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Abstract

In this paper, the concepts of sectional fuzzy continuous mappings, and /-fuzzy compact sets, are
introduced in locally convex topology generated by fuzzy n-norms. Schauder-type and other fixed point
theorems are established in locally convex topology generated by fuzzy n-norms.
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Introduction and preliminaries

In Géhler [1] introduced n-norms on a linear space. A detailed theory of n-normed linear space can be
found in [2-8]. Gunawan and Mashadi [2] gave a simple way to derive an (n — 1)-norm from the n-norm in
such a way that the convergence and completeness in the n-norm is related to those in the derived (n —
1)-norm. Narayanan and Vijayabalaji extended n-normed linear space to fuzzy n-normed linear space. The
main objective of this paper is to introduce concepts of sectional fuzzy continuous mappings and /-fuzzy
compact sets, and in the same time, to perform the Schauder-type [9] and other fixed point theorems in
locally convex topology generated by fuzzy n-norms. In section 1, we quote some basic definitions, and in
section 2, we introduce concepts of sectional fuzzy continuous mappings and /-fuzzy compact sets, as well
as presenting our new results. Let n be a positive integer, and let X be a real vector space of dimension of at
least n. We recall the definitions of an n-seminorm and a fuzzy n-norm from [10,11].

Definition 1 A function (X,,X,,...,X )| X,...,X from to ,0) is called an
15Xy i | LS X" 0 lled

n-seminorm on X if it has the following four properties:

(Sy) ||x1,x2,...,xn || =0 if X,,X,,...,X, are linearly dependent;
(S2) || X5 Xyseeas X, || is invariant under any permutation of X;,X,,...,X, ;

(S3) || x5-5x, ,ex, || = el X55--5%, ;5 X, || foranyreal c;

Sa) || Xpseesx, oy +zl| S XX, Y|+ XX, 52 |-
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An n-seminorm is called a n-norm if || x,x,,...,x, |[[> 0 whenever X,X,,...,X, are linearly
independent.
Definition 2 A4 fiizzy subset N of X" X R is called a fuzzy n-norm on X if and only if :

(Fi)Forall t<0, N(x,x,,...,x,,t)=0;
(F,)Forall t>0, N(x,x,,...,x,,t) =1 ifand only if Xx,,X,,...,X, are lincarly dependent;

(F3) N(x,,x,,...,x,,t) isinvariant under any permutation of X,,X,,...,X, ;
(Fy)Forall £>0 and ceR, c#0,

t
N(xl,xz,...,cxn,t)=N(x1,x2,...,xn,?);

(Fs)Forall s,teR,
N(xl,...,xn_l,y+z,s+t)Zmin{N(xl,...,xn_],y,s),N(xl,...,xn_lz,t)}.

(Fe) N(x,,X,,...,X,,0) isanon-decreasing functionof 7€ R and lim N(x,x,,...,x,,¢)=1.

t—w

Definition 3 /2] Let (X,N) be a fuzzy normed space; a subset A of X is said to be I-fuzzy

closed if for any sequence {xn} and for each O € (0, 1), and x € A;

lim N(x, —x,t) >« (M

n—>00
forall £>0.

Definition 4 /5] Let (X, N) is a fuzzy n-normed space, that is, X is real vector space, and N is
a €(0,1), and this family

fuzzy n-norm on X . We form the family of n-seminorms H oo ..o ’a,

generates a family J of seminorms
|l x,5...,x, ;,®]|l,, Where X, X,,xand (0,1).The family J generates a locally convex topology on X;

s V-1

a basis of neighborhoods at the origin is given by; {x eX:p(x)<g for i=1, 2,...,n} ,
where p, € Fand & >0 for i=1,2...,n. We call this the locally convex topology generated by the
fuzzy n-norm N.

Definition 5 /2] Let (X,N) be a fuzzy normed space; a mapping T : (X, Nl) - (Y, Nz) is
said to be fuzzy continuous at X, € X , if for a given &>0 and «ae (0,1) there exist

525(0{,5)>0 and ,32,3(0!,8)6(0,1) such that for each & >0, there exists 0 >0 and
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N,(x=x,,8)> = N,(T(x)-T(x,).6)>

forall xe X. 2

If T is fuzzy continuous at each point of X , then 7" is said to be sectional fuzzy continuous on

X.

Definition 6 /2] Let (X,N) be a fuzzy normed space; a mapping 1 : (X, N, ) - (Y, Nz) is
said to be sectional fuzzy continuous at X, € X , if there exists o, € (0,1) such that for each & >0,

there exists 0 >0 and
N,(x—x,,8)>a, = N,(T(x)-T(x,),¢) >,

forallx e X. 3)

If T is sectional fuzzy continuous at each point of X , then 7 is said to be sectional fuzzy
continuous on X .

Definition 7 /3] Let (X,N) be a fuzzy normed space; a subset A of X is said to be I-fuzzy
compact if for any sequence {xn} and for each O € (0, 1), there exists a subsequence {xnk } of {xn}

and x € A (both depending on {xn } and O ) such that;

IimN(x, —x,t)>2« 4)
k—o0 k
forall £>0.

Schauder fixed point theorem

In this section, we establish Schauder fixed point theorems in the locally convex topology generated
by fuzzy n-normed spaces.

Definition 8 A subset A of X is said to be I-fuzzy closed in the locally convex topology generated

by N iffor any sequence {xn} and for each QE(O,I),and xeAd;

limN(a,,...,a, ,x, —x,t) > 5)

n—1°>""n
n—>0
forall a,,...,a, ;€ X andall £>0.
Definition 9 4 mapping T : (X, N, ) - (Y, N, ) is said to be fuzzy continuous at X, € X in the

locally convex topology generated by N , if for a given £€>0 and «a€ (0,1) there exist
o= 5(0(,8) >0 and ﬂ = ,B(a,g) S (0,1) such that for each € >0, there exists 0 >0 and
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N(a,...,a, ,x—x,,0)> = Nz(al,...,anfl,T(x)—T(xo),g)> a

foralla,,...,a, ,x,x, € X.

(6)

If T is fuzzy continuous at each point of X, then T is said to be sectional fuzzy continuous on X.

Definition 10 A mapping T:(X, Nl) - (Y, Nz) is said to be sectional fuzzy continuous at

X, € X, in the locally convex topology generated by N if there exists Qa, € (0, 1) such that for each

>0, there exists 0 >0 and

N(a,,...,a

foralla,,...,a, |, x,x, € X.

sU—1s

X=X, 0) =y = N,(ay,...,a, ., T (x)-T(x,).&) > a,

(7

If T is sectional fuzzy continuous at each point of X , then 7 is said to be sectional fuzzy
continuous on X .

Definition 11 A subset A of X is said to be [-fuzzy compact in the locally convex topology
generated by N if for any sequence {xn} and for each & € (0, 1), there exists a subsequence {xnk }

of {xn} and x € A (both depending on {xn} and « ) such that,

lim N(a,,...,a xk—x,t)ZOc (8)

k>0 n—=1°>""n

forall a,,...,a, ;€ X andall £>0.

> n-1
Lemma 12 4 subset A of X is I-fuzzy compact in the locally convex topology generated by N if
and only if A is compact w.r.t. H Ha (0( n—norm OfN) foreach a € (0,1).

Proof. First suppose that A4 is [-fuzzy compact. Take ¢, € (0,1) .Let {xn} be a sequence in A.

Thus, there exists a subsequence {x”k } of {xn} and X in A (both depend on ¢ ) such that;

lim N(a,,...,a, ,x, —x,t)>a, )
k—o k

n=1°"n

forall a,,...,a, ;€ X andall > 0. This implies that fora given &€ >0 with &, —& >0 and fora

given ¢ >0, there exists a positive integer K (8,1‘ ) such that;

N(a,....a,,,%, —x,0)>a,—¢ foralln > K (&,1).

(10)
which implies that;
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a.,d,,...,d _-<t foralln> K (¢&,t).
la,ay,....a, |, —¢ (&:1) an

This implies that 4 is compact. Since @, € (0,1) and &> 0 are arbitrary, it follows that A4 is
compact w.r.t. || ||a for each a € (0,1). Conversely, suppose that A4 is compact w.r.t. H Ha for each

a E(O,l). Let {xn} be a sequence in A. Take @ 6(0,1) . Then, there exists a subsequence

{x”k} of {xn} and X in A (bothdependon ¢, ) such that;

lim || @, a,,....a, %, —x||, =0. (12)
k—o

forall a,,a,,...,a, , € X.This implies that for a given &> 0, there exists a positive integer K (8)
such that;

> n-1>"n

la,a,,....q,.,%, —xHa0<gforallk2K(g).

(13)
From this we conclude that;
N(a,...,a, ,x, —x,&)>a,forallk > K ()
k (14)
forall a,,a,,...,a, , € X.Since & is arbitrary, so;
lim N(a,,...,a, ,x, —x,t)>a, forallt>0.
k= ! "k (15)

Since «, € (0, 1) is arbitrary, it follows that 4 is /-fuzzy compact.

Lemma 13 4 mapping T : (X, N1 ) - (Y, N2 ) is sectional fuzzy continuous in the locally convex
topology generated by N ifand only if T : (X, I H:X) - (Y, [ Hi) is continuous for some O € (0, 1).
Proof. First we suppose that, 7 : (X , N1) - (Y N 2) is sectional fuzzy continuous. Thus, there

exists ¢, € (0,1) such that for each & >0, there exists 0 >0 and

N(a,,...,a, ,,x—y,6)>a,= N,(a,,....a, ,T(x)-T(y),) =2,

sUy—1o

foralla,,...,a, ,,x,ye X.

(16)

Choose 177, such that O, =0—-1,>0. Let ”alaazs---»an—lsx_y”(110351- Then
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Hal,az,...,an_l,x—yHLOS5. This leads to  N,(a,....,a, ,x—y,0)=2a,,  since
T: (X N, ) - (Y A ) is sectional fuzzy continuous, this implies that
N,(a,,...,a,_ 1,T()C)—T(y),é‘)ZCZO for  all a,...,a, ,Xx,y€X, and  hence

||al,az,...,an_l,T(x)—T(y)||§038. Thus T:(X,N])—)(Y,Nz) is continuous w.r.t. |||,

and ||||>. Conversely, suppose that T:(X,Nl)—)(Y, Nz) is continuous w.r.t. |||, and |||
Thus;

£
Hal,az,...,aH,x—yH;OS5:”al,az,...,(Jtnfl,T(x)—T(y)H2 <=

o2 (17)

forall a,,..., x,yeX. Let N,(a,,...,a, ,x—y,0)2a,,

nl’

50 ||al,az,...,an_l,x—yH}XOSé' , which implies that Hal,az,...,an_l,T(x)—T(y)|]§OSE.

Therefore;

N,(a,,...,a,,,T(x)-T(y),&)>q, foralla,...,a, ,x,y € X. s)

Thus, the mapping 1 : (X ,V, ) - (Y , N 2) is sectional fuzzy continuous.
Theorem 14 (Schauder fixed point theorem). Let K be a nonempty convex, l-fuzzy compact subset

in the locally convex topology generated by N and T : K — K be sectional fuzzy continuous. Then T
has a fixed point.

Proof. By using theorem. For every « € (0,1), .,®||, isann-seminormon X. As K is

an [-fuzzy compact of X, thus K is a compact subset of (X,H Ha) for each & € (0,1) (by Lemma

1),since 1 : K — K be sectional fuzzy continuous, it follows by Lemma 2 T : K — K is continuous

w.r.t. H H o, forsome &, € (0, 1). Therefore, we get K is a nonempty convex and compact subset of a

normed linear space (X, and T :K — K is a continous mapping. By Schauder fixed point
0

theorem [18], it follows that 7 has a fixed point.

Conclusions

We investigated the concepts of sectional fuzzy continuous mappings and /-fuzzy compact sets in
locally convex topology generated by fuzzy n-normed spaces as an extension of the fuzzy normed space. In
this new frame, we established the Schauder-type and other fixed point theorems, as well as some results in
locally convex topology generated by fuzzy n-normed spaces, which are useful tools in the development of
the fuzzy set theory.
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