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Abstract 

An ideal gas is a gas in the form of a particle or molecule. Its velocity and kinetic energy are 
interesting topics in several studies in physical chemistry. This research aims to evaluate the average run 
length based on the exponentially weighted moving average statistic for its molecular velocity and kinetic 
energy of Maxwell-Boltzmann distribution. Derivation of the integral equation, which is equal to the 
average run length and numerical method of the integral equation, was applied to evaluate the average run 
length of a gas molecule’s molecular velocity and kinetic energy. The Trapezoidal rule as numerical 
method and its error was analyzed for approximation of average run length. The findings showed that the 
average run length of molecular velocity decreased in the higher temperature with the given mass of the 
molecule. Moreover, there was a decrease in the average run length of molecular kinetic energy in the 
higher temperature. 

Keywords: Maxwell-Boltzmann distribution, Average run length, Integral equation, Ideal gas, Molecular 
velocity, Kinetic energy 
 
 
Introduction 

An ideal gas is a gas in theory with fundamental assumptions of a small particle with random 
movement and the molecular collisions with no lost energy [1,2]. In physical chemistry, the kinetic 
molecular theory and its applications of an ideal gas are interesting topics for many researchers. The 
calculation of molecular fluxes and equivalent pressure in ideal gases was conducted and described by 
deriving mathematical expressions [3]. The ideal gas law was evaluated to sufficiently describe the 
consistency of the experiment and its effect on the greenhouse problem in the determination of the 
radiative forcing [4]. The mathematical formula for molar mas based on ideal gas law is illustrated to 
describe the greenhouse effect [5]. Furthermore, applying the concept of the ideal gas was created to be 
an algorithm to solve the optimization technique problem in engineering [6] and simulation under 
gravitational field [7]. 

In applied statistics, the control chart is mostly applied to many problems such as in the production 
process and economics and in terms of controlling and evaluation. In particular, one of the tools for 
measuring the performance of the control chart is the evaluation of the average run length. The expected 
value of the run length before the occurrence of the false alarm signal is popularly employed on the 
Exponentially Weighted Moving Average (EWMA) control chart and Cumulative Sum (CUSUM) control 
chart. The average run length can be classified into 2 types: average run length of in control state ( 0ARL ) and 

average run length of out-of-control state ( 1ARL ) which is 0ARL  with changed parameters. Moreover, the 
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standard 0ARL  is approximately 370. There are three methods for evaluating the average run length: Monte 
Carlo simulation, Martingale method, and the integral equation. Integral equations and integro-differential 
equation can be solved by analytical and numerical evaluation method [8-12]. Several researches studied the 
evaluation of the average run length. For example, Martingale approach for average run length of EWMA and 
CUSUM control charts on autoregressive process was presented. The results showed that Martingale approach 
is efficient method and better than Monte Carlo simulation method [13].  

The integral equation method was employed to determine the analytical and numerical average run length 
on the EWMA control chart and CUSUM control chart with observations followed by Laplace distribution and 
Hyperexponential distribution. It was found that the analytical average run length was better than the numerical 
average run length [14,15]. Analytical and numerical average run length based on the integral equation of 
EWMA control chart with the long memory autoregressive fractionally integrated moving average was 
investigated. The finding showed that the analytical average run length was better in performance than the 
numerical average run length [16,17]. Adaptive EWMA control chart to evaluate average run length by using a 
discrete-time Markov chain was designed for time-varying smoothing parameter. The optimization technique 
was adopted to calculate the average run length [18].  

The application in modern physical chemistry involved the employment of statistics-random variable and 
probability theory-in studying the kinetic molecular theory. Namely, the behavior of the ideal gas, which 
depended on the probability density function, was conducted in the kinetic molecular theory. However, the 
focus of many researchers is controlling the volume of the ideal gas and comparing the relationship to the 
pressure, the temperature, and the number of the gas molecule by Boyle's law, Charles's law, Avogadro's law, 
respectively [1,19]. However, two of the significant factors that should be controlled in studying the kinetic 
molecular theory of the ideal gas are the velocity and kinetic energy of the molecule. Moreover, the statistical 
control chart for the kinetic molecular theory is a little employment. In particular, the studies of the relationship 
between the average run length of molecular velocity and kinetic energy with varied parameters, temperature, 
or mass of the molecule were hardly proposed. 

Therefore, this research was conducted to study the EWMA control chart and its average run length for 
controlling the velocity and kinetic energy of an ideal gas. The numerical method for the evaluation of the 
integral equation representing average run length was carried out. The following section consists of the 
background and the method for derivation of EWMA control chart with one-sided upper control limit, 
probability theory for molecular gas, and computation of average run length for controlling velocity and kinetic 
energy of the ideal gas. The research also focused on evaluating the average run length of N molecules of the 
gas molecules in a system, assuming that each molecule is an identically independent distribution. In addition, 
the results, discussions, and conclusions are provided for this research. 
 
Materials and methods 

Probability density function of molecular velocity 
Distribution of molecular velocity 
In this section, the derivation of the formula of probability density function of molecular velocity in 

an ideal gas is proposed. Let V be a random variable representing the velocity of molecular of an ideal 
gas. Let ( )Vf v dv be the probability density function of molecular velocity V  [ 1ms− ] between v  and 

v dv+ . The expected number ( , )N v v dv+  of molecules moving with velocity between v  and v dv+
is;  

 

( , ) ( )
v dv

V
v

N v v dv N f v dv
+

+ = ∫  

 
where N  is dimensionless of the unit of  ( )Vf v  with seconds per meter.  
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By the assumption, 
dN
N

is the fraction of molecules moving at velocity v  and v dv+ , the number 

molecule with velocity between v  and v dv+ is the summation of the number of molecules in the 
sample times ( )Vf v times dv . This can be written in differential equation, 
 

( , ) ( )VdN v v dv Nf v dv+ = .                                                                                                                       (1) 
 

Being carried out Eq. (1) by James Clerk Maxwell and Ludwig Boltzmann [20-23], the distribution 
function ( )f v  of molecular velocity in an ideal gas at temperature T [ K ] is called Maxwell-Boltzmann 
distribution, i.e.  
 

2
3/ 2 24( ) ( ) exp{ }; 0

2 2V
B B

m mvf v v v
K T K Tπ

= >                                                            (2) 

 
where, m [ amu ]  the mass of one gas molecule, M [ /g mol ]is the molar mass of the gas, which is 

,AN m  AN  is the Avogadro constant 23 16.02214076 10 mol−× , R  is the gas constant which is A BN K , 

BK is the Boltzmann constant 231.3806 10 /J K−×  . 
 
 Expected Value and Variance of Molecular Velocity 

The mean velocity V< >  of molecule is the expected value of velocity distribution in Eq. (2), i.e. 
 

0

( )VV vf v dv
∞

< >= ∫  

             
2

3/2 3

0

4 ( ) exp{ }
2 2B B

m mvv dv
K T K Tπ

∞

= ∫  

 
Applying the technique of by part integral and improper integral, 

 
2

3/2 3

0

4lim ( ) exp{ }
2 2

b

b
B B

m mvV v dv
K T K Tπ→∞

< >= ∫  

            

2 2

3/ 2 3
2

0

exp{ }(1 )
4 2 2lim ( ) }

2
2

2

v b

B B
b

B

B v

mv mv
m K T K T v
K T m

K T
π

=

→∞

=

 
 − +
 = −       

 

           
8 BK T

mπ
=  

           
8RT

Mπ
=                                                                                                                                                (3) 
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The mean square velocity 2V< >  of molecule is the second moment of the velocity distribution. 
Also, the root mean square velocity ( rmsV ) is the square root of the molecular velocity with median 
kinetic energy. The mean square velocity is, 
 

2 2

0

( )VV v f v dv
∞

< >= ∫  

                 
2

3/2 4

0

4 ( ) exp{ }
2 2B B

m mvv dv
K T K Tπ

∞

= ∫  

 
Applying the technique of by part integral and improper integral, 

 
2

2 3/2 4

0

4lim ( ) exp{ }
2 2

t

t
B B

m mvV v dv
K T K Tπ→∞

< >= ∫  

               

2 2
3 / 2

2

2(3 )exp( )
lim 4 [

22 4( )

B B

t
B

B

m mv v v
K T K Tm

mK T
K T

π
π→∞

− + −
 

=  
 

0
5/ 2

23 e ( )
]28( )

B v t
v

B

mrf v
K T

m
K T

π
=
=+  

              
3 BK T

m
=       

              
3RT
M

=                                                                                                                                              (4) 

 
The root mean square velocity of molecule is, 

 
3 B

rms
K TV
m

=                                                                                                                                              (5) 
 

The variance of molecular velocity is, 
 

2 2( ) ( )Var V V V=< > − < >  

                 
83RT

m π
 = − 
 

                                                                                                                          (6) 

 
Computation of EWMA control chart and its average run length for molecular velocity and 

kinetic energy 
Transformation of molecular velocity to molecular kinetic energy 
Let V  be the random variable of molecular velocity with probability density function ( )Vf v  and E  

be the random variable of kinetic energy of molecule with probability density function ( )Ef e , i.e. 

21
2

E mV= . The transformation between two random variables, E and V , was carried out. Namely, the 

transformation *T which is one to one function on real line is defined as; 
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* * 21( )
2

E T V T V mV= = =                                                                                                                          (7) 

 
where 


is a composite operator. 

The inverse image of transformation of  the singleton set { }v  is * 1 * 1({ }) { }T v T v− −= . Obviously, 
*T is monotonically increasing transformation. That is, 

If  for all 1 2,v v such that 1 2v v≥ , then * *
1 2( ) ( )T v T v≥ . Thus, the cumulative distribution function 

EF  for the molecule kinetic energy , 21
2

E mV= , is;  
 

( ) Pr{ }EF e E e= ≤  

          21Pr{ }
2

mV e= ≤  

          2( )V
eF

m
=  

 
Differentiating with respect to e , the probability density function of molecular kinetic energy is; 

 
2( ) ( )E V

d ef e F
de m

=      

          
3/ 2

3 / 2

4 2 exp{ }
2 B B

e m e
K T K Tm

π
π

 
= − 

 
        

          
3/ 2

1/ 22 1 exp{ }; 0
B B

ee e
K T K Tπ

 
= − > 

 
                                                     (8) 

 
Moreover, the expected value E< >  and variance ( )Var E of molecular kinetic energy is carried out 

as; 
 

3
2

mRTE
M

< >=                                                                                                    (9) 

 
The fourth moment of the molecular velocity is 

 

4 4

0

( )VV v f v dv
∞

< >= ∫                

           
3/2 2

6

0

4 exp{ }
2 2B B

m mvv dv
K T K T

π
π

∞ 
= − 

 
∫          

 
Applying the technique of by part integral and improper integral, 
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5/ 2
4 15 B A

A

K N TV
mN

 
< >=  

 
 

           
5/ 2

15 RT
M

 =  
 

                                                                                  (10) 

 
The variance of the square of molecular velocity is; 

 
2 4 2 2( ) ( )Var V V V=< > − < >  

              
5/2 2315 RT RT

M M
   = −   
   

                                                                                                   (11) 

 
The variance of the molecular kinetic energy is; 

 
2 21( ) ( )

4
Var E m Var V=  

             
5/2 2

21 315
4

RT RTm
M M

    = −    
     

                                                                                       (12) 

 
 EWMA control chart of molecular velocity and kinetic energy      
 Let tv be independent and identically distributed (iid)  random sample of molecular velocity from 

probability density function ( )Vf v . Let te be iid random sample of molecular kinetic energy from 

probability density function ( )Ef e . EWMA statistic tz  has widely been used for quality control. The 
formula of EWMA statistic with observations from the molecular velocity and molecular kinetic energy can 
iteratively be defined with starting value of given 0z  as; 
 

1(1 ) ; 1,2,3,...t t tz d z tλ λ −= + − =                                                                                                                 (13) 
 
where td is iid random sample either for the molecular velocity with probability density function in Eq. (2) or 

for the molecular kinetic energy with probability density function in Eq. (8), i.e. { } { }t t td v or e= . 
Iteratively, 
 

1

0
0

(1 ) (1 )
t

t t
t t i

i
z d zλ λ λ

−

−
=

= − + −∑  
 

The expected value v
tz< > and variance 2

v
tz

σ of EWMA statistic of the observations which are sampled 

from probability density function of iid molecular velocity are carried out as; 
 

8v
t

RTz
Mπ

< >=                                                                                      (14) 
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2 283 [1 (1 ) ]
(2 )v

t

t
z

RT
M
λσ λ

λ π
 = − − − −  

                                                                                  (15) 

 
The expected value e

tz< > and variance 2
e
tz

σ of EWMA statistic of the observations which are sampled 

from probability density function of iid molecular kinetic energy are carried out as; 
 

3
2

e
t

mRTz
M

< >=                                                                                                  (16) 

 
5/ 2 22

2 2315 [1 (1 ) ]
4(2 )

e
t

t
z

m RT RT
M M

λσ λ
λ

    = − − −    −      
                                                                               (17) 

 
The EWMA control chart consists of 3 levels as follows: 

 

1)  Upper Control Limit (UCL) = 2
tt zz κ σ< > +  

2)  Center Line (CL) = tz< >  

3)  Lower Control Limit (LCL) = 2
tt zz κ σ< > −  

where κ  is the width of the control limits. 
 

Average length for molecular velocity and molecular kinetic energy         
For Fredholm integral equation with the second kind, it can be written as; 

 

( ) ( ) ( , ) ( )
b

a

l u h u k u w l w dwγ= + ∫                                                                                                           (18) 

 
where ( )l u is an unknown function, 
         ( , )k u w is a kernel function, 
        γ  is an eigenvalue of integral equation, 
        ,a b  are a lower and an upper limit of integral sign. 
 

This research, average run length or the solution of integral equation which stands for l  to measure 
the efficiency of EWMA control chart with upper one side based EWMA statistic is demonstrated in this 
section. If 1d  gives 1z  in control state, then 1LCL z UCL< < ; 
 

0

0

0 0
1

(1 )

1 1
(1 )

(1 ) (1 )Pr{ }

( ) ( )

UCL z

LCL z

LCL z UCL zv

f d d d

λ
λ

λ
λ

λ λ
λ λ

− −

− −

− − − −
< <

= ∫
 

 
By Champ and Rigdon [24] with initial point 0z u= , then; 
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0

0

(1 )

(1 )

( ) 1 [(1 ) ] ( ) ( )

UCL z

LCL z

l u l u y f y d y

λ
λ

λ
λ

λ λ

− −

− −

= + − +∫  

 
where y is a setting of id . 

Changing variable of integral, 
 

1 (1 )( ) 1 ( ) ( )
UCL

LCL

wl u l w f u dwλ
λ λ λ

−
= + −∫                                                                                                     (19) 

 
which is compared with Fredholm integral equation with the second kind (18), 

 
1 (1 )( ) 1, , ( , ) [ ]wh u k u w f uλγ
λ λ λ

−
= = = −  

 
For upper one sided control chart, average run length for controlling molecular velocity is; 

 

0

1 (1 )( ) 1 ( ) ( )
UCL

v v V
wl u l w f u dwλ

λ λ λ
−

= + −∫  

        
2

0

(1 )1 ( )
UCL

v
wA l w uλ
λ λ

− = + − ×  ∫

2(1 )

exp{ }
2 B

wm u
dw

K T

λ
λ λ

− −  −                                       (20) 

 

where 
3/ 2

4
2 B

mA
K Tπλ

 
=  

 
. 

 
For upper one sided control chart, average run length for controlling molecular kinetic energy is; 

 

0

1 (1 )( ) 1 ( ) ( )
UCL

e e E
wl u l w f u dwλ

λ λ λ
−

= + −∫  

         
1/ 2

0

(1 )1 ( )
UCL

e
wB l w uλ
λ λ

− = + −  ∫

(1 )

exp{ }
B

w u
dw

K T

λ
λ λ

− −  × −                                                (21) 

 

where 
3/ 2

2 1

B

B
K Tλ π

 
=  

 
. 
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Numerical method of integral equation for average length for molecular velocity and 
molecular kinetic energy 

Trapezoidal rule method [8] for integration is applied to solve the integral Eq. (20) - (21) for 
evaluating the average run length.  This method was based on estimation the area under the curve with 
linear function of Trapezoidal. The partition of N nodes for interval [0, ]UCL is constructed by equal 
length h  of each partition, i.e. 

 
0 ; 0 ; 0,1,2,...,i

UCLh w ih i N
N
−

= = + =  

Therefore, the integral term 
0

( , ) ( )
UCL

k u w l w dw∫  can be estimated as; 

 
0

( , ) ( )
UCL

k u w l w dw∫ 0 0[ ( , ) ( ) ( , ) ( )]
2 N N
h k u w l w k u w l w= +

1

1
( , ) ( )

N

i i
i

h k u w l w
−

=

+ ∑                                (22)      

 
Substituting Eq. (22) in to (19), 

 

0 0( ) ( ) [ ( , ) ( ) ( , ) ( )]
2 N N
hl u h u k u w l w k u w l w= + +

1

1
( , ) ( )

N

i i
i

h k u w l w
−

=

+ ∑ .                                        (23) 

 
Eq. (23) can be rewritten in a matrix notation for linear system of 1N +  linear equations with 
1N + unknowns as  

 
( ) 1I KU L+ =  

1( ) 1L I KU −= +                                                                                                                                     (24) 
 

where 1
11 [1,1,...,1] , [ ] , [ ] ,t t N

i ij jL l K k +
== = = I is identity matrix, and ( , ,..., , ).

2 2
h hU diag h h=  

 
Eq. (24) is numerical solution of integral equation represented by average run length for molecular 

velocity and kinetic energy. 
 

Total error of trapezoidal rule for average run length 
Total error is all of the error in estimate the average run length. By the definition of integral in 

calculus, 
 

1

( , ) ( )
i

wi

w

iI k u w l w dw
−

= ∫  

    * * * *
1 1( , ) ( ) ( , ) ( )i i i iK u w L w K u w L w− −= −  

where * *( , ) ( )K u w L w  is an anti-derivative of ( , ) ( )k u w l w . 

With Taylor’s series of * *( , ) ( )K u w L w about iw ,  
* *

1 1( , ) ( )i iK u w L w− −  
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* *( , ) ( )i iK u w h L w h= − −  

* * * *( , ) ( ) ( , ) ( )i i i iK u w L w h K u w L w
w
∂

= −
∂

2 2
* *

2 ( , ) ( )
2! i i
h K u w L w

w
∂

+
∂

 

3 3
* *

2 ( , ) ( ) ...
3! i i
h K u w L w

w
∂

− +
∂

 

* * * *
1 1( , ) ( ) ( , ) ( )i i i iK u w L w K u w L w− −−  

* *( , ) ( )i ih K u w L w
w
∂

=
∂

2 2
* *

2 ( , ) ( )
2! i i
h K u w L w

w
∂

−
∂

 

3 3
* *

2 ( , ) ( ) ...
3! i i
h K u w L w

w
∂

+ −
∂

 
iI=  

Thus, 
2

( , ) ( ) [ ( , ) ( )]
2!i i i i i
hI hk u w l w k u w l w ′= −

3

[ ( , ) ( )] ...
3! i i
h k u w l w ′′+ −  

By approximation of derivative of the integrand function, 
1 1[ ( , ) ( )] [ ( , ) ( )][ ( , ) ( )] i i i i

i i
k u w l w k u w l wk u w l w

h
− −−′ ≈ [ ( , ) ( )] ..

2 i i
h k u w l w ′′+ +  

Therefore,  
 

2
1 1[ ( , ) ( )] [ ( , ) ( )]

2!
i i i i

i
k u w l w k u w l whI

h
− −−

=  

3

[ ( , ) ( )] ...
12 i i
h k u w l w ′′− +  

3

[ ( , ) ( )] ...
12i i i
hC k u w l w ′′= − + . 

Thus, the error term iE  is 

i i iE I C= −  
3

[ ( , ) ( )]
12 i i
h k u w l w high order terms′′= − + −  

where 
2

1 1[ ( , ) ( )] [ ( , ) ( )]
2!

i i i i
i

k u w l w k u w l whC
h

− −−
= . 

For 0h → , 
3

[ ( , ) ( )]
12i i i
hE k u w l w ′′= −  

If *| [ ( , ) ( )] |k u w l w M′′ ≤ , then 
3

*| |
12i
hE M≤ . 

For over the entire upper one sided control limit, the bound of total error TE is; 
3 3 3

* * *

1
| | ( )

12 12 12

N

T
i

h h hE M N M UCL M
=

≤ = =∑ . 
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Therefore, 
3

*| | ( )
12T
hE UCL M≤ . 

 
Results and discussion 

In this section, the results from numerical method of integral equation representing average run 
length and analysis of its error are presented. As shown in the probability density, the function of the 
molecular velocity depends on the mass of a molecule and temperature, while the molecular kinetic 
energy depends only on the temperature. The variables for the experiment were determined by giving the 
mass of one gas molecule or the temperature. 

 
Probability density function of molecular velocity and kinetic energy of an ideal gas 
The example of an ideal gas is demonstrated by the assumption of setting the parameters as the 

following. 
The main parameters are set as 

1.3806 10 ^ 23,BK = × −  
6.02214076 10 ^ 23,Na = × 8, 100, 0.M UCL LCL= = =  

1.328431254 10 ^ 23,m = × −  

1 1.328431254 10 ^ 23,m = × −  
2 2.328431254 10 ^ 23,m = × −   

3 3.328431254 10 ^ 23,m = × −  

4 4.328431254 10 ^ 23,m = × −    

5 5.328431254 10 ^ 23m = × −  
 

Figures 1 and 2 show the probability density function of molecular velocity for one molecule with 
m  and for mass 1 2 3 4 5{ , , , , }m m m m m of N = 5 molecules, respectively. Settings of the parameters are 
based on fixing the mass of one molecule and N = 5 molecules and varying temperature as 

{300, 400, 500, 600,700}T = . 
 

 
Figure 1 Probability density function of molecular velocity with varying temperature for one molecule. 
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Figure 2 Probability density function of molecular velocity with varying temperature for N = 5 
molecules. 
 
 

Figures 3 and 4 show the probability density function of molecular velocity  on fixing the 
temperature , 300,T =   with varying the mass of the one molecule { , 2 ,m m  3 , 4 , 5 }m m m and for mass 

1 2 3 4 5{ , , , , }km km km km km  1, 2,...,5k =  of N = 5 molecules, respectively.  
 

 
Figure 3 Probability density function of molecular velocity with varying the mass of one molecule. 
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Figure 4 Probability density function of molecular velocity with varying the mass of N = 5 molecules. 

 
 
Figures 5 and 6 show the probability density function of molecular kinetic energy for one molecule 

with m  and for mass 1 2 3 4 5{ , , , , }m m m m m of N = 5 molecules, respectively. Settings of the parameters are 
based on fixing the mass of one molecule and N = 5 molecules and varying temperature as 

{300, 400, 500, 600,700}.T =  
 

 
 
Figure 5 Probability density function of molecular kinetic energy with varying temperature for one 
molecule. 
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Figure 6 Probability density function of molecular kinetic energy with varying temperature for N = 5 
molecules. 
 
 

The results demonstrated from the probability density function are as follows: 
In Figures 1 and 2, at the same mass of a molecule, when the temperature decreases, the probability 

density function shifts to lower and lower molecular velocity and vice versa. That is, the higher 
temperature makes the higher molecular velocity. In Figures 3 and 4, at the same temperature, when the 
mass of a molecule increases, the probability density function shifts to higher and higher velocity and vice 
versa. That is, the lower mass of a molecule makes the higher molecular velocity. In Figures 5 and 6, 
when the temperature increases, the probability density function shifts to higher and higher energy and 
vice versa. That is, the higher temperature makes the higher molecular kinetic energy. 
 

Average run length of molecular velocity and kinetic energy 
The assumptions of this experiment are as follows:  
For average run length of molecular velocity, given temperature and varied mass of molecule were 

assigned. For average run length of molecular kinetic energy, given mass of a molecule and varied 
temperature were assigned. 
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Table 1 Average run length of molecular velocity and kinetic energy for one molecule. 

 
Parameter 
( )T  

Average Run Length 
1.328431254 10 ^ 23m ×= −  Parameter 

( )m  

Average Run Length 
300T =  

Molecular Velocity Molecular Kinetic Energy Molecular Velocity 

300  370 
0( )ARL  

370 
0( )ARL  

-231.328431254 10m = ×
 

370 
0( )ARL  

400  366.30274 1( )ARL  309.43765 
1( )ARL  2m  346.28428 

1( )ARL  
500  359.69551 1( )ARL  193.97613 

1( )ARL  
3m  276.85208 

1( )ARL  
600  351.85221 1( )ARL  176.58856 

1( )ARL  
4m  171.82999 

1( )ARL  

700  343.40859 1( )ARL  152.135389 

1( )ARL  
5m  79.63196 

1( )ARL  
800  334.67125 1( )ARL  150.95026 

1( )ARL  
6m  31.20898 

1( )ARL  
900  325.82837 

1( )ARL  
148.06635 

1( )ARL  
7m  12.97953 

1( )ARL  
1,000  316.98928 1( )ARL  147.87615 

1( )ARL  
8m  7.15292 

1( )ARL  
 
 

Table 1 gives information about the average run length of molecular velocity and molecular kinetic 
energy of a gas molecule. There is a decrease in the average run length of molecular velocity when the 
temperature increases in the given molecular mass. Likewise, the average run length of molecular kinetic 
energy decreases when temperature increases with varied increasing temperatures. The average run length 
of molecular velocity decreases when the mass of the molecule increases with given temperature. 
However, the average run length of molecular kinetic energy does not depend on the molecule's mass. 

 
 

Table 2 Average run length of molecular velocity and kinetic energy for N = 5 molecules. 
 

Parameter 
( )T  

Average Run Length 

1 2 3 4 5, , , ,m m m m m  
Parameter 
( )m  

Average Run Length 
300T =  

Molecular Velocity Molecular Kinetic Energy  Molecular Velocity 

1 300T =  370 
0( )ARL  

370 
0( )ARL  

1 2 3 4 5, , , ,m m m m m  370 
0( )ARL  

2 400T =  367.16274 1( )ARL  354.71156 1( )ARL  1 2 3 4 52 ,2 ,2 ,2 ,2m m m m m

 
345.83321 

1( )ARL  
3 500T =  365.19354 1( )ARL  305.14327 1( )ARL  1 2 3 4 53 ,3 ,3 ,3 ,3m m m m m  327.63099 

1( )ARL  
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Parameter 
( )T  

Average Run Length 

1 2 3 4 5, , , ,m m m m m  
Parameter 
( )m  

Average Run Length 
300T =  

Molecular Velocity Molecular Kinetic Energy  Molecular Velocity 

4 600T =  364.68180 1( )ARL  235.07539 1( )ARL  1 2 3 4 54 ,4 ,4 ,4 ,4m m m m m  312.38195 
1( )ARL  

5 700T =  364.51958 1( )ARL  221.58643 1( )ARL  1 2 3 4 55 ,5 ,5 ,5 ,5m m m m m  254.53605 

1( )ARL  
6 800T =  364.18934 1( )ARL  128.88655 1( )ARL  1 2 3 4 56 ,6 ,6 ,6 ,6m m m m m  238.58292 

1( )ARL  
7 900T =  361.65251 1( )ARL  119.77965 1( )ARL  1 2 3 4 57 ,7 ,7 ,7 ,7m m m m m  150.01113 

1( )ARL  
7 1,000T =  344.44424 1( )ARL  118.90893 1( )ARL  1 2 3 4 58 ,8 ,8 ,8 8m m m m m  96.685519 

1( )ARL  
 
 

Table 2 gives information about average run length of molecular velocity and molecular kinetic 
energy of N = 5 gas molecules. There is a decrease in average run length of molecular velocity when the 
temperature increases in a given molecular mass. Likewise, the average run length of molecular kinetic 
energy decreases when the temperature increases with varied increasing temperatures. Meanwhile, the 
average run length of the molecular velocity decreases when the mass of molecule increases with given 
temperatures. However, the average run length of molecular kinetic energy does not depend on the mass 
of molecule. 
 
Conclusions 

This research evaluates the average run length of molecular velocity and kinetic energy of a gas 
molecule and N molecules. The EWMA control chart is employed to construct the formula of average run 
length, which is the integral equation solution. Then, the numerical method for approximation of the 
solution of the integral equation is based on the Trapezoidal rule. For both cases of one molecule and N 
molecules, the results show an increase in molecular velocity and kinetic energy when the temperature 
increases with given the mass of the molecule. That is, the molecule gets more the temperature, then the 
molecule will move faster. This makes the molecular kinetic energy increases as well because the 
molecular kinetic energy has a relationship with squared molecular velocity. Furthermore, at the same 
temperature, the molecular velocity increases when the mass of the molecule decreases. It implies that the 
molecule moves faster when the molecular weight is lighter. To sum up, the relationship between the 
average run length of molecular velocity or kinetic energy with varying parameters: temperature and mass 
of the molecule is conducted. The results show that the average run length has decreased when there is an 
increase in temperature with a given mass of the molecule. Similarly, there is a decrease in average run 
length when the mass of the molecule increases with the given temperature of the molecule. Namely, the 
parameters: temperature and mass of the molecule affect the average run length of a gas molecule's 
molecular velocity and kinetic energy. Furthermore, the other control charts are applied to this field with 
autocorrelation of the data to detect the change points on a control chart. This alternative should be 
conducted for future works and novel researches.  
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