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Abstract 

In this paper, a mixed matrix transform method with fractional centered difference scheme for 
solving fractional diffusion equation with Riesz fractional derivative was examined. It was obtained that 
the numerical scheme was unconditionally stable and feasible using the matrix analysis method. 
Numerical experiments were, then, carried out to support the theoretical predictions. 
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Introduction 

  Fractional partial differential equations have received considerable interest in recent years and have 
been extensively investigated and applied for many real problems which are modeled in various areas, 
e.g., viscoelasticity, diffusion, control, relaxation processes, and so forth [1-4]. These new fractional-
order models are more adequate than the previously used integer-order models because fractional-order 
derivatives and integrals enable the description of the memory and hereditary properties of different 
substances [4]. This is the most significant advantage of the fractional-order models in comparison with 
integer-order models, in which such effects are neglected. 
  In the area of physics, fractional space derivatives are used to model anomalous diffusion or 
dispersion, where a particle spreads at a rate inconsistent with the classical Brownian motion model [5]. 
the regularity criterion is of particular importance for the diffusion equation. In this case, Gala and 
Ragusa [6] studied the regularity criterion in terms of the homogeneous Besov space for the 
incompressible Boussinesq equations. In particular, the Riesz fractional derivative includes a left 
Riemann-Liouville derivative and a right Riemann-Liouville derivative that allows the modeling of flow 
regime impacts from either side of the domain [7]. It is well known that the analytical solutions to the 
fractional differential equations are usually difficult to derive and (if luckily obtained) always contain 
some infinite series which make evaluation very expensive. Therefore, we resort to some numerical 
methods for fractional differential equations such as finite difference method [8-11], finite element 
method [12,13], spectral method [14], radial basis function collocation method [15], spectral Tau 
algorithm [16], a hybrid of lagrange operational matrix and Tau-collocation method [17] and other 
analytical methods (e.g., variational iteration method [18], homotopy perturbation method [19], a domain 
decomposition method [20]). 

The finite difference method is accepted as one of the most popular numerical methods for 
fractional differential equations because it is direct and convenient to use. But Ortigueira and Trujillo 
presented fractional centered difference for estimation of Riesz type fractional derivatives [21,22]. In this 
paper, the focus is on diffusion equations with integer time derivative and Riesz fractional space 
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derivatives. Models of this form are indeed common in many applications; thus, it requires effective 
numerical methods for their resolution. Many numerical methods have been developed for the efficient 
solution of the Riesz space fractional diffusion equation and related problems. Typical techniques are the 
applications of finite difference method based on fractional centered difference scheme [23,24], improved 
matrix transform method [25], the mixture of L1/L2-approximation method, standard/shifted Grünwald 
method, and matrix transform method [26], variational iteration method [27], McCormack method [28], 
Galerkin finite element method [29]. Also, some recent research work in numerical methods can be found 
in [30-32]. In this paper, we consider the following space Riesz fractional diffusion equations derived 
from the aforementioned model as follows [26,33]. 
 
𝜕𝑢(𝑥, 𝑡)
𝜕𝑡

= 𝐾𝛼
𝜕𝛼𝑢(𝑥, 𝑡)
𝜕|𝑥|𝛼 , (1) 

 
 in a bounded domain with the initial value and boundary conditions given by; 
 
𝑢(𝑥, 0) = f(x), (2) 

𝑢(0, 𝑡) = 𝑢(𝐿, 𝑡) = 0. (3) 
   
  Here x and t are the space and time variables, and Kα is a positive constant, 1 < 𝛼 ≤ 2. 
  
  Tis paper aims to combine the Padé approximation method with a fractional centered difference 
scheme to design the high order finite difference scheme for the Riesz fractional diffusion Eqs. (1) - (3). 
The numerical scheme will be theoretically proven and numerically verified to be unconditionally stable. 

The outline of this paper is organized as follows. In section 2, some preliminary materials are 
provided. Then, section 3 presents the padé approximation method coupled with a fractional centered 
difference scheme for solving Riesz fractional diffusion equation. In Section 4, the stability and feasible 
analysis are given for the proposed algorithm. In Section 5, numerical examples are carried out to 
demonstrate the theoretical results and verify the efficiency of our method. Finally, conclusions are drawn 
in section 6. 
 

Preliminaries and Basic Lemmas 
  The space fractional derivative 𝜕

𝛼𝑢(𝑥,𝑡)
𝜕|𝑥|𝛼

 is Riesz space-fractional derivatives of order α, which is 
defined by Gorenflo and Mainardi [33] in Definition 1. 
 
 Definition 1 (see [33]) The Riesz fractional operator for n ∈  ℕ, n − 1 < 𝛼 ≤ 𝑛, on a finite interval 
0 ≤ x ≤ L is defined as; 
 
∂αu(x, t)
∂|x|α = −Cα( Dx

α
0
𝑅 + DL

α
x
𝑅 )u(x, t), 

 

 

where the coefficient Cα = 1
2 cosαπ2

, α ≠ 1, and; 

 

Dx
α

0
𝑅 u(x, t) =

1
Γ(n − α)

∂n

∂xn
�

u(ξ, t)dξ
(x − ξ)α−n+1

x

0
, 

 

  

DL
α

x
𝑅 u(x, t) =

(−1)n

Γ(n − α)
∂n

∂xn
�

u(ξ, t)dξ
(x − ξ)α−n+1

L

x
, 
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 are the left-side and right-side Riemann-Liouville fractional derivatives, respectively. 
   
  To obtain fractional centered difference we proceed as in [21,34]. Divide the fractional differences 
by hα (h ∈ ℝ+) and let h → 0. For the Riesz fractional derivative for the case of 1 < 𝛼 ≤ 2, and 
assuming that  α > −1, we obtain; 
 
𝜕𝛼𝑢(𝑥, 𝑡)
𝜕|𝑥|𝛼 = 𝑙𝑖𝑚

ℎ→0

∆ℎ𝛼𝑢(𝑥, 𝑡)
ℎ𝛼

= − 𝑙𝑖𝑚
ℎ→0

1
ℎ𝛼

�
(−1)𝑖𝛤(𝛼 + 1)

 𝛤 �𝛼2 − 𝑖 + 1�  𝛤 �𝛼2 + 𝑖 + 1�
𝑢(𝑥 − 𝑖ℎ, 𝑡)

+∞

𝑖=−∞

. (4) 

 
 Lemma 1 Let ωk,α = (−1)kΓ(α+1)

 Γ�α2−k+1� Γ�α2+k+1�
  be the coefficients of the centered finite difference 

approximation (4) for k = 0,∓1,∓2, … and α > −1. Then; 
 
1) 𝜔0,𝛼 ≥ 0 
2) 𝜔−𝑘,𝛼 = 𝜔𝑘,𝛼 ≤ 0 for |𝑘| ≥ 1, 
 
Proof. [24] 
 
Lemma 2 If the real part of z is positive, then � 2

2+2z+z2
� < 1. 

Proof. Let z = a + ib, i = √−1, following [35,36], it can be proved in the following manner.   
 
� 2
2+2z+z2

� < 1, 
 
4 < |2 + 2z + z2|2, 
4 < (2 + 2z + z2)(2 + 2z� + z�2), 
0 < 4(z + z�) + 2(z + z�)2 + 2zz�(z + z�) + |z|4, 
0 < 16𝑎 + 4𝑎(a2 + b2) + (a2 + b2)2, 
 
  This is always true if the real part of z (i.e, a) is positive. Hence, the required result is obtained. 
 
Lemma 3 Suppose ρ(M)  <  1, then ρ(M) ≤  1 +  Cτ for some non-negative C is a necessary and 
sufficient condition for stability of the difference scheme; 
 
Uk+1  =  MUk 

 
concerning the matrix 2-norm, where ρ(M)  denote the spectral radius of the matrix M. [37]. 

 
Implementation of the numerical method 

  Consider Riesz space fractional diffusion equation of the form; 
 
∂u(x, t)
∂t

= Kα
∂αu(x, t)
∂|x|α , 0 ≤ t ≤ T, 0 < 𝑥 < 𝐿,  (5) 

  
with the initial value and 0 boundary conditions given by; 

 
u(x, 0) = f(x), (6) 
  
u(0, t) = u(L, t) = 0, (7) 
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 where u(x, t) and f(x) are both real-valued and sufficiently well-behaved functions. 
   
Here we obtain a new difference scheme for the solution of Eqs. (5) - (7) which is based upon the matrix 
transform method [37].  
 
  Let xi =  ih, i = 0, 1, 2,⋯ , m − 1 and tj =  jk, j = 0, 1, 2,⋯ , n, where h = L

m
 and k = T

n
 are space 

and time steps, respectively. 
 

 Values of the finite difference approximations of u(x, t) at the grid are denoted by; 
 

ui,j = u�xi, tj�. (8) 
 
  Assume that u(x, t) is a sufficiently smooth function and replace the fractional partial derivatives in 
(5) with respect to x by the fractional centered difference estimate: 
 
∂αu(xi, t)
∂|x|α = −

1
hα

� ωs.αu(xi−s, t)
i

s=−m+i

+ O(h2), (9) 

 

where the coefficients ωs,α are defined by ω0,α =  Γ(α+1)

Γ�α2+1�
2, ωs+1,α = �1 − α+1

α
2+s+1

�ωs,α, for 0, +1,∓2,⋯ . 

  
Let ui(t) = u(xi, t)for i = 0, 1,2,⋯  , m − 1, and 
U(t) = [u1(t), u2(t), … , um−1(t)]T, 
U0 = [u1(0), u2(0), … , um−1(0)]T 
 
  Then above discretization results in an initial-value problem of the form: 
 

�
dU(t)

dt
= −AU(t),

U(0) = U0,
� (10) 

   
 where A is the symmetric Toeplitz matrix of order m − 1 as follows: 
 

𝐴 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝐾𝛼𝜔0,𝛼

ℎ𝛼
𝐾𝛼𝜔1,𝛼

ℎ𝛼
𝐾𝛼𝜔2,𝛼

ℎ𝛼
𝐾𝛼𝜔1,𝛼

ℎ𝛼
𝐾𝛼𝜔0,𝛼

ℎ𝛼
𝐾𝛼𝜔1,𝛼

ℎ𝛼
𝐾𝛼𝜔2,𝛼

ℎ𝛼
𝐾𝛼𝜔1,𝛼

ℎ𝛼
𝐾𝛼𝜔0,𝛼

ℎ𝛼

…
𝐾𝛼𝜔𝑚−2,𝛼

ℎ𝛼

…
𝐾𝛼𝜔𝑚−3,𝛼

ℎ𝛼

…
𝐾𝛼𝜔𝑚−4,𝛼

ℎ𝛼
⋮ ⋮ ⋮

𝐾𝛼𝜔𝑚−2,𝛼

ℎ𝛼
𝐾𝛼𝜔𝑚−3,𝛼

ℎ𝛼
𝐾𝛼𝜔𝑚−4,𝛼

ℎ𝛼

⋱ ⋮

…
𝐾𝛼𝜔0,𝛼

ℎ𝛼 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
  By Duhamel’s principle [38], the exact solution of (10) can be written as; 

U(t) =  exp(−tA)U0, (11) 

   
  Replacing t by t + k, we can write the exact solution (11) as; 
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U(t +  k) =  exp(−(t +  k)A)U0  =  exp(−kA)U(t), (12) 

   
 which satisfies the recurrence formula; 
 

U�tj+1� =  exp(−kA)U�tj�. (13) 

   
  Recurrence formula (13) is the basis of different time-stepping schemes depending upon how we 
approximate the matrix exponential functions. We shall use [2.0] Padé approximations of the matrix 
exponential functions exp(−kA) to construct a family of time-stepping schemes. Then we obtain the 
following numerical scheme for solving (5) - (7); 
 

Vn+1 = �I + kA +
1
2

k2A2�
−1

Vn,  (14) 

 

V is the approximate solution of U. 
 

Stability analysis 
  In this section, we demonstrate that the mixed [2,0] Padé approximation-fractional centered 
difference scheme for the fractional initial-boundary value problem (1) - (3) is unconditionally stable. 
 
Lemma 4 (Gerschgorin theorem [39]). Let B =  (bi,j) be a complex matrix of order M −  1, and; 
 
Ri = ∑ �bi,k�k≠i , i =  1, 2,⋯ , M −  1, 
 
  Let Di be the closed disk centered at bi,i with radius Ri:Di = �z ∈ ℂ ∶  �z − bi,i� ≤ Ri�. 
  Then, all the eigenvalues of matrix B are in ⋃ Di

M−1
i=1 . 

 
Theorem 1 Numerical algorithm (14) is unconditionally stable. 
  Proof. According to the Gerschgorin theorem the eigenvalues of matrix Alie in the union of the     
m − 1 circles centered at Ai,i, with radius Ri = ∑ �Ai,k�k≠i , i =  1. 2.⋯  . m −  1. Now from the definition 
of A we have: 
 
Ai,i = Kαω0,α

hα
 and Ri = ∑ �Kαωs,α

hα
�m−2

s=1  
   
  Hence, If λ be the eigenvalue of matrix A, Then; 
 
�λ − Kαω0,α

hα
� ≤ ∑ �Kαωs,α

hα
�m−2

s=1 < Kαω0,α
hα

. 
 
   We can see that these Gerschgorin disks are within the right half of the complex plane. Therefore, 
the eigenvalues of matrix A have positive real parts. 
 

Let T = �I + kA + 1
2

k2A2�
−1

, 
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 The spectral radius of the matrix T is given by; 
 
ρ(T) = max|µi|, i =  1, 2,⋯ , m –  1, 

 

 where µi are the eigenvalues of the matrix �I + kA + 1
2

k2A2�
−1

. 
 

 We easily know that the eigenvalues of the matrix �I + kA + 1
2

k2A2�
−1

,are given by; 
 
µi = 2

2+2kλi(A)+k2�λi(A)�
2, i =  1, 2,⋯ , m –  1. 

 
 By using the Lemma 2, we have; 
 

|µi| < 1, i =  1, 2,⋯ , m –  1,  
  i.e., 
ρ(T) < 1, i =  1, 2,⋯ , m –  1. 

 
  Therefore, from Lemma 3, it is very easy to find that the difference scheme (14) is unconditionally 
stable. 
 

Numerical experiments 
  In this section, we exhibit numerical results for a particular fractional diffusion equation with a 
known solution. 
 
Example 1 We consider the following Riesz fractional diffusion equation; 
 
∂u(x, t)
∂t

= 0.25
∂αu(x, t)
∂|x|α , 0 ≤ t ≤ T, 0 < 𝑥 < 1, (15) 

  
𝑢(x, 0) = sin(2πx) , 0 ≤ x ≤ 1,  (16) 
  
𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 0, 0 ≤ 𝑡 ≤ 𝑇. (17) 
  

The analytic solution of Eqs. (15) - (17) is given by [26] u(x, t) = sin(2πx) exp (−0.25(2π)αt). 
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Figure 1 Comparison of the numerical solutions with the analytic solution at 𝑡 = 2 for the RFDE (15) - 
(17) with ℎ = 0.01 , 𝑘 = 0.01, and 𝛼 = 1.8. 
 
 

 
Figure 2 Comparison of the numerical solutions with the analytic solution at 𝑡 = 2 for the RFDE (15) - 
(17) with ℎ = 0.01 , 𝑘 = 0.01, and 𝛼 = 1.6. 
 
 

Figures 1 and 2 show the analytic solution and numerical solution obtained by the proposed method 
for ℎ = 0.01 , 𝑘 = 0.01 and 𝛼 = 1.8 and 𝛼 = 1.6 respectively. From Figures 1 and 2, it can be seen that 
the numerical proposed method is in good agreement with the analytic solution. 
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Figure 3 3D plot of analytical solution for the RFDE (15) - (17) when 𝛼 = 1.8. 
 
 

 
Figure 4 3D plot of approximation solution for the RFDE (15) - (17) with ℎ = 0.01 , 𝑘 = 0.01 when  
𝛼 = 1.8. 
   
 
  Figures 3 and 4 present analytical solution and numerical solution of the Riesz fractional diffusion 
Eqs. (15) - (17) for 0 ≤ t ≤ 0.5 when α = 1.8. 
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Figure 5 3D plot of analytical solution for the RFDE (15) - (17) when 𝛼 = 1.6. 
 
 

 
Figure 6 3D plot of approximation solution for the RFDE (15) - (17) with ℎ = 0.01 , 𝑘 = 0.01when                                  
𝛼 = 1.6. 
 
 
  Figures 5 and 6 display analytical solution and numerical solution of the Riesz fractional diffusion 
equation (15) - (17) for 0 ≤ t ≤ 0.5 when 𝛼 = 1.6. 
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Table 1 Absolute error for mixed [2,0] Padé approximation - finite difference method with different h, k 
and α in example 1. 
 

𝐡 = ∆𝐱 𝐤 = ∆𝐭 Diffusion with 𝛂 = 𝟏.𝟖 Diffusion with 𝛂 = 𝟏.𝟔 
0.10 0.10 4.2952e − 006 8.0479e − 005 
0.10 0.05 1.0942e − 006 2.1877e − 005 
0.10 0.01 4.8580e − 008 9.6819e − 007 
0.05 0.10 5.2528e − 006 1.0922e − 004 
0.05 0.05 1.3311e − 006 2.9678e − 005 
0.05 0.01 5.9047e − 008 1.3139e − 006 
0.01 0.10 2.3660e − 004 2.5229e − 004 
0.01 0.05 3.2097e − 006 6.8396e − 005 
0.01 0.01 1.3125e − 007 3.0272e − 006 

   
 
  Table 1 shows the magnitude of the maximum error, at t = 2 between the exact solution and 
numerical solution for different values of h, k, and α. 
  Figures 3 - 6 and Table 1 show that the approximation solutions obtained using the proposed 
method are in excellent agreement with those obtained using the exact solution. 
 
Example 2 We consider the following Riesz fractional diffusion equation; 
 
∂u(x, t)
∂t

= 0.25
∂αu(x, t)
∂|x|α , 0 ≤ t ≤ T, 0 < 𝑥 < 1, (18) 

𝑢(x. 0) = x(1 − x), 0 ≤ x ≤ 1,  (19) 

u(0. t) = u(1. t) = 0, 0 ≤ t ≤ T. (20) 

 
The analytic solution of Eqs. (18) - (20) is given by [26]; 
 

u(x, t) = �
4

(nπ)3
∞

n=1
[(−1)n+1 + 1] sin(nπx) exp(−0.25(nπ)αt) (21) 
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Figure 7 Comparison of the numerical solutions with the analytic solution at 𝑡 = 2 for the RFDE                   
(18) - (20) with ℎ = 0.01 , 𝑘 = 0.01, and 𝛼 = 1.8. 
 
 

 
Figure 8 Comparison of the numerical solutions with the analytic solution at 𝑡 = 2 for the RFDE                 
(18) -  (20) with ℎ = 0.01 , 𝑘 = 0.01, and 𝛼 = 1.6. 
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  Figures 7 and 8 show the analytic solution and numerical solution obtained by the proposed method 
for h = 0.01 , k = 0.01 and α = 1.8 and α = 1.6, respectively. From Figures 7 and 8, it can be seen that 
the numerical proposed method is in good agreement with the analytic solution obtained via (21). 
 
 

 
Figure 9 3D plot of analytical solution for the RFDE (18) - (20) when 𝛼 = 1.8. 
 
 

 
Figure 10 3D plot of approximation solution for the RFDE (18) - (20) with ℎ = 0.01 , 𝑘 = 0.01 when  
𝛼 = 1.8. 
 
 
  Figures 9 and 10 present analytical solution and numerical solution of the Riesz fractional diffusion 
Eqs. (18) - (20) for 0 ≤ t ≤ 1when α = 1.8. 
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Figure 11 3D plot of analytical solution for the RFDE (18) - (20) when 𝛼 = 1.6. 

 
 

 
Figure 12 3D plot of approximation solution for the RFDE (18) - (20) with ℎ = 0.01 , 𝑘 = 0.01 when 
𝛼 = 1.6. 
 
 
  Figures 11 and 12 display analytical solution and numerical solution of the Riesz fractional 
diffusion equation (18)–(20) for 0 ≤ t ≤ 1when α = 1.6. 
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Table 2 Absolute error for mixed [2,0] Padé approximation - finite difference method with different h, k 
and α in example 2. 
 

𝐡 = ∆𝐱 𝐤 = ∆𝐭 Diffusion with 𝛂 = 𝟏.𝟖 Diffusion with 𝛂 = 𝟏.𝟔 
0.10 0.10 2.7040e − 004 2.8832e − 004 
0.10 0.05 7.1812e − 005 7.5562e − 005 
0.10 0.01 3.0247e − 006 3.1433e − 006 
0.05 0.10 3.8312e − 004 4.0684e − 004 
0.05 0.05 1.0174e − 004 1.0658e − 004 
0.05 0.01 4.2845e − 006 4.4321e − 006 
0.01 0.10 8.6041e − 004 9.0709e − 004 
0.01 0.05 2.2825e − 004 2.3753e − 004 
0.01 0.01 9.6101e − 006 9.8736e − 006 

  
 

  Table 2 shows the magnitude of the maximum error, at t = 2 between the exact solution and 
numerical solution for different values of h, k, and α. 
  Figures 9 - 12 and Table 2 show that the approximation solutions obtained using the proposed 
method are in excellent agreement with those obtained using the exact solution (21). 
 
Conclusions 

  In the present work, a mixed [2,0] Padé approximation-fractional centered difference scheme has 
been developed for obtaining the solution of a special family of fractional initial-boundary value 
problems. We give the stability analysis and prove that it is unconditionally stable by using the matrix 
method. Numerical experiments were carried out to support the theoretical results and indicate the 
efficiency of the proposed method. The presented method in this paper can be upgraded for 2-dimensional 
partial differential equations of this type. 
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