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Abstract 

The present analysis deals with the peristaltic flow of a Williamson fluid model in an asymmetric 

channel with different wave forms under the effects of partial slip. The governing nonlinear partial 

differential equations, along with nonlinear partial slip boundary conditions, have been first simplified, 

using the assumptions of long wave length and low Reynolds number. The reduced nonlinear differential 

equations are then solved analytically by the regular perturbation method. The expression for pressure rise 

is computed numerically. At the end, the graphical behavior of velocity, pressure gradient, pressure rise, 

and streams functions for various values of Williamson fluid parameters are shown and discussed. 

Keywords: Williamson fluid model, partial slip, peristaltic flow, asymmetric channel, analytical solution, 

different wave forms 

 

 

Introduction 

In certain situations, like blood arteries, suspensions, foams and polymer solutions, etc., the standard 

no slip condition is not valid. Therefore, in such situations, there may be partial slip between the fluid and 

the boundary. Mathematically, it is stated that the velocity of the walls is proportional to the shear stress 

of the fluid. Navier [1] was probably the first to use this idea to find the solution of the Navier-Stokes 

equation with partial slip boundary conditions. Later on, numerous researchers utilized this idea for 

various geometries. Mention may be made to the works of [2-7]. Only a limited attention has been 

focused on the study of partial slip in peristaltic flow phenomena. Peristalsis is a kind of fluid transport, 

induced by a progressive wave of area contraction or expansion along the walls of a distensible duct 

containing fluid. This transport is widely used in many physiological systems, especially in biomedical 

phenomena, and in many practical applications; important studies dealing with peristaltic flow problems 

include [8-16]. Recently, Nadeem and Akram [17] discussed the effects of partial slip on the peristaltic 

flow of a MHD Newtonian fluid in an asymmetric channel. Ali et al. [18] examined the slip effects on the 

peristaltic transport of MHD fluid with variable viscosity. 

The Williamson fluid model, when there is partial slip at the boundary, is an important and 

interesting problem that has remained so far unexplored. Therefore, the aim of the present paper is to 

discuss the effects of partial slip on the peristaltic transport of a Williamson fluid in an asymmetric 

channel with different wave forms. The governing equations and partial slip conditions are simplified, 

using the assumptions of long wavelength and low Reynolds number. The reduced problem is then solved 

analytically using the regular perturbation method. The expressions for pressure rise are computed 

numerically. The graphical results against various physical parameters are made and discussed. 
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Fluid model 

 The balance of mass and momentum, for an incompressible fluid is given by; 

 

,div

,0div

fS
V

V

 



dt

d  

 

where  is the density, V is the velocity vector, S  is the Cauchy stress tensor, f represents the specific 

body force, and dtd /  represents the material time derivative. The constitutive equation for Williamson 

fluid is given by [19]; 

 

, IS P                  (3) 
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in which IP  is the spherical part of the stress due to constraint of incompressibility,   is the extra stress 

tensor,   is the infinite shear rate viscosity,
 0 is the zero shear rate viscosity,  is the time constant. 

and   is defined as; 

 

,
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2
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Here  is the second invariant strain tensor. We consider the constitutive Eq. (4), the case for which 

0 and .1  The component of extra stress tensor, therefore, can be written as; 

 

    .)1()1( 0

1

0                  (6) 

 

Mathematical formulation 

Let us consider the peristaltic transport of an incompressible Williamson fluid in a two dimensional 

channel of width 21 dd  . The flow is generated by sinusoidal wave trains propagating with constant 

speed c  along the channel walls. The geometry of the wall surface is defined as; 
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where 1a  and 1b  are the amplitudes of the waves,   is the wave length, 21 dd   is the width of the 

channel, c  is the velocity of propagation, t  is the time, and X  is the direction of wave propagation. The 

(1) 

(2) 
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phase difference   varies in the range  0 , in which 0 corresponds to a symmetric channel 

with waves out of phase, and ,   in which the waves are in phase; further, 2111 ,,, ddba  and   

satisfy the condition; 

 

  .cos2
2

2111

2

1

2

1 ddbaba    

 

The equations governing the flow of a Williamson fluid are given by; 
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Introducing a wave frame  yx,  moving with velocity c  away from the fixed frame  YX ,  by the 

transformation; 
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Defining; 
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Using the above non-dimensional quantities and the resulting equations in terms of stream function, 
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y
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x
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
   can be written as; 

 

,Re

,Re

23

2

yxy

P

xyxxy

yxx

P

yyxxy

yyxy

xyxx


















































































































 

 

where 

(8) 

(9) 

(10) 

(13) 

(14) 
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in which WeRe,, represent the wave, Reynolds and Weissenberg numbers, respectively. Under the 

assumptions of long wavelength 1  and low Reynolds number, and neglecting the terms of order
and higher, Eqs. (13) and (14) take the form; 
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Elimination of pressure from Eqs. (15) and (16) yields; 
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The dimensionless mean flow Q  is defined by; 
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in which; 
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where 
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The boundary conditions in terms of stream function   are defined as; 

(15) 

(16) 
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In the above conditions, 0 corresponds to the no slip conditions. 

 

Exact solution 

The exact solution of Eq. (17) is obtained as follows; 
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so Eq. (17) can be written as; 
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The twice integration of the above equation yields; 
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The roots of above equation are; 
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With the help of (21a) and (21b), we can write; 
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which after twice integrating gives; 

 

  
,

60

41

4
2122

2/52

TyT
WeB

WeByA

We

y



  

 

in which the constant appearing in the above equation can be calculated using boundary conditions. 

However, to compute these constants exactly seems to be very difficult; either we can calculate 

approximately, or we can find the solution of the given equation analytically. 
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Perturbation solution 

Since Eq. (17) is a nonlinear equation, we employ the regular perturbation method to find the 

analytical solution. 

For the perturbation solution, we expand , F and P as; 
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Substituting the above expressions in Eqs. (15) and (17) and boundary conditions (21), we get the 

following system. 
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Solution for system of order 
0We  

The solution of Eq. (25) satisfying the boundary conditions (27) and (28) can be written as; 
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The axial pressure gradient at this order is; 
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For one wavelength, the integration of Eq. (35), yields; 
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The above solution is for viscous fluid, which agrees with the results obtained by [20] in the 

absence of slip parameter. 

 

Solution for system of order 
1We   

Substituting the zeroth-order solution (33) into (29), the solution of the resulting problem satisfying 

the boundary conditions take the following form; 
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The axial pressure gradient at this order is; 
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Integrating the above equation over one wavelength, we get; 
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Summarizing the perturbation results for the small parameter We, the expression for stream 

functions and pressure gradient can be written as; 
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The non-dimensional pressure rise over one wavelength P for the axial velocity is; 

 

.
1

0
dx

dx

dP
P                 (43) 

 

where sC  are defined in Eqs. (34) and (38), and dx
dP

 is defined in Eq. (42). 

 

Expressions for different wave shape 

The non-dimensional expressions for three considered wave forms are given as; 

1) Sinusoidal wave; 
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2) Triangular wave; 
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3) Trapezoidal wave; 
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Results and discussion 

In this section, the graphical results of the problem under consideration are displayed, to see the 

behavior of various physical parameters of interest. Figures 1 - 5 are prepared for pressure rise against 

volume flow rate Q. It is observed from Figure 1 that, in the adverse pressure gradient (P > 0, in 

pumping region) and favorable pressure gradient (P < 0, in pumping region), the pressure rise decreases 

with the increase in Weissenberg number. From Figures 2 - 4 it is observed that, in the adverse pressure 

gradient (P > 0, in pumping region), the pressure gradient increases with the increase in slip parameter  

and amplitude of wave a and b, while in the copumping region (P < 0, in favorable pressure gradient), 

the behavior is quite opposite. In this region, the pressure rise decreases with the increase in slip 

parameter  and amplitude of wave a and b. It is shown in Figure 5 that, in the adverse pressure gradient 

(P > 0, in pumping region), the pressure gradient decreases with the increase in width of the channel d, 

while in the free pumping (P = 0) and copumping region (P < 0, in favorable pressure gradient) the  

pressure rise increases with the increase in d. Figures 6 - 9 are prepared to distinguish the behavior of 

pressure gradient for different values of Weissenberg number We, width of channel d, slip parameter , 

and amplitude of wave a. It is observed that pressure gradient decreases with the increase of We and d 

(see Figures 6 and 7). However, it is observed from Figures 8 and 9 that, with the increase in  and a, the 

pressure gradient increases in the region x [0.2, 0.8]. The velocity field for various values of We,  and Q 

are plotted in Figures 10 - 12. The velocity field u for different values of We are plotted in Figure 10. It 

is observed that, for positive values of y, the velocity field increases with the increase in We and, for 

negative values of y, velocity u has the opposite results. It is observed from Figure 11 that, due to slip 

parameter, the velocity near the channel walls are not same, but it slips, and, also, the velocity increases 

with the increase in . It is also observed from Figure 12 that the velocity profile decreases with the 

increase in volume flow rate Q. The pressure rise against the volume flow rate Q for different wave 

shapes are shown in Figure 13. It is depicted that the pressure rise for the trapezoidal wave is greater than 

the sinusoidal wave, and the sinusoidal wave is greater than the triangular wave. 

The trapping phenomena for different values of Weissenberg number We, slip parameter , volume 

flow rate Q, and different wave forms are shown in Figures 14 - 17. It is seen from Figures 14 that the 

size of the trapping bolus increases with the increase in Weissenberg number We in the upper and lower 
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half of the channel. From Figure 15, it is observed that, with the increase in the values of slip parameter, 

the size and number of the trapping bolus increases in the upper half of the channel, while in the lower 

half, the size of the trapping bolus decreases. It is depicted in Figure 16 that the number and size of the 

trapping bolus reduces in the upper half of the channel, while in the lower half, the size of the trapping 

bolus increases with the increase of volume flow rate Q. The stream lines for three different wave shapes, 

trapezoidal, sinusoidal, and triangular, are shown in Figures 17(a) - 17(c). The stream lines represent the 

particular shape of the wave which we have considered. 

 

 

Figure 1 Variation of P with Q  for different values of .We  The other parameters are ,8.0a  
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Figure 2 Variation of P with Q  for different values of .  The other parameters are ,7.0a  
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  .02.0We  
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Figure 3 Variation of P with Q  for different values of .a  The other parameters are ,04.0We  

,5.0b  ,1d  ,
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Figure 4 Variation of P with Q  for different values of .b  The other parameters are ,7.0a  

,04.0We  ,1d  ,
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  .02.0  
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Figure 5 Variation of P with Q  for different values of .d  The other parameters are ,7.0a  

,5.0b  ,02.0We  ,
6
  .02.0  

 

0 0.2 0.4 0.6 0.8 1
-1

0

1

2

3

4

5

x

d
P

/d
x

We=0.0

We=0.03

We=0.09

 

Figure 6 Variation of dxdP /  with x  for different values of .We  The other parameters are ,7.0a  

,5.0b  ,5.1d  ,
6
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Figure 7 Variation of dxdP /  with x  for different values of d . The other parameters are ,5.0a  

,5.0b  ,02.0We  ,
6
   ,5.0Q  .04.0  
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Figure 8 Variation of dxdP /  with x  for different values of  . The other parameters are ,9.0a  

,5.0b  ,2d  ,
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Figure 9 Variation of dxdP /  with x  for different values of a . The other parameters are 

,04.0.0We  ,5.0b  ,2d  ,
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   ,5.0Q  .04.0  
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Figure 10 Velocity profile for different values of We . The other parameters are ,7.0a  ,2.1b  

,2d  ,
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   ,3Q  .09.0  
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Figure 11 Velocity profile for different values of  . The other parameters are ,7.0a  ,2.1b  

,2d  ,
2
   ,3Q  .06.0We  
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Figure 12 Velocity profile for different values of Q . The other parameters are ,7.0a  ,2.1b  

,2d  ,
2
   ,04.0We  .06.0  

 

 



Partial Slip Consequences on Peristaltic Transport of Williamson Fluid Safia AKRAM et al. 

http://wjst.wu.ac.th 

 

Walailak J Sci & Tech 2015; 12(10) 
 

901 

-1 -0.5 0 0.5 1
-2

0

2

4

6

8

10

12

Q


P

Sinusoidal wave

Trapezoidal wave

Triangular wave

 

Figure 13 Variation of P with Q  for different wave forms. The other parameters are ,5.0a  

5.0b , ,04.0We  ,1d  ,
6
   .02.0  
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Figure 14 Stream lines for different values of We . (a) for ,04.0We  (b) for 05.0We  and (c) for 

.06.0We  The other parameters are ,01.0  ,5.1Q  ,5.0a  ,9.0d  ,0.1b  .06.0  
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Figure 15 Stream lines for different values of  . (a) for 03.0  and (b) for .04.0  The other 

parameters are ,01.0  ,5.1Q  ,5.0a  ,9.0d  ,0.1b  .06.0We  
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Figure 16 Stream lines for different values of Q . (a) for ,4.1Q (b) for 5.1Q  and (c) for .6.1Q  

The other parameters are ,01.0 ,06.0We ,5.0a ,9.0d ,0.1b .06.0  
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Figure 17 Stream lines for different wave forms; (a) for Sinusoidal wave, (b) Triangular wave and (c) for 

Trapezoidal wave. The other parameters are ,01.0  ,6.1,04.0  QWe  ,5.0a  ,9.0d  

,0.1b  .04.0  
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Concluding remarks 

This paper presents partial slip consequences on peristaltic transport of Williamson fluid in an 

asymmetric channel. The governing two dimensional equations have been modeled and then simplified 

using long wave length approximation. The results are discussed through graphs. The main finding can be 

summarized as follows: 

1) It is observed that in the adverse pressure gradient (P > 0, in pumping region), the pressure 

gradient increases with the increase in slip parameter, and amplitude of wave a and b, while in the 

copumping region, the behavior is quite opposite. 

2) The pressure gradient decreases with the increase in width of the channel d, in the adverse 

pressure gradient, while in the free pumping (P = 0) and copumping region (P < 0, in favorable 

pressure gradient), the behavior is quite opposite. 

3) The velocity profile decreases with the increase in volume flow rate Q. 

4) The pressure rise for the trapezoidal wave is greater than the sinusoidal wave, and the sinusoidal 

wave is greater than the triangular wave. 

5) The size of the trapping bolus increases with an increase in Weissenberg number We in the upper 

and lower half of the channel. 

6) The size and number of the trapping bolus increases in the upper half of the channel, while in the 

lower half, the size of the trapping bolus decreases with an increase of slip parameter . 

7) The number and size of the trapping bolus reduces in the upper half of the channel, while in the 

lower half, size of the trapping bolus increases with an increase of volume flow rate Q. 
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