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Abstract 

The dynamic behavior of functionally graded (FG) sandwich beams resting on the Pasternak elastic 
foundation under an arbitrary number of harmonic moving loads is presented by using Timoshenko beam 
theory, including the significant effects of shear deformation and rotary inertia. The equation of motion 
governing the dynamic response of the beams is derived from Lagrange’s equations. The Ritz and 
Newmark methods are implemented to solve the equation of motion for obtaining free and forced 
vibration results of the beams with different boundary conditions. The influences of several parametric 
studies such as layer thickness ratio, boundary condition, spring constants, length to height ratio, velocity, 
excitation frequency, phase angle, etc., on the dynamic response of the beams are examined and discussed 
in detail. According to the present investigation, it is revealed that with an increase of the velocity of the 
moving loads, the dynamic deflection initially increases with fluctuations and then drops considerably 
after reaching the peak value at the critical velocity. Moreover, the distance between the loads is also one 
of the important parameters that affect the beams’ deflection results under a number of moving loads. 
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Introduction 

Sandwich structures are typically composed of multi-layers of high-strength face sheets and flexible 
core. Owing to outstanding properties in a high strength-to-weight ratio, the use of sandwich structures 
has grown rapidly in various engineering applications such as automotive, marine, and aerospace 
industries. The fundamental behavior and design for isotropic and composite sandwich structures were 
described in the comprehensive textbook of Vinson [1]. In recent years, the concept of functionally 
graded (FG) sandwich structures has been introduced to enhance structural performance over 
conventional sandwich structures, which always encounter serious problems of de-bonding and 
delaminating modes of failure at interface layers. The material properties of FG sandwich structures are 
changed gradually across the interfaces. Thus, the inter-laminar stresses between layers are eliminated. 

The possibilities in reducing inter-laminar stresses and stress concentrations at the interfaces are the 
main advantages of FG sandwich structures. Therefore, many researchers have been focusing on studying 
FG sandwich structures’ mechanical behavior subjected to static and dynamic loadings by using various 
theories and analysis techniques. However, most of the studies are limited to static bending, buckling, and 
vibration analyses of FG sandwich structures. Additionally, the studies on the dynamic response of FG 
sandwich structures under dynamic loading action are scarce. In the past few years, there are a number of 
investigations associated with such structures in different problems and scenarios. For example, Vo et al. 
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[2] proposed a finite element model for vibration and buckling problems of FG sandwich beams. They 
also showed the relationship between fundamental natural frequency and the critical buckling load of the 
beams. Nguyen et al. [3] studied vibration and buckling of FG sandwich beams using higher-order shear 
deformation theory with a hyperbolic distribution of transverse shear stress. A quasi-3D theory was used 
to deal with static bending, buckling, and vibration problems of FG sandwich beams [4,5]. Tossapanon 
and Wattanasakulpong [6] developed numerical models based on the Chebyshev collocation method for 
buckling and vibration analysis of FG sandwich beams with classical and non-classical boundary 
conditions. Using the state space approach, Trinh et al. [7] also presented the frequency results of FG 
sandwich beams supported by combinations of classical and elastic restrained boundary conditions. Bui et 
al. [8] applied a truly mesh-free radial point interpolation method to solve forced vibration of FG 
sandwich beams under harmonic, Heaviside step, and transient loadings. In the case of FG sandwich plate 
and shell analyses, these structures have also attracted researchers’ increasing attention, which can be 
seen in Refs. [9-18]. 

Moving load problems are important in mechanical vibration analysis and practical applications, 
e.g., guideways of equipment, overhead cranes, railroads, and bridges. While it is very rare for FG 
sandwich beams, numerous investigations regarding the dynamic response of beams with moving loads 
were found mostly for the beams made of functionally graded materials or called FG beams. In the case 
of FG beams carrying a moving point load, Şimşek and Kocatürk [19] presented natural frequencies and 
dynamic deflections of FG beams based on the Euler-Bernoulli beam theory. The Lagrange multiplier 
was used in this study. Nonlinear vibration analysis of FG beams under the moving load’s action was 
examined and presented [20]. To consider FG beams axially under a moving load, Şimşek et al. [21] 
showed the beams’ dynamic behavior with the influences of material distribution, the velocity of the load, 
and excitation frequency on the dynamic deflections of the beams. Moving load-induced vibration of bi-
directional FG beams was reported [22,23]. It was found that the free and forced vibration responses of 
the beams are considerably influenced by the material gradient indexes of the two directions. A mixed 
Rayleigh Ritz-Differential quadrature (DQ) method was employed to discretize and solve the spatial 
partial and temporal derivatives in the problems of free and forced vibration of FG beams isotropic plates 
carrying moving load [24,25]. To include thermal effect on the beams’ vibration behavior with moving 
load, this topic was considered by Wang and Wu [26] for axially FG beams and Tao et al. [27] for fiber 
metal laminated beams. For FG beams with their edge cracked, Yan et al. [28] presented the beams’ 
dynamic response with an open edge crack under dynamic loading. The beams were subjected to a 
transverse load moving at a constant speed. In terms of the beams carrying moving mass, we can also find 
this topic in the open literature [29-33]. Additionally, Şimşek [34] proposed analytical and numerical 
solutions for the vibration of an embedded microbeam carrying a moving micro-particle. The modified 
couple stress theory was used to form the governing equation of motion in the study. More recently, 
dynamic analysis of advanced composite structures has been investigated continuously; for example, FG 
graphene oxide-reinforced composite beams [35,36], FG sandwich beams with porous core [37], FG 
nanobeams [38], FG plates, and FG single and multi-span FG porous beams [40]. As aforesaid literature 
survey, there is no investigation on the dynamic response of FG sandwich beams except for the study in 
[41] that showed the beams’ dynamic deflections under the action of two successive moving loads. 

According to the literature survey, it is found that a large volume of literature has investigated and 
focused mostly on static bending, buckling and vibration of FG sandwich beams. Therefore, this present 
study aims to investigate the dynamic response of FG sandwich beams under the action of multi-moving 
loads, and the beams are assumed to be placed on the Pasternak elastic foundation composing of Winkler 
and shear layer springs. The governing equation of motion based on Timoshenko beam theory is derived 
from Lagrange’s equations. The developed model proposed in this study can be used for analyzing the 
dynamic behavior of beams under an arbitrary number of moving loads; hence, this model is useful for 
dynamic structural design. Many important effects such as layer thickness ratio, boundary condition, 
spring constants of the foundation, length to height or beam thickness ratio, velocity, phase angle, and 
excitation frequency of the loads on free and forced vibration results of FG sandwich beams are taken into 
an investigation. 
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FG sandwich beams 
Considering an FG sandwich beam, which is composed of three layers of functionally graded faces 

and homogenous core as shown in Figure 1, the top and bottom faces are at 2z h= ±  where h is 
thickness in the z-axis, L is length in the x-axis and b is the width of the beam. In this figure, the beam is 
subjected to an arbitrary number of moving loads (Pi) with the same constant velocity (vp). The distance 
between the loads is defined by parameter (d). The position in the x-direction of any load is dependent on 
the velocity and time (t) with this relation, [ ( 1) ]pi px v t i d= − − . 

Additionally, as shown in the cross-sectional areas, there are two main types of FG sandwich beams 
made of ceramic and metal phases: FG sandwich beams with homogenous soft and hardcore. In general, 
the ceramic phase has a larger value of Young’s modulus and it is harder than metal phase. Therefore, for 
FG sandwich beam with homogenous hardcore, the faces should be made from FG material composing of 
the mixture of ceramic and metal phases in which the top and bottom faces are metal-rich and the material 
constituents are varied continuously and smoothly to ceramic-rich at the core. On the other hand, the 
beam with homogenous softcore, the pattern of material variations is reversed. 
 

 
Figure 1 Geometry and coordinate of FG sandwich beam resting on elastic foundation under multi-
moving loads, Pi(t), with constant (vp). 
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The layer thickness ratio of the beam from the bottom (z = h0 = -h/2) to the top (z = h3 = +h/2) is 
defined by three numeric notations. For example, the FG sandwich beam with 1-1-1 layer thickness ratio 
is the beam that has equal thickness for every layer. The heights in each layer of the beam are h0 = -h/2,  
h1 = -h/6, h2 = +h/6 and h3 = +h/2. The effective material properties in terms of Young’s modulus of 
elasticity (E) and mass density (ρ) in each layer can be evaluated from the following equations:  

 
( ) ( )( ) ( ) ( ) ,j j

b t b tE z E E V z E= − +  (1a) 
 

( ) ( )( ) ( ) ( ) .j j
b t b tz V zρ ρ ρ ρ= − +  (1b) 

 
However, the Poisson’s ratio (ν) is assumed to be constant. From Eq. (1), it is noted that the 

superscript (j) refers to layer and the subscripts t and b denote the material properties at the faces and at 
the core, respectively. The material volume fraction, ( )j

bV , which is based on the power law distribution 
can be obtained from Ref. [2,6] as:  
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n

b
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n

b

z h
V z z h h

h h

V z z h h

z h
V z z h h

h h

  −
 = ∈ −  


= ∈


 − = ∈  − 

 (2) 

 
where n is the material volume fraction index or power law index, 0 n≤ ≤ ∞ . For FG sandwich beam 
with homogenous hardcore, the core is made of ceramic phase ( , )b c b cE E ρ ρ= =  and FG faces with top 

and bottom surfaces are made of metal phase ( , )t m t mE E ρ ρ= = . In contrast, for FG sandwich beam 

with homogenous softcore, we have ( , )b m b mE E ρ ρ= =  and ( , )t c t cE E ρ ρ= =  where the subscripts c 
and m denote the material properties of ceramic and metal phases, respectively. 
 
Theoretical formulations 

Based on Timoshenko beam theory, the dynamic equation of motion governing FG sandwich beam 
behavior under dynamic loadings can be formulated by taking into account shear deformation effect. The 
displacements of an arbitrary point of the beams along the x- and z-axes, which are denoted by u(x,z), 
w(x,z) respectively, can be expressed below:  

 

0( , , ) ( , ) ( , ),u x z t u x t z x tψ= +  (3a) 
 

0( , , ) ( , ),w x z t w x t=  (3b) 
 

where u0 are w0 axial and transverse displacements in the middle plane (z = 0), respectively, ψ  is the 
rotation of the beam cross-section and t is time. The strain-displacement relations in terms of normal 
strain (εxx ) and shear strain ( γxz) are given by; 
 

0 ,xx
uu z

x x x
ψε

∂∂ ∂
= = +
∂ ∂ ∂

 (4a) 
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0 .xz
wu w

z x x
γ ψ

∂∂ ∂
= + = +
∂ ∂ ∂

 (4b) 

 
The corresponding normal stress (σxx) and shear stress (τxz) can be obtained from the elastic 

constitutive law as; 
 

( )( ) , ( ) .
2(1 )xx xx xz xz xz

E zE z G zσ ε τ γ γ
ν

= = =
+

 (5) 

 
The strain energy (US) of the FG sandwich beams at any instant can be defined as; 

 
/2

0 /2

( ) .
2

L h

S xx xx xz xz
h

bU dzdxσ ε τ γ
−

= +∫ ∫  (6) 

 
Substituting Eqs. (4) and (5) into Eq. (6), one can obtain another form of the strain energy equation 

as; 
 

2 22
20 0 0 0

11 11 11 55 55 55
0

1 2 2 .
2

L

S
u u w w

U A B D A A A dx
x x x x x x

ψ ψ ψ ψ
 ∂ ∂ ∂ ∂∂ ∂     = + + + + +      ∂ ∂ ∂ ∂ ∂ ∂     
∫  (7) 

 
It is denoted that A11, A55 and B11 and D11 appearing in Eq. (7) are the extensional, shear, coupling 

and bending stiffness components which can be obtained from; 
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+∑ ∑∫ ∫  (8) 

where κ = 5/6 is shear correction factor for layer of homogenous material and 5
6 ( )c c m mV V

κ
ν ν

=
− +

 for 

layer of FG material in which Vm = 1 - Vc  It is defined here that Vc and Vm are the material volume 
fractions of ceramic and metal, respectively. Similarly, νc and νm are the Poisson’s ratios of ceramic and 
metal. 

To consider the effect of the Pasternak elastic foundation, the potential energy due to the foundation 
is expressed as follows: 

 
2

2 0
0

0

1
2

L

F w s
w

U k w k dx
x

 ∂ = +   ∂  
∫  (9) 

 
where kw and ks are the constants of Winkler and shear layer springs per unit width, respectively. 
 

For the kinetic energy of the beams, it can be expressed as; 
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 (10) 
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where I0, I1 and I2 are the inertia components which can be obtained from the following equation; 
 

1

3
( ) 2

0 1 2
1

[ , , ] [1, , ] .j

j

h j

h
j

I I I b z z dzρ
−=

= ∑∫  (11) 

 
In this investigation, the multi-moving loads induced vibration of FG sandwich beams are 

considered, hence, the work done (UEX) due to the external loads depends on the number of loads moving 
onto the beams. As a result, the expressions of the work done for different number of moving loads can be 
obtained below: 

For the case of one load moving onto the beams: 
 

1 0 1 1

1

( ) ( , ) if 0

0 if

P
pEX

LP t w x t t t
vU

t t

− ≤ ≤ == 
 <

 (12) 

 
For the case of two loads moving onto the beams: 
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For the case of three loads moving onto the beams: 
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where 
 

1 0 1 1( ) sin( ),P t P t φ= Ω +  (15a) 
 

2 0 2 2( ) sin( ),P t P t φ= Ω +  (15b) 
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3 0 3 3( ) sin( ).P t P t φ= Ω +  (15c) 
 
It is defined that P0 and Ωi are the magnitude and excitation frequencies of the moving loads, 

respectively. φi are the phase angles of the moving loads. 
Similarly, we can use the same principle, as shown in Eqs. (12) - (14), for the work done of the 

beams subjected to more than three moving loads or arbitrary number of moving loads. 
From all energies described above, we can use them to create the total potential energy (Π) for the 

beam system as follows: 
 

S F K EXU U U UΠ = + − −  (16) 
 
To solve the total potential energy in Eq. (16), we can use the Ritz trial displacement functions in 

form of polynomial series that have to satisfy at least the essential or geometric boundary conditions. 
With different boundary conditions such as clamped (C) and hinged (H) at any end of the beams, the trial 
displacement functions are; 

 

0 1
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3
1

( , ) ( ) ( )
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∑

∑

∑

 (17) 

 
in which ξ1j(x), ξ2j(x) and ξ3j(x) are polynomial-series shape functions that are dependent on essential 
boundary conditions of the beams. The shape functions of the beams with different boundary conditions 
(B.C.) are shown in Table 1. For example, the beams which are hinged at both ends are defined as H-H 
beams. 

 
 

Table 1 Shape functions of FG sandwich beams with different boundary conditions. 
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1

jx x
L L

   −   
   

 1
jx x

L L
   −   
   

 
1jx

L

−
 
 
 

 

    
 
 

These shape functions are expanded to suitable number of polynomial terms (N) which can find 
from convergence study. Inserting the trial displacement functions written above into the total potential 
energy of Eq. (16) and then following the Lagrange equation method; 
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0
j j

d
q dt q
∂Π ∂Π

− =
∂ ∂ 

 (18) 

 
with qj representing the time-dependent unknown parameters (Aj (t), Bj (t), Cj (t)), one can obtain the 
following equation of motion; 

 
11 12 13 11 12 13

22 23 22 23

33 33

0
.

sym sym 0

K K K A M M M A
K K B M M B F

K C M C

       
       + =       
               





 



 

 (19) 

 
It is noted that the over-dot stands for the derivative with respective to time, K and M are the 

stiffness and mass matrices, respectively, in which their size is (3N × 3N). Additionally, F is the vector of 
dynamic force due to the moving loads. The matrix elements in Eq. (19) are given by; 

 
1 111 12 131 3

11 11
0 0

, 0, ,
L L

j jm m
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x x x x
ξ ξξ ξ∂ ∂∂ ∂

= = =
∂ ∂ ∂ ∂∫ ∫  

2 222 2 2
55 2 2

0 0 0

L L L
j jm m

jm w j m sK A dx k dx k dx
x x x x
ξ ξξ ξ

ξ ξ
∂ ∂ ∂ ∂
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∂ ∂ ∂ ∂ 

∫ ∫ ∫  
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L L
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3 2 3 3 1 3 2( ) ( ) if .j j pF P t x t t t t tξ= − + < ≤ +  (20) 
 

The equation of motion in Eq. (19) can be solved in time domain by using the average acceleration 
method of Newmark. Consequently, the results of displacements, velocities and accelerations of the 
beams at the considered point and time are determined in the time domain. For free vibration analysis 
with harmonic phenomenon, it is assumed that the unknown vector [Aj (t), Bj (t), Cj (t)]T, for j = 1, 2,...N 
are expressed as; 
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( )

( )

i t
jj

i t
j j

i t
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C t C e

ω

ω

ω

  
  

=   
  
    

 (21) 

 
in which 1i = −   and ω is natural frequency. Substituting Eq. (21) into Eq. (19) without considering any 
force vector, we can obtain an eigenvalue equation for free vibration problem as; 

 
11 12 13 11 12 13

22 23 2 22 23

33 33

0
0 .

sym sym 0

AK K K M M M
K K M M B

K M C
ω

       
       − =       
              

 

 

 (22) 

 
Solving Eq. (22) as standard eigenvalue problem leads to a set of natural frequencies of FG 

sandwich beams in which the lowest eigenvalue is the fundamental frequency of the beams. 
 
Results and discussions 

This section is given to present and discuss several examples of free and forced vibration analysis of 
FG sandwich beams made from a mixture of Alumina (Al2O3) as ceramic phases and Aluminum (Al) as 
metal phases. The material properties such as Young’s modulus (E), Poisson’s ratio (ν) and material 
density (ρ) are: 

 
Ec = 380 GPa,νc = 0.3, ρc = 3960 kg/m3 for Al2O3 and Em = 70 GPa, νm =  0.3, ρm = 2702 kg/m3 for Al 

 
In this study, the geometric parameters of FG sandwich beams are as follows: b = 0.5 m, h = 1.0 m. 

This section is organized into two parts: free vibration analysis and forced vibration analysis with 
arbitrary number of loads moving onto the beams. In case of free vibration, the natural frequencies of the 

beams are presented in dimensionless form of 
2

.m

m

L
h E

ρωω =  

Free vibration of FG sandwich beams 
It is important to begin the vibration analysis of FG sandwich beams using the Ritz method with 

convergence study and validation that can be seen in Table 2. The beams having 1-1-1 layer thickness 
ratio and homogenous hardcore are chosen to be examined in this table. As can be observed, the accuracy 
of the first three modes of frequencies is improved as the increase of polynomial terms (N). Using N = 10 
is enough to obtain the convergent results; hence, N = 10 is used throughout this paper. The obtained 
frequency results of FG sandwich beams supported by different boundary conditions are in good 
agreement with the existing results in the literature [2,6]. 
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Table 2 Convergence study and validation for free vibration of FG sandwich beams with different 
boundary conditions (L/h = 20). 

 
  n = 0.5  n = 5.0 
B.C. N 

1ω  2ω  3ω   
1ω  2ω  3ω  

         
H-H 4 4.5333 22.6918 57.8540  3.1111 15.6477 40.2473 
 6 4.5320 18.0237 40.3973  3.1102 12.4038 27.9275 
 8 4.5320 17.9495 39.7571  3.1102 12.3524 27.4790 
 9 4.5320 17.9492 39.7571  3.1102 12.3522 27.4790 
 10 4.5320 17.9492 39.7571  3.1102 12.3522 27.4790 
 [2] 4.5324 - -  3.1111 - - 
 [6] 4.5316 17.9436 39.7226  3.1101 12.3507 27.4651 
         
C-C 4 10.2026 28.0958 113.4970  7.0278 19.4596 98.5357 
 6 10.1734 27.5784 55.0180  7.0064 19.0917 38.4976 
 8 10.1733 27.5702 52.9340  7.0063 19.0858 36.8825 
 9 10.1733 27.5702 52.8762  7.0063 19.0858 36.8346 
 10 10.1733 27.5702 52.8759  7.0063 19.0858 36.8344 
         
C-H 4 7.0556 22.8653 77.0377  4.8497 15.7833 54.1573 
 6 7.0489 22.5459 47.3422  4.8450 15.5582 32.8640 
 8 7.0489 22.5401 46.1677  4.8450 15.5541 32.0305 
 9 7.0489 22.5401 46.1417  4.8450 15.5541 32.0119 
 10 7.0489 22.5401 46.1413  4.8450 15.5541 32.0116 
         
 
 

The present mathematical model is used further for the next investigations in our study. Table 3 
tabulates the dimensionless frequency results of FG sandwich beams with symmetric (1-0-1, 1-1-1, 2-1-2) 
and asymmetric (2-2-1, 2-1-1, 3-2-1) layer thickness ratios for both homogenous hard and soft cores. The 
beams are clamped at both ends and the values of length to height ratio (L/h) and the material volume 
fraction index (n) are varied. Increasing the value of n leads to the reduction in frequency of the beams 
with homogenous hardcore, while, it is not for the beams with homogenous softcore. This phenomenon is 
for beams with every L/h ratio and pattern of layer thickness ratio. 
 
 
Table 3 Dimensionless fundamental frequency (ω ) of FG sandwich beams without elastic foundation. 

 
FG sandwich beams with homogenous hardcore 

L/h n 1-0-1 1-1-1 2-1-2 2-2-1 2-1-1 3-2-1 
        
5 0 10.0813 10.0541 10.0651 10.0486 10.0610 10.0541 
 0.5 8.2804 8.6518 8.4814 8.7814 8.5860 8.7362 
 1 7.2660 7.8504 7.5764 8.0572 7.7413 7.9783 
 2 6.2937 7.0193 6.6598 7.3029 6.8828 7.1997 
        
10 0 11.6847 11.6741 11.6784 11.6719 11.6768 11.6741 
 0.5 9.3454 9.8006 9.5864 9.9725 9.7248 9.9223 
 1 8.0920 8.7723 8.4429 9.0357 8.6517 8.9504 
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 2 6.9456 7.7409 7.3271 8.0895 7.5990 7.9834 
        

20 0 12.2296 12.2266 12.2278 12.2260 12.2274 12.2266 
 0.5 9.6884 10.1733 9.9433 10.3608 10.0941 10.3092 
 1 8.3512 9.0634 8.7150 9.3469 8.9393 9.2598 
 2 7.1467 7.9629 7.5315 8.3337 7.8200 8.2273 
        
FG sandwich beams with homogenous softcore 
        
5 0 5.2382 5.2240 5.2297 5.2212 5.2276 5.2240 
 0.5 8.4906 7.9529 8.2025 7.7094 8.0071 7.7134 
 1 9.3002 8.7496 9.0172 8.4531 8.7838 8.4257 
 2 9.8082 9.3350 9.5827 9.0126 9.3360 8.9475 
        

10 0 6.0713 6.0658 6.0680 6.0646 6.0672 6.0658 
 0.5 10.2146 9.6791 9.9430 9.3451 9.6664 9.2669 
 1 11.1579 10.6832 10.9382 10.2777 10.6088 10.1228 
 2 11.6755 11.3754 11.5716 10.9412 11.2296 10.7097 

20 0 6.3544 6.3528 6.3535 6.3525 6.3532 6.3528 
 0.5 10.8471 10.3277 10.5916 9.9548 10.2797 9.8356 
 1 11.8358 11.4149 11.6554 10.9624 11.2842 10.7443 
 2 12.3460 12.1446 12.3072 11.6627 11.9245 11.3502 
        

 
 

The free vibration results in Tables 1 and 2 are natural frequencies of FG sandwich beams without 
elastic foundation. Therefore, in Table 4, we consider the effect of elastic foundation on fundamental 
frequency of the beams with different values of spring constants at the foundation. To be consistent with 
Ref. [6] for validation in this table, the dimensionless fundamental frequency is present in the form of 

/ .m mL Eω ω ρ=  The spring constants are obtained from 2
110 /w wk A Lξ=  and 110s sk Aξ=  in which 

110 mA E h= . It is defined that A110 is A11 of pure Aluminum beam per unit width. It is observed that the 
Ritz solutions of this present study are in excellent agreement with the previous results obtained from 
Chebyshev collocation method of Ref. [6] for the beams with and without elastic foundation. Therefore, 
our modeling based on the Ritz method is confirmed to be correct and it can be used to deal with free and 
forced vibration of the beams.    
 
 
Table 4 Dimensionless fundamental frequency (ω ) of FG sandwich beams with elastic foundation (L/h = 
10, n = 0.5). 

 
     B.C.  
 Source 

wξ  sξ  H-H C-H C-C 
1-0-1 present 0.0 0.0 0.4273 0.6568 0.9345 
 [6]   0.4271 0.6559 0.9325 
 present 0.2 0 0.5780 0.7634 1.0123 
 [6]   0.5779 0.7626 1.0104 
 present 0.2 0.2 1.3526 1.4915 1.6571 
 [6]   1.3525 1.4906 1.6555 
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     B.C.  
 Source 

wξ  sξ  H-H C-H C-C 
1-1-1 present 0.0 0.0 0.4487 0.6893 0.9801 
 [6]   0.4486 0.6887 0.9787 
 present 0.2 0 0.5892 0.7879 1.0518 
 [6]   0.5891 0.7874 1.0505 
 present 0.2 0.2 1.3363 1.4849 1.6635 
 [6]   1.3363 1.4844 1.6622 

2-1-2 present 0.0 0.0 0.4386 0.6739 0.9586 
 [6]   0.4384 0.6732 0.9570 
 present 0.2 0 0.5834 0.7759 1.0329 
 [6]   0.5833 0.7753 1.0314 
 present 0.2 0.2 1.3421 1.4862 1.6588 
 [6]   1.3420 1.4855 1.6572 

1-5-1 present 0.0 0.0 0.4921 0.7542 1.0696 
 [6]   0.4920 0.7539 1.0690 
 present 0.2 0 0.6179 0.8416 1.1330 
 [6]   0.6178 0.8414 1.1324 
 present 0.2 0.2 1.3268 1.4939 1.6968 
 [6]   1.3267 1.4937 1.6962 

 
 
Forced vibration of FG sandwich beams under arbitrary number of moving loads 
Similarly, this section also starts with numerical validation for forced vibration of beams. Here, we 

adopt the analytical model [27] used for predicting dynamic deflection of simply supported or hinged 
isotropic beams under a moving load. The model of Ref. [27] is 

 

( )0
2 2

1

2 1( , ) sin sin sin
( / )

p p
i

i ip i

i v i vP i xw x t t t
bhL L L Li v L

π π πω
ρ ωπ ω

∆

=

    = −     −    
∑  (23) 

 

Where (0 )
p

Lt
v

≤ ≤  and 
2 2

1, 2,.... .
12i

i Eh i
L
πω

ρ
 = = ∆ 
 

 

 
We use the model in Eq. (23) for validating the present solution of the beam made of Aluminum 

2024-T3 which has E = 72.4 GPa and ρ = 2770 kg/m3  As illustrated in Figure 2, This validation shows 
very good agreement between the present and analytical solutions. 
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Figure 2 Comparison of the mid-span deflections of isotropic beams L = 10 m, b = 0.4 m, h = 0.5 m, vp = 
40 m/s, P0 = 500 kN. 

 
 
However, the analytical model of Eq. (23) can be used to predict dynamic response of isotropic 

beams under only one moving load. Therefore, to extend research work, the present model of this paper 
can be applied to investigate the dynamic behavior of FG sandwich beams subjected to arbitrary number 
of loads moving on the beams. The significant parametric studies such as velocity, phase angle and 
excitation frequency of the loads, layer thickness ratio, boundary condition, length to height or beam 
thickness ratio as well as spring constants at the foundation, which have considerable impact on dynamic 
response of the beams, are taken into consideration. In order to make the results universal, the 
dimensionless form of dynamic deflection is presented by normalizing with the static deflection (

3
0 48sw P L EI= ) of fully Aluminum beam under one point load P0 at the mid-span of the beam. The 

magnitude of the moving and static load (P0) is set as P0 = 500 kN throughout this paper. However, the 
dimensionless or normalized deflections may not depend on the magnitude of the moving loads. 

In what follows, the dynamic behavior of FG sandwich beams without elastic foundation which are 
subjected to a number of moving loads is investigated in Figures 3 - 6. As can be seen in Figure 3, the 
maximum dimensionless dynamic deflection (w(x,t)/ws) of the 2-1-2 beams with homogenous hardcore is 
illustrated using H-H boundary condition. It is assumed that the first load starts to come onto the beam at 
the left end (t = 0) and the second one is at the left end of the beam when (t = d/vp). For the loads leave 
the beam, when t > L/vp, the first load leaves the beam and when (t > (L+d)/ vp) is the time for the second 
load leaves the beam. As can be seen, increasing the number of loads leads to dramatic increase of 
dynamic deflection. The maximum deflection appears in the graphic line of five loads moving onto the 
beam. 
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Figure 3 Maximum dimensionless dynamic deflections at the centre of FG sandwich beams under 
different number of moving loads (L/h = 20, n = 0.5 , d = L/8, vp = 50 m/s, Ωi = 0). 
 

 

 
Figure 4 Maximum dimensionless dynamic deflections at the centre of FG sandwich beams under 
different number of moving loads (L/h = 20, n = 0.5, d = L/8, Ωi = 0). 
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Figure 4 plots the dynamic deflection versus the velocity (vp) of the loads for FG sandwich beams 
(2-1-2) with homogenous hardcore and hinged boundary condition at both ends. The trend of the 
deflection changes due to an increase of the velocity is similar for all beams subjected to different number 
of loads. That is the maximum deflection initially increases with fluctuations and then increases 
dramatically to reach the peak value before dropping down after the peak. The velocity at the peak is 
known as the critical velocity. 

 
 

 
(a) homogenous hardcore 

 

 
(b) homogenous softcore 

 
Figure 5 Maximum dimensionless dynamic deflections at the centre of FG sandwich beams under five 
moving loads (L/h = 20, n = 0.5, Ωi = 0). 

 
 
In Figure 5, the dynamic deflections of un-symmetric layer (2-2-1) beams are considered by 

varying value of velocity. The beams are clamped at both ends and subjected to five moving loads with 
different distances (d). As can be observed, the loads with short distance (d = L/10) cause larger 
deflection of the beams than the loads having longer distances (d = L/8 and d = L/6). Furthermore, in this 
figure, we can see that the beams with homogenous hardcore are much stronger (less deflections) than the 
beams with homogenous softcore. 
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Figure 6 Effect of material volume fraction indexes (n) on maximum dynamic deflections at the centre of 
FG sandwich beams (L/h = 20, d = L/8, vp = 50 m/s, Ωi = 0). 

 
 
To consider the effect of material volume fraction index (n) on dynamic deflections, Figure 6 

shows the plot of the deflections of FG sandwich beams against the values of the index (n). In this figure, 
the symmetric layer (2-1-2) beams with homogenous hardcore are in the action of different number of 
moving loads and the beams are hinged at both ends. Based on this study, it is found that increasing value 
of n yields the increase of the dynamic deflection. Therefore, it can be said that n affects significantly the 
material stiffness components, especially flexural bending stiffness.  
 
 

 
Figure 7 Effect of spring constants on maximum dimensionless dynamic deflections at the centre of FG 
sandwich beams under five moving loads (L/h = 20, n = 0.5, d = L/8, vp = 25 m/s, Ωi = 0). 
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Figure 8 Effect of boundary conditions on maximum dimensionless dynamic deflections at the centre of 
FG sandwich beams under five moving loads (L/h = 20, n = 0.5, d = L/8, vp = 25 m/s, Kw = 10, Ks = 10,  
Ωi = 0). 

 
 
Now, we move to the consideration of elastic foundation effect on dynamic behavior of FG 

sandwich beams under multiple moving loads. The spring constants in Eq. (9) can be calculated from kw = 
KwD110/L4 and ks = KsD110/L2 where D110 is D11 of Aluminum beam per unit width. The 3-2-1 beam 
(homogenous softcore) which is hinged at both ends is considered in Figure 7 for analyzing the elastic 
foundation effect on the dynamic deflection. It is clearly seen that the deflection of the beam without 
elastic foundation (Kw = 0, Ks = 0) is much higher than that of the beams with (Kw = 100, Ks = 0) and (Kw 
= 100, Ks = 100), respectively. Therefore, it can be said that the elastic foundation plays a vital role in 
reducing dynamic deflection of FG sandwich beams, especially the Pasternak elastic foundation including 
shear layer spring stiffness. 

 
 

  
(a) homogenous hardcore (b) homogenous softcore 

 
Figure 9 Maximum dimensionless dynamic deflections at the centre of FG sandwich beams under five 
moving loads (L/h = 20, n = 0.5, d = L/8, Kw = 10, Ks = 10, Ωi = 0). 
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Figure 10 Maximum dimensionless dynamic deflections at the centre of FG sandwich beams under 
different number of moving loads (L/h = 20, n = 0.5, d = L/8, vp = 40 m/s Kw = 10, Ks = 10,  Ωi = ω1) 

 
 
In Figure 8, the dynamic deflections of 3-2-1 homogenous softcore beams subjected to five moving 

loads are presented with different boundary conditions. Of course, C-C beam is a hard system which has 
less deflection than that of C-H and H-H beams, respectively. The explanation about this behavior is that 
the clamped condition has very high constrained; while, hinged condition is more relaxed and allows 
more movement at boundary condition. Furthermore, the effect of velocity of the moving loads is 
investigated in Figure 9 for the deflections of 3-2-1 beams supported by C-C boundary condition. The 
dynamic deflection of the homogenous hardcore beam, Figure 9(a), is lower than that of the homogenous 
softcore beam, Figure 9(b), for every value of velocity. The deflection is peak at the middle of travelling 
time of the loads.  

The previous investigations presented above are considered without any frequency excitation of the 
moving loads (Ωi = 0). Hence, the next investigations will take into account the significant effect of the 
external excitation on dynamic behavior of FG sandwich beams resting on elastic foundation. The 
excitation frequency of every load is set in resonance in which the frequency of the loads is equivalent to 
the fundamental frequency of the beam. Next, the dynamic deflection of 2-2-1 homogenous softcore 
beams is analyzed in Figure 10 with different number of moving loads (vp = 40 m/s). The beams are 
placed on elastic foundation and hinged at both ends (H-H). In this figure, overall magnitude of five loads 
is very high that is the reason why the highest deflection is observed throughout the travelling time with 
the same speed.   
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(a) vp = 20 m/s (b) vp = 40 m/s 
  

  
(c) vp = 60 m/s (d) vp = 80 m/s 
  
Figure 11 Effect of phase angles on maximum dimensionless dynamic deflections at the centre of FG 
sandwich beams under four moving loads L/h = 20, n = 0.5, d = L/8, Kw = 10, Ks = 10,  Ωi = ω1) 
 
 

The dynamic deflections of 2-2-1 homogenous softcore beams are solved and presented in Figures 
11(a) - 11(d) using different velocities of four moving loads which are 20, 40, 60 and 80 m/s for Figures 
11(a) - 11(d), respectively. The beams are hinged at both ends. The results show that the phase angles can 
be used to reduce the dynamic deflections of the beams. As can be observed, the deflections of the beams 
without phase angles (φ1 = φ2 =φ3 = φ4 = 0) are higher than those of the beams with (φ1 = π, φ2  =  0, φ3  = 
π, φ4 = 0) and (φ1 = 0, φ2 = π, φ3 = 0, φ4 = π). 

Moreover, the following investigation is focused on the dynamic deflections of FG sandwich beams 
composed of different layer thickness ratios in Figure 12. The beams are homogenous softcore and they 
are supported by H-H at the boundary condition. From this figure, it is found that the deflections are 
slightly different from each other throughout the travelling time. 
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Figure 12 Effect of layer thickness ratios on maximum dimensionless dynamic deflections at the centre 
of FG sandwich beams under five moving loads (L/h = 20, n = 0.5, d = L/8, vp = 40 m/s, Kw = 10, Ks = 10,  
Ωi = ω1) 
 
 
Conclusions 

According to the literature survey, there are no solutions for FG sandwich beams’ dynamic behavior 
resting on the Pasternak elastic foundation under the arbitrary number of harmonic moving loads. 
Therefore, this present study aims to investigate such a behavior of the beams using the Ritz method in 
conjunction with the time integration of Newmark. Using the Timoshenko beam theory, including the 
effects of shear deformation and rotary inertia, the motion equation is established for the beams with 
different boundary conditions. The influences of parametric studies such as layer thickness ratio, 
boundary condition, spring constants, length to height ratio, material volume fraction index of the beams, 
and excitation frequency and velocity phase angle of the loads on dynamic deflection results are presented 
and discussed. 

In the section of free vibration analysis, it can be concluded that increasing the value of material 
volume fraction index (n) leads to the reduction in the frequency of FG sandwich beams with 
homogenous hardcore, while it is not for the beams with homogenous softcore. The beams’ frequency is 
increased as the increases of length to height ratio and spring constants for every layer thickness ratio. 
The beam’s frequency with C-C boundary conditions is higher than that of the beam with C-H and H-H 
boundary conditions, respectively. 

For forced vibration of the beams subjected to the arbitrary number of harmonic moving loads, the 
new conclusions, which will be beneficial for structural design, can be revealed as follows: 

• The dynamic deflection of the FG sandwich beam under moving loads increases initially with 
fluctuations and increases to the ultimate point at the critical velocity before dropping down after the 
point. 

• The dynamic deflection of the FG sandwich beam subjected to the loads with short distance is 
larger than the beam subjected to the loads with long distance. 

• FG sandwich beam with homogenous hardcore is stronger than the beam with homogenous 
softcore. 
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• The dynamic deflection of the beam with homogenous hardcore is increased as the increase of 
value n, while it is reversed for the beam with homogenous softcore. 

• The dynamic deflection of the beam, which is hinged at both ends (H-H), is much larger than 
that of the beams with C-H and C-C boundary conditions, respectively. 

• For FG sandwich beams with homogenous hardcore, the largest deflection is found in the case of 
1-0-1 beam, and the lowest one is for 2-2-1 beam. 

• Increasing the spring constants at the elastic foundation yields a significant decrease in the 
dynamic deflection. 

• The phase angles can be used to reduce the dynamic deflections of the beams. 
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