The aim of energy efficiency is to reduce the energy consumption of servers in the data centers. 

There are some energy-saving techniques that can be deployed for monitoring and controlling energy 
consumption of servers. In this paper, energy efficiency factors: resource allocation policies and power 
management technique are considered for energy-saving resource allocation. 

 
  

𝐸 = 𝑃 ∙ 𝑇 (3) 
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Resource allocation policies 
Resource allocation is the process of creating VM instances that match with the incoming requests 

onto the hosts. This paper focuses on allocation policies to optimize processing time and energy 
consumption of servers. The optimal allocation policy decreases the time and availability of space in a 
productive manner without compensating the quality of the system [23]. This study emphasizes the 
following 2 allocation policies: First Come First Serve (FCFS) and Shortest Job First (SJF). 

FCFS - The request which comes first to the data center is allocated to the VM first. 
SJF - The request with the least runtime (length) among the requests in the ready queue is allocated 

to the VM first. 
In evaluating allocation algorithms, turnaround time is important metric influencing energy 

consumption. Turnaround time is the time interval from the time since the task entered into the ready 
queue for execution until the task completed its execution. The average turnaround time is calculated as 
follow: 

 

𝐴𝑇𝑇 = ∑ 𝑇𝑇𝑖
𝑁
𝑖=1
𝑁

 (4) 

𝑇𝑇𝑖 = 𝐹𝑇𝑖 − 𝐴𝑇𝑖 (5) 

 
where, ATT is Average Turnaround Time, TTi is Turnaround Time of ith job, N is the Number of 

jobs, FTi is Finish Time of ith job execution and ATi is Arrival time of ith job. 
 
 

Power management technique 
As servers are the primary power consumers of data centers, Dynamic Voltage and Frequency 

Scaling (DVFS) power management technique is used for minimizing PC of the servers without affecting 
the quality of services. 

DVFS - It is the dynamic power management technique [24] that decreases the dynamic PC of a 
processor expressed in Eq. (6) by dynamically changing the voltage and the frequency of the processor 
during execution depending on the CPU utilization. It can adjust system voltage and frequency of a server 
without restarting [25]. The PC of the server can be reduced when it is in an idle state or low workload 
through DVFS technique. This method can decrease the PC of servers and enhance resource utilization. 

 

where Pdynamic is dynamic power consumed, a is switching activity, c is capacitance, v is voltage, and f is 
frequency. 

 
Experiment setup 
This paper considers an IaaS provider with 3 data center sites located in 3 cities in US multi-

regional electricity markets. These cities: Boston in New England, San Jose in California, and Dallas in 
Texas with 3 different time zones are chosen from Data centers Map website [26]. Each data center has 
45 heterogeneous physical servers with 5 different characteristics given in Table 3. 

 
 

  

𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 = 𝑎 ∙ 𝑐 ∙ 𝑣2 ∙ 𝑓 (6) 

Walailak J Sci & Tech 2021; 18(13): 9619 
 

13 of 24 



Resource Management for Minimizing Energy & Cost of GDCs Moh Moh THAN 
http://wjst.wu.ac.th 

Table 3 Characteristics of server types. 

Server Type Number of Core Power 
Type 1 16 750 W 
Type 2 28 800 W 
Type 3 32 750 W 
Type 4 64 750 W 
Type 5 64 1100 W 

 
 
For research work on the cloud, the prototypical implementation is carried on CloudSim. It supports 

the integrated classes in Java to simulate the cloud environment. It allows modeling the cloud 
infrastructure providers with different system scale and hardware resources. It models the data centers 
with the broker, which acts on behalf of cloud users, physical servers, and virtual machines.  

Even though CloudSim supports cloud infrastructure simulation, there is no consideration for 
minimizing energy consumption and cost of multi data center level. It is extended to enable energy-
efficient and cost-effective resource allocation for GDCs.  

A cloud infrastructure environment is implemented to verify the concept and validate the 
functionality of the proposed resource allocation algorithms. Then the own classes for the allocation 
algorithms are created to extend the basic CloudSim classes. The problem is modeled to enable the 
execution of HPC jobs from the logs of workload traces on parallel machines. The broker submits the job 
requests to the data centers for processing. For allocating the cloudlets to VMs, the space-shared policy is 
used so that the tasks are executed sequentially in each VM. Using this policy, each job unit has its own 
dedicated core. The allocation of VMs to hosts utilizes the proposed algorithms. Since the proposed 
algorithms use a non-preemptive method, the number of incoming jobs or the queue size did not affect the 
execution time of the individual job units. The power management technique is applied using the 
PowerModel class that provides a function called getPower(), which returns the PC of the host.  

After implementing two energy-saving resource allocation algorithms and comparing their energy 
consumption, the EECERA algorithm is proposed for better resource allocation with less energy 
consumption and less cost of GDCs. The system consists of the following components and symbols are 
presented in Table 4. 
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Table 4 Description of symbols. 

Symbol Description 

n Number of VM requests 

m Number of Data Center sites 

l Number of hosts in each Data Center site 

P Server power consumption  

Ek Energy consumption of kth host 

Hostk kth host in Data Center j 

Prj Electricity price of Data Center j 

Vmi ith virtual machine 

Lengthi runtime of ith job request 

DCj Data Center j 

Etotal Total energy consumption of hosts in GDCs 

Ctotal Total energy cost of all hosts in GDCs 
 
 

Energy-saving resource allocation algorithms 
Two energy-saving resource allocation algorithms include DVFS enabled First Come First Serve 

(DFCFS) and DVFS enabled Shortest Job First (DSJF). These are implemented to address resource 
allocation in multiple VMs and maintain a minimized turnaround time and minimized energy 
consumption using CloudSim. 

Algorithm 1 and 2 describe DFCFS and DSJF algorithms, respectively. The data center broker 
creates a list to receive the jobs (cloudlets). Virtual machines, where VM = {vm1, vm2, ..., vmn} are 
created, and the broker maps a job to a VM based on one-to-one mapping configuration. A job request 
contains the attributes such as the Runtime (Length), the number of CPU cores (NumCPUs, ReqCPUs), 
the required memory size (UsedMemory, ReqMemory), as mentioned in Table 1. The broker has (DC x 
Host) different VM placement options by the arrival of each job request. It submits the VM to the selected 
data center and host if the host has enough resources for the VM. It calculates the average turnaround 
time as in Eqs. (4) and (5). The energy consumption is computed as a function of CPU usage and is 
regulated automatically and dynamically based on DVFS. 

 
DVFS enabled First Come First Serve (DFCFS) Algorithm 
Algorithm 1 shows DFCFS algorithm based on FCFS allocation policy and deployed with DVFS 

power management technique. 
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Algorithm 1: DFCFS Algorithm 
Input:  

# Job_List // the list of job requests 
# Host_list // the list of hosts in a data center 
# DC_list //the list of available data centers in geographic sites 

Output:  
# Destinations [Hostk in DCj] 
# ATT // average turnaround time 
# Etotal // total energy consumption of hosts in data centers 

1 BEGIN 
2 Create VMs as the number of job requests in Job_List 
3 foreach Job in Job_List  do  

4    Assigned jobi  VMi   
5 end for 
6 for all VM i  1 to n do 
7    for all DC j  1 to m do 
8       for all Host k  1 to l do 
9          if CPU core of VMi <= remaining CPU core of Hostk then 
10    Assigned VMi  Hostk in DCj 
11    Calculate the remaining CPU core of Hostk 
12         else Start Hostk+1 in DCj 
13         end if 
14      end for 
15   end for 
16 end for 
17 Return Destinations 
18 Calculate ATT  
19 Calculate Etotal with DVFS 
20 END 

 
 
 

DVFS enabled Shortest Job First (DSJF) Algorithm 
Algorithm 2 shows the DSJF algorithm applied with SJF policy and combined with the DVFS 

power management technique. It sorts the job list in ascending order based on their lengths, as in line 2 of 
Algorithm 2. If two requests have the same length, the next request can be allocated through FCFS 
allocation, where one that arrives first will be allocated to VM as in lines 3 - 5.  

Walailak J Sci & Tech 2021; 18(13): 9619 
 
16 of 24 



Resource Management for Minimizing Energy & Cost of GDCs Moh Moh THAN 
http://wjst.wu.ac.th 

Algorithm 2: DSJF Algorithm 
Input:  
# Job_List // the list of job requests 
# Host_list // the list of hosts in a data center 
# DC_list //the list of available data centers in geographic sites 
Output:  
# Destinations [Hostk in DCj] 
# ATT // average turnaround time 
# Etotal // total energy consumption of hosts in data centers 
1BEGIN 
2 Sort Job_List in ascending order based on their Length 
3  if Lengthi = Lengthi+1 then 
4  Sort Job_List according to their Arrival Time 
5  end if 
6 Create VMs as the number of job requests in sorted Job_List 
7 foreach Job in sorted Job_List do  
8    Assigned jobi  VMi   
9 end for 
10 for all VM i 1 to n do 
11    for all DC j 1 to m do 
12       for all Host k 1 to l do 
13         if CPU core of VMi <= remaining CPU core of Hostk then 
14    Assigned VMi  Hostk in DCj 
15    Calculate the remaining CPU core of Hostk 
16         else Start Hostk+1 in DCj  
17        end if 
18      end for 
19   end for 
20 end for 
21 Return Destinations 
22 Calculate ATT 
23 Calculate Etotal with DVFS 
24 END 

 
 

Energy Consumption Comparison of DFCFS and DSJF 
Figures 11 to 13 show the comparisons of energy consumption for the different number of requests 

from 3 workload traces: DAS, RICC and MetaCentrum under DFCFS and DSJF algorithms. 
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Figure 11 Energy consumption comparison of DFCFS and DSJF (for DAS). 
 
 

Figure 12 Energy consumption comparison of DFCFS and DSJF (for RICC). 
 
 

Figure 13 Energy consumption comparison of DFCFS and DSJF (for MetaCentrum). 
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The energy consumed for 200 to 800 requests of the RICC dataset under DFCFS and DSJF 
algorithms is almost indistinguishable. The reason is that the runtimes (lengths) of those requests are 
similar. As mentioned above, DSJF sorts the runtimes of the requests in ascending order before execution 
while DFCFS does not. Although the DSJF algorithm sorts the lengths of the requests having similar 
lengths, there is no effect of sorting the requests based on lengths. For the requests over 800 number of 
RICC dataset and all the requests of the other two datasets (DAS and MetaCentrum) having different 
lengths, it can be seen the effect of DSJF can save energy consumption compared to DFCFS algorithm. 
DSJF algorithm gains higher energy efficiency for the incoming requests with different lengths, and it can 
save up to 55 % of energy consumption compared to the DFCFS algorithm. 

The average turnaround times (in seconds) for executing the requests of 3 datasets under DFCFS 
and DSJF algorithms are presented in Table 5. 

 
 

Table 5 Average turnaround time of DFCFS and DSJF Algorithms. 

Datasets DFCFS DSJF 
DAS 204 86 
RICC 164 77 
MetaCentrum 244 113 

 
 
By comparing the average turnaround time obtained from DFCFS and DSJF, as shown in Table 5, 

the turnaround time of DSJF is almost 55 % less than DFCFS. DSJF helps to reduce the turnaround time 
of the tasks as it first fulfills the request with the shortest length, and it takes the shortest possible time to 
finish. Then the VM can take up the next selected task. This will reduce the time period and the number 
of active VMs and active servers to reduce energy consumption. The shorter average turnaround time of 
the allocation method produces lower energy consumption. In this way, DSJF that takes the minimum 
turnaround time shows its contribution to energy-saving. 

 
Proposed energy-efficient and cost-effective resource allocation (EECERA) algorithm 
Lowering high operating costs of the data centers is one of the challenges faced by cloud providers. 

Fortunately, the geographical distribution of data centers exposes the opportunity for cost-saving, 
meaning that they pay different electricity prices exposed to different electricity markets. 
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Algorithm 3:  EECERA Algorithm 
Input:  
#Job_List // the list of job requests 
# Host_list // the list of hosts in a data center 
# DC_list //the list of available data centers in geographic sites 

Output:  
# Destinations [Hostk in DCj] 
# Etotal // total energy consumption of hosts in data centers 
# Ctotal // total energy cost of hosts in data centers 

1 BEGIN    
2 Sort Job_List in ascending order based on their Length 
3 if Lengthi = Lengthi+1 then 
4 Sort Job_List according to their Arrival Time 
5 end if 
6 Create VMs as the number of job requests in sorted Job_List 
7 foreach Job in sorted Job_List do  
8    Assigned jobi  VMi  // Add job request to VM based on one-to-one mapping configuration 
9 end for 

10 Sort DC_list in ascending order based on their Prj 
11 for all VM  i 1 to n do 
12  for all DC j 1 to m do 
13       for all Host  k 1 to l do 
14          if CPU core of VMi <= remaining CPU core of Hostk then 
15       Assigned VMi  Hostk in DCj 
16        Calculate the remaining CPU core of Hostk 
17          else Start Hostk+1 in DCj  
18          end if 
19       end for 
20    end for 
21 end for 
22 Return Destinations 
23 Calculate Etotal with DVFS 
24 Calculate Ctotal 
25 END 

 

 

EECERA algorithm, as described in Algorithm 3, is proposed for energy-efficient and cost-saving 
resource allocation for GDCs. The key idea is to shift resource allocation to energy-efficient servers as 
well as to locations associated with comparatively lower electricity prices. In order to reduce energy cost 
by exploiting the electricity price differences across regions under multiple electricity price market 
environments, our policies attempt to submit each arriving job to the data center that would lead to the 
lowest cost. 

To be energy-efficient, EECERA deploys as a DSJF algorithm. Moreover, it attempts to minimize 
the total energy cost based on price diversities of GDCs. The electricity price for data center j is denoted 
as Prj and all servers in DCj shall share the electricity price Prj. It routes the requests in favor of the data 
center with the cheapest electricity price by sorting the data center list in ascending order based on their 
prices as line number 10 of Algorithm 3. It calculates the total energy consumed by the servers within the 
data centers to support the VMs. The total energy cost is calculated as Eq. (7) by summing up the cost of 
all servers in all GDCs, i.e., 
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𝐶𝑡𝑜𝑡𝑎𝑙 = � (∑ 𝐸𝑘𝑙
𝑘=1

𝑚
𝑗=1 ) ∙ 𝑃𝑟𝑗 (7) 

 
Three workload datasets are used to compare the proposed algorithm with respect to cost 

minimization with an energy-aware resource allocation (EERA) algorithm that considers only energy 
efficiency factors as DSJF but does not consider GDCs' electricity price order diversities as line number 
10 of Algorithm 3. 

Figures 14 to 16 show energy cost comparisons of EECERA and EERA that allocate 2000 VM 
requests from each of 3 workload datasets knowing hourly electricity prices of 3 electricity markets: 
ISONE, CAISO, and ERCOT in Figure 10. 

 
 

Figure 14 Total energy cost comparison of EERA and EECERA (for DAS). 
 

 

Figure 15 Total energy cost comparison of EERA and EECERA (for RICC). 

 

 

 

 

Walailak J Sci & Tech 2021; 18(13): 9619 
 

21 of 24 



Resource Management for Minimizing Energy & Cost of GDCs Moh Moh THAN 
http://wjst.wu.ac.th 

Figure 16 Total energy cost comparison of EERA and EECERA (for MetaCentrum).  
 
 

EECERA Algorithm directs more workload requests to the data center with the cheapest electricity 
price first, knowing the future electricity prices of GDCs so that the total energy cost can be saved. 
According to the results experimented on three actual workload traces shown in Figures 14 to 16, the 
total energy cost of EECERA is significantly lower than EERA in every hour. With extensive simulations 
based on the electricity prices of GDCs shown in Figure 10, it shows that EECERA is able to reduce the 
electricity cost by 14, 13, and 6 % for each of the three datasets, respectively. This further proves that the 
EECERA algorithm provides a practical approach to lowering electricity costs for GDCs in multi-regional 
electricity markets with price diversities. 
 
Conclusions 

Resource management is getting popularity as it is paying attention for managing cloud resources to 
maximize the revenue of the cloud service providers. This paper proposes a framework for managing the 
cloud resources in GDCs cost-effectively through exploiting the electricity price diversity of GDCs and 
energy-efficiently while satisfying a certain level of SLO. Based on three real-world workload traces and 
three real-life electricity price data of GDCs in multi-regional electricity markets, implementation and 
extensive evaluations are performed for each component of the proposed framework. 

Resource demand prediction model with high accuracy is developed using machine learning 
techniques with hyperparameter optimization to predict the resource demand with a low error rate. The 
results show that the resource demand prediction model generated by setting the optimal hyper-
parameters can significantly affect the resulting model’s performance saving MAE around 30 %. SLO 
analysis is performed by padding 3 % of the maximum predicted value, eliminating the under-
provisioning of the prediction system. After analyzing the MAE results of the models generated by 3 ML 
algorithms: M5P, Linear Regression, and Decision Table, the M5P model is selected to predict the future 
electricity prices of GDCs in multi-regional electricity markets in order to deliver the requests to the data 
center with cheaper electricity prices. By using CloudSim, the promising energy efficiency of 2 energy-
saving resource allocation algorithms are investigated. It can be observed that the energy consumption of 
resource allocation with the DSJF algorithm is lower, about 55 %, than DFCFS. The proposed EECERA 
algorithm is compared with the EERA algorithm for energy cost minimization. Evaluation results show 
that it achieves both minimized energy consumption and cost reduction in the proposed resource 
allocation algorithms. 
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