
  
http://wjst.wu.ac.th               Engineering and Physical Sciences 

Walailak J Sci & Tech 2015; 12(9): 763-773. 
 

Heat Transfer for MHD Second Grade Fluid Flow over a Porous 
Nonlinear Radially Stretching Sheet 
 
Asif MUNIR1,*, Azeem SHAHZAD2 and Masood KHAN1 
 
1Department of Mathematics, Quaid-i-Azam University, Islamabad, Pakistan 
2Department of Basic Science, University of Engineering & Technology, Taxila, Pakistan 
 
(*Corresponding author’s e-mail: asifmunir1000@yahoo.com) 
 
Received: 8 December 2013,   Revised: 14 May 2014,   Accepted: 26 June 2014 
 
 
Abstract 

The heat transfer for the steady axisymmetric flow of a second grade fluid over an isothermal radially 
stretching porous sheet is investigated. A power law stretching of sheet is assumed, while the fluid is 
electrically conducting in the presence of a transverse magnetic field. Appropriate similarity 
transformations are introduced to reduce the resulting highly non-linear partial differential equations into 
ordinary differential equations, which are then solved analytically by the homotopy analysis method 
(HAM) and numerically by the shooting method using the adaptive Runge Kutta method with Broyden's 
method. The developed analytical expressions for the temperature field are graphically presented and the 
influence of pertinent parameters on the thermal boundary layer is discussed in detail. To check the 
reliability of the HAM results, a comparison is made with numerical results. An excellent agreement is 
observed between the 2 sets of results. In addition, the local Nusselt number is tabulated for several 
influential parameters. 
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Introduction 

Recently, many efforts have been made to investigate the boundary layer flows on heated continuous 
stretching surfaces, owing to their tremendous applications in industries. These applications include paper 
production, materials manufactured by the extrusion process, production of polymer films, the boundary 
layer along a liquid film in the condensation process, and the heat treated materials traveling between a feed 
roll and the wind-up roll or on a conveyor belt which poses the features of a moving continuous surface. 
The final product with the desired characteristics strictly depends upon the stretching rate and the rate of 
cooling in the process. Carragher et al. [1] investigated the heat transfer of the viscous fluid over stretching 
surface under the conditions when the temperature difference between the surface and the ambient fluid is 
proportional to a power of distance from a fixed point. Cortel [2] considered the flow and heat transfer of a 
viscous fluid over nonlinear stretching sheet. Recently, Alinejad and Samarbakhsh [3] examined the effects 
of viscous dissipation on viscous flow over nonlinear stretching sheet. 

The non-Newtonian fluids are nowadays acknowledged as more suitable for scientific and 
technological applications than Newtonian fluids [4]. Numerous materials, such as salt and polymer 
solutions or melts, drilling mud, starch suspensions, cements, certain oils and greases, and many emulsions, 
are classified as non-Newtonian fluids. Due to the vast potential for research in industrial applications, 
researchers are analyzing the flow and heat transfer characteristics of such fluids. One can refer to the recent 
work of Liu [5] who gave analytical solutions for the steady boundary layer flow and heat transfer of an 
electrically conducting second grade fluid past a semi-infinite stretching sheet. Singh and Agarwal [6] 
analyzed the boundary layer flow and heat transfer characteristics of a second grade fluid over an 
exponentially stretching sheet. Hayat et al. [7] analyzed the flow and heat transfer of a second grade fluid 
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with convective boundary condition. Hayat et al. [8] also investigated the Newtonian heating effects in 
boundary layer flow of a second grade fluid over a stretching sheet. 

A vast amount of literature is now available regarding the laminar boundary layer flow and heat 
transfer of viscous and differential type fluids over a planner stretching sheet. However, a relatively scarce 
amount of information regarding the flow and heat transfer over a radially stretching sheet is observed in 
literature. The work of Arial [4] can be cited, who studied the axisymmetric flow of a second grade fluid 
over radially stretching sheet, and derived perturbation and asymtotic solutions for small and large values of 
the viscoelastic parameter, respectively. Hayat and Sajid [9] extended the work of Arial [4] and examined 
the heat transfer for the flow of a second grade fluid over radially stretching sheet, and found analytic 
solutions using the homotopy analysis method. Sahoo [10] examined the effects of slip, viscous dissipation, 
and Joule heating on the magneto hydrodynamic flow and heat transfer of a second grade fluid over a 
radially stretching sheet. Ahmad et al. [11] considered the heat transfer characteristics due to unsteady 
axisymmetric flow of a second grade fluid. All of the above studies are limited to flow and heat transfer 
over linear radially stretching sheets. However, as pointed out by Gupta and Gupta [12], realistically, 
stretching of the sheet may not necessarily be linear. This situation was dealt by Shahzad et al. [13] in their 
work on the exact solution for axisymmetric flow and heat transfer over a nonlinear radially stretching 
sheet. They considered viscous fluid and assumed the stretching velocity in the form 3( )U r cr . 

In the present investigation we consider the heat transfer due to flow of a second grade fluid and 
assume the stretching velocity in the form ( ) nU r cr , where n is a positive real number and c is a 
positive constant. The boundary layer equations are derived by using boundary layer approximations, and 
the modelled non-linear coupled partial differential equations are reduced to 2 point boundary value 
problems, using proper similarity transformations. The homotopy analysis method (HAM) and shooting 
method, using the adaptive Runge Kutta method with Broyden's method, are employed for solutions. 
 
Mathematical formulation 

Consider the quiescent and electrically conducting second grade fluid in the presence of a transverse 
magnetic field. A steady, laminar, and axisymmetric flow is induced, due to a stretching of the sheet along 
the radial direction, with power law velocity given by n

wU cr . We assume that the sheet is isothermal 
with temperature wT  while T  is the ambient fluid temperature with wT T . The magnetic field 

 B 00, 0,B=  is applied perpendicular to the sheet, as shown in Figure 1. Magnetic Reynolds number 
is assumed to be vanishingly small, so that the induced magnetic field is neglected in comparison with the 
applied magnetic field. 

The constitutive equation of an incompressible homogeneous second grade fluid is [14]; 
 

T I A A A2
1 1 2 2 1,p                   (1) 

 
where T  is the Cauchy stress tensor. p is the pressure.   is the dynamic viscosity. 1, 2 are material 
parameters. A1  and A2  the first 2 Rivlin-Ericksen tensors, given by; 
 

   A v v1 grad grad ,T   

   
AA A v v A1

2 1 1grad grad ,Td
dt

                  (2) 

 
where v  denotes the velocity field and d

dt  is the material derivative. 
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The Clausius-Duhem inequality and the minimum Helmholtz free energy in equilibrium require that
0,   1 0,  1 2 0   . 

The flow is 2-dimensional and bidirectional and velocity field is of the form; 
 

 v ( , ), 0, ( , ) .u r z w r z=                  (3) 
 

Under the above velocity field, the continuity equation and momentum equation for steady flow are 
written as; 
 

0,
u u w
r r z

 
  

 
              (4) 

 

  0 ,rr rz rru u T T T T
u w B u

r z r z r
 

    
    

   
            (5) 

  

   
1

,zz
rz

w w T
u w rT

r z r r z


   
  

   
              (6) 

 
where  is the electrical conductivity and  is the density. 

The non-vanishing components of stress tensor T are ,rrT  , zzT T  and rzT and given by; 
 

   
22 2

1 22 2 2 ,rr
u u u u w u w

T p u w
r r z r r z rr

 
               
        

 

   
2 2

2 4 ,
u u w
r z r


      
    

               (7) 

 
2 2

1 22 22 2 4 ,
u u u w u u u

T p
r r r r z r r   

             
              (8) 

 
22 2

1 2
2 2 2zz

w w w w u u w
T p u w

z r z z z z rz
 

                                     
 

   
2 2

2 4 ,
w u w
z z r


      
    

                (9) 

 

    1rz
u w u w u w u w

T u w
z r r z z r r r z z

 
                         

 

    23 2 .
u u w w u w u w
r z r z r z z r


                   

            (10) 
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Applying the boundary layer approximation, we obtain the following governing equation; 
 

2 3 3 2 2 2
1 0

2 2 3 2 ,
u u u u u u u u u B u

u w u w
r z r z r zz r z z z


 

 
                           

 (11) 

 
where  is the kinematic viscosity. The corresponding velocity field boundary conditions are; 
 

( ) , 0,n
wu U r cr w V at z                 (12) 

 
0 ,u as z                 (13) 

where  wV is the porosity of the sheet. 
We use the following similarity transformations; 

 
1 1
2 22( , ) Re ( ),  and Re ,

z
r z r U f

r
                  (14) 

 
where h is the dimensionless similarity variable. Re Ur

  is the local Reynolds number. ( , )r z is the 

Stokes stream function defined by 1
r zu 

  and 1
r rw 

 , giving; 
 

1
2

3 1
( ) and Re ( ) ( ) .

2 2
n n

u Uf w U f f           
 

         (15) 

 
After utilizing the above similarity transformations, Eqs. (11) to (13) reduce to; 

 

     2 23 3 1
3 1

2 2
n n

f ff n f n f f f
          

 

    23
1 0,

2
n

ff n f f M f                  (16) 

 
(0) , (0) 1 and ( ) 0,f s f f               (17) 

 

where 1U
r

   is the dimensionless second grade parameter. 𝑀 = (𝑠𝐵0

2𝑟1−𝑛

𝑟𝑐
)1/2 is the local magnetic 

parameter.  
2 (1 )/2
3

mV n
n cs r


  is the local mass transfer parameter, with 0s   for mass suction 

and 0s   for mass injection. 
 
 



Heat Transfer for MHD Second Grade Fluid over Isothermal Radially Stretching Sheet Asif MUNIR et al. 
http://wjst.wu.ac.th 

Walailak J Sci & Tech 2015; 12(9) 
 

767 

 
Figure 1 Configuration of the flow and geometrical coordinates. 
 
 
Heat transfer problem 

Ignoring the radiant heat transfer, and in the absence of viscous dissipation and heat generation, the 
energy equation for temperature field  ,T T r z  is; 
 

 
2 2

2 2
1

,p
T T T T T

c u w
r z r rr z

 
               

          (18) 

 
where pc  is the specific heat at constant pressure and  is the thermal conductivity. 

The thermal boundary layer approximations reduce the above equation to; 
 

2

2 ,
p

T T T
u w

r z c z



  
 

  
              (19) 

 
subject to the boundary conditions; 
 

  at  0,wT T z                  (20) 
 

  as  ,T T z                 (21) 
 
where wT  is the sheet temperature and T is the temperature of surrounding fluid. 

Using the similarity variables (14) and; 
 

  ,
w

T T
T T

  







                  (22) 

 
Eqs. (19) to (21) take the form; 
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3
Pr 0,

2
n

f 
                (23) 

 
   0 1,  0,                 (24) 

 
with Pr = 𝑚𝑐𝑝

𝑘
 as the Prandtl number. 

The local Nusselt number (Nur) is defined as; 
 

  0
,w

r
w z

rq
Nu

T T  



            (25) 

 
where the wall heat flux wq is given by; 
 

 
0
,w

z

T
q

z





 


             (26) 

 
which by virtue of Eq. (22) reduces to; 
 

 1/2Re 0 .rNu                    (27) 
 
Solution of the problem 

The homotopy analysis method (HAM) is an analytic approximation method to find the solution of 
highly nonlinear differential equations. In order to find the analytic solutions of Eqs. (16) and (23), subject 
to boundary conditions (17) and (24), by the homotopy analysis method (HAM), we choose the initial 
guesses  0f   and  0   to the final solutions  f   and     as;  
 

       0 01 exp ,  exp ,f s                     (28) 
 
and the auxiliary linear operators as; 
 

   
3 2

3 2,  .f
d d d d

d dd d
   

 
  

                 (29) 

 
Now, by letting f  and   as the auxiliary convergence control parameters, we can construct the 

zero and higher order deformation problems in view of references [9,13]. The auxiliary parameters f  

and  adjust and control the convergence of the series solutions. The optimal values of these convergence 
control parameters are chosen by minimizing the discrete squared residual [15], given by; 
 

 
2

,
0 0

1
,

1

N m

f m f j
j i

E N F i
N


 

         
              (30) 
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 
2

,
0 0

1
.

1

N m

m j
j i

E N G i
N  

 

         
            (31) 

 
where 1N   is the number of points, chosen over the domain in which the nonlinear equations 

   0fN f    and    0N     are defined. Table 1 shows the convergence of series solution 
for optimum value of convergence control parameters hq. 
 
 
Table 1 The analytical approximation of (0)   when 0.3s  , 0.1,  1.0M  , 0.5n   and 
Pr 0.7 are fixed. 
 

Order of approximation 
hθ = −0.91054 (optimum) 

(0)θ ′  
5 -0.88687 

10 -0.88086 
15 -0.88023 
20 -0.88020 
21 -0.88020 
22 -0.88020 

 
 
Table 2 The values of local rNu when 0.5M  . 
 

Pr  s  n    (0) (HAM results)   (0) (Numerical results)   

0.3 0.5 2.0 0.5 0.74849 0.74849 
0.3 0.5 2.0 0.5 1.13366 1.13365 
0.7 0.5 2.0 0.5 1.48515 1.48515 
0.7 0.5 0.5 0.5 1.10818 1.10817 
0.7 0.5 1.0 0.5 1.23748 1.23749 
0.7 0.5 2.0 0.5 1.48516 1.48515 
0.7 0.1 2.0 0.5 0.94811 0.94811 
0.7 0.2 2.0 0.5 1.07567 1.07566 
0.7 -0.1 2.0 0.5 0.71050 0.71050 
0.7 -0.2 2.0 0.5 0.60196 0.60194 
0.7 0.5 2.0 0.0 1.31656 1.31656 
0.7 0.5 2.0 0.2 1.42463 1.42462 
0.7 0.5 2.0 0.5 1.48517 1.48515 
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Results and discussion 

The resulting boundary value problem given by Eqs. (16) and (23) are solved for isothermal sheet. 
Solutions are obtained analytically, using the HAM and numerically by the shooting method using the 
adaptive Runge Kutta method with Broyden's method. The effects of n, Pr, s,  and M on temperature 
field are shown graphically. Moreover, the variation of local Nusselt with suction/injection for different 
Prandtl numbers and second grade parameters is also presented with graphs. Numerical values of the local 
Nusselt number by varying different pertinent parameters are also tabulated. The comparison of analytical 
and numerical values obtained from the HAM and shooting method is also given in this table. 

Stretching parameter n affects the thermal boundary layer markedly. Figure 2a depicts the 
temperature profile for different values of stretching parameter n. This figure shows that the thermal 
boundary layer decreases with the increasing value of the stretching parameter. Pr has a significant role in 
controlling the thermal boundary layer thickness. The effects of Pr on the thermal boundary layer for fixed 
values of other parameters are illustrated in Figure 2b. It depicts that the effect of Pr on thermal boundary 
layer is very prominent. It is noted that an increase in Pr decreases the thermal boundary layer thickness, 
which results in augmentation of heat transfer at the wall. 

The effects of suction on thermal boundary layer thickness are presented in Figure 3. This Figure 3a 
elucidates that the thermal boundary layer decreases due to suction of fluid near the sheet. The suction 
improves the heat transfer coefficient. The effects of injection on thermal boundary layer thickness are 
illustrated in Figure 3b. Here, we can see that the injection increases the fluid temperature and thermal 
boundary layer, due to a decrease in heat transfer coefficient. 

The effects of  and M on temperature profile are elucidated in Figure 4. The detailed examination 
of Figure 4a shows the progressive thinning of the thermal boundary layer with the increasing  , 
irrespective of the values of the other parameters. This in turn enhances the heat transfer at the wall. This 
figure also compares the thermal boundary layer thickness between Newtonian and second grade fluids, 
and indicates that the thermal boundary layer for a Newtonian fluid is larger as compared to that of second 
grade fluid. Figure 4b illustrates the effect of magnetic parameter M. The effects of M on the thermal 
boundary layer are not very prominent; however, the temperature profile increases by increasing M. 

The effects of suction and injection on local Nur are shown in Figure 5. Figure 5a depicts that 
increasing suction parameter increases the local Nur. Moreover, this figure also shows that Nur enhances 
with increase in Pr. This figure further illustrates that augmentation of the second grade parameter 
boosts the heat transfer at the wall for the same value of Pr. Finally, for comparison, the profiles of 
temperature are sketched in Figures 6a and 6b. Solid lines are the HAM solutions, while open circles are 
numerical solutions. This comparison shows a very good agreement between both the solutions. The 
agreement between the HAM and the numerical results confirm the accuracy of the analytical results. 

Table 2 gives the variation of the local Nur by changing parameters, like Pr, s and a, keeping other 
parameters fixed. From this table, it is noted that the local Nur increases when Pr, a, n, and suction are 
increased. On the other side, an increase in injection decreases the local Nur. 
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Figure 2 Influence of the n and Pr on temperature ( )  when 2n  , 0.5,   1M   and 
0.5s   are fixed. 

 
 

  
 

Figure 3 Influence of the s on temperature ( )  when 2,n  1,M  0.5   and Pr 0.7
are fixed. 
 
 

  

Figure 4 Influence of the  and M on temperature ( )   when 2,n   Pr 0.7  and 0.5s   
are fixed. 
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Figure 5 Influence of the local mass transfer parameters on local rNu  for 0   and 0.5   
when 2n  , 1M   are fixed. 
 
 

  
Figure 6 A comparison of the HAM and numerical results (solid line HAM result and open circles 
numerical results). 
 
 
Conclusions 

In this article, the HAM was applied to analyze the heat transfer due to an axisymmetric flow of an 
electrically conducting second grade fluid over a non-linear radially stretching porous sheet. The analytical 
solutions were obtained and verified by numerical results. The following conclusions were drawn from this 
study: 

1) An increase in Pr, ,n  and suction reduced the thermal boundary layer thickness and increased 
the local Nusselt number. 

2) The Pr affected the thermal boundary layer more strongly as compared to other physical 
parameters. 

3) An increase in injection increased the thermal boundary layer thickness and decreased the local 
Nur. 

4) The local Nur increased by an increase in suction. This increase was sharper than that for larger. 
5) The decrease in local Nur was noticed with an increase in injection. This decrease was sharper than 

that for smaller Pr. 
6) There was a boost in the local Nur with an increase in a. 
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