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Abstract 

In the present paper, the alternative (G′/G)-expansion is used to find new and precise solutions of 
Caudrey-Dodd-Gibbon-Sawada-Kotera equation with the assist of symbolic computation Maple, in which 
the generalized Riccati equation is used as an auxiliary equation. Plentiful traveling wave solutions 
including; exponential, hyperbolic and trigonometric functions are successfully accomplished by the 
proposed method with capricious parameters. It is revealed that the proposed method is straightforward, 
constructive and many nonlinear evolution equations in mathematical physics are solved by this method.  

 

Keywords: Alternative (G′/G)-expansion method, exact solutions, traveling wave solutions, nonlinear 
evolution equation 
 
 

Introduction 

The nonlinear evolution equations are widely used as model to describe complex physical 
phenomena in various fields of sciences, especially in fluid mechanics, solid state physics, plasma 
physics, plasma waves and biology. One of the basic physical problems for those models is to obtain their 
traveling wave solutions. Particularly, various methods have been utilized to explore different kinds of 
solutions of physical models depicted by nonlinear partial differential equations. 

In recent years, the exact solutions of nonlinear partial differential equations have been investigated 
by many researchers who are anxious with nonlinear physical phenomena and many powerful and 
proficient methods have been presented by them. Among non-integrable nonlinear differential equations, 
there is a wide class of equations that are referred to as partially integrable, because these equations 
become integrable for some values of their parameters. There are many different methods that can be used 
to look for the exact solutions of these equations. The most famous algorithms are Jacobi elliptic function 
expansion method [1] and tanh-function method [2,3]. For integrable nonlinear differential equations, 
inverse scattering transform method [4], Hirota method [5], Bäcklund transform method [6], Exp-function 
method [7-9], truncated Painlevé expansion method [10], extended tanh-method [11], and homogeneous 
balance method [12] are used for searching the exact solutions. 

A straightforward and brief method called (G′/G)-expansion was introduced by Wang et al. [13] to 
obtain exact traveling wave solutions of nonlinear evolution equations, whereas the second order ordinary 
differential equation 0=+′+′′ GGG µλ  is used as an auxiliary equation. The better perceptive of 
(G′/G)-expansion method are given in [14-17]. In order to instigate the efficiency and trustworthiness of 
the (G′/G)-expansion method and to enlarge the possibility of its application, further research has been 
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conceded out by many authors. For instance, an improvement of (G′/G)-expansion method was made by 
Zhang et al. [18] to search for further general traveling wave solutions.  Another extension of (G′/G)-
expansion method was given by Zayed [19] to attain new exact solutions, whereas Jacobi elliptic equation 

( ) 0
2

1
4

2
2 )()(][ eGeGeG ++=′ ξξξ  is used as an auxiliary equation and 012 ,, eee  are arbitrary 

constants. Again an alternative approach of (G′/G)-expansion method was given by Zayed [20], in which 
the nonlinear Riccati equation )()()( 2 ξξξ BGAGG +=′ is used as an auxiliary equation.  

In this article, an alternative approach, called the alternative (G′/G) expansion method together with 
the generalized Riccati equation ,2GqGprG ++=′  introduced by Akbar et al. [14] is used to 
discover the exact traveling wave solutions of the CDGSK equation. 
 
The alternative (G′/G)-expansion method  

Consider the following nonlinear differential equation in the form; 
 

,0),,,,,,( =txxxttxt uuuuuuP                                    (1) 
 
where ),( txuu =  is an unknown function and P is a polynomial in ).,( txuu =  Moreover, it 
involves  highest order derivatives and nonlinear terms. The main steps of the alternative (G′/G)-
expansion method are: 
 
Step 1: The wave transformation; 
 

),(),( ξutxu = ,tVx −=ξ                                                                (2) 
 
where V  is the speed of the traveling wave, that converts Eq. (1) into an ODE in the form; 
 

0),,,,( =′′′′′′
uuuuQ ,                                  (3) 

 
where primes stand for the ordinary derivative with respect toξ . 
 
Step 2: Integrate Eq. (3) term by term, if possible.  
 
Step 3: Presume the solution of Eq. (3) can be articulated as follows; 
 

( )i
n

i
i GGau /)(

0

′= ∑
=

ξ                  (4) 

 
where G  satisfies the nonlinear generalized Riccati equation; 
 

2GqGprG ++=′                                                                                               (5) 
 
where ia  ( ni ,,3,2,1 = ), qp,  and r  are arbitrary constants to be determined later.  

The generalized Riccati Eq. (5) has twenty-seven individual solutions (see Zhu, [21] for details). 
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Step 4: The positive integer n  in Eq. (4) can be calculated by balancing the highest order nonlinear term 
with the highest order linear term appearing in Eq. (3). 
 
Step 5: Inserting Eq. (4) into Eq. (3) and utilizing Eq. (5), we obtain a system of algebraic equations in 

iG and iG− . Suppose with the assist of symbolic computation software such as Maple, the unknown 
constants can be found and substituting these values into Eq. (4), we obtain new and general exact 
traveling wave solutions of the nonlinear partial differential Eq. (1). 
 
Some new traveling wave solutions of the CDGSK equation 

In this section, the alternating (G′/G)-expansion method, together with the generalized Riccati 
equation, is employed to construct some new traveling wave solutions for the Caudrey-Dodd-Gibbon-
Sawada-Kotera equation [22]; 

 
( ) .05 2 =++++ xxxxxxxxxxxxt uuuuuuuu                       (6) 

 
Now, using the traveling wave variable (2) in Eq. (6), we have; 
 

( ) ( ) ,05 25 =′+′′′+′′′++′− uuuuuuuuV               (7) 
 
where ( )5u  denotes the fifth order derivative of u with respect to ξ . Integrating Eq. (7), we obtain; 

( ) .0
3
55 34 =+′′++− uuuuuVC                                         (8) 

where C  is constant of integration. According to Step 3, the solution of Eq. (8) can be expressed by a 
polynomial in (G′/G) as follows; 
 

( ) ( ) ( ) ,/...//)( 2
210

n
n GGaGGaGGaau ′++′+′+=ξ                                              (9) 

 
where ),3,2,1,0(, niai =  are constants to be determined, and )(ξGG =  satisfies the generalized 
Riccati Eq. (5). Considering the homogeneous balance between the highest order derivative and the 
nonlinear terms in Eq. (8), we obtain .2=n  

Therefore, the solution of Eq. (9) takes the form; 
 

( ) ( ) .//)( 2
210 GGaGGaau ′+′+=ξ                                                                    (10) 

 
Using Eq. (5), Eq. (10) can be rewritten as; 
 

.)()()( 21
2

1
10 GqGrpaGqGrpaau ++++++= −−ξ               (11) 

 
Substituting Eq. (11) into Eq. (8), we obtain the following polynomials in iG  and iG − , 

).,3,2,1,0( =i  Setting each coefficient of these resulted polynomial to zero, we obtain a set of 

simultaneous algebraic equations for rqpaaa ,,,,, 210  and V (which are omitted here for 
simplicity): 
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Solving the above system of algebraic equations, we acquire; 
 

,
3
2

3
128832

,168,6,6,4

6334222

2224
21

2
0

prqqrprqpC

rqrqppVaparqpa

+−−=

+−=−==+−=
                      (12) 

 
where rqp and, are arbitrary constants. 

Now on the basis of the solutions of Eq. (5), we obtain the following families of solutions of Eq. (6). 
 
Family 1: when 042 <− qrp  and  ),0or    (0 ≠≠ qrqp the periodic form solutions of Eq. (6) 
are; 
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where ( ) ,168,4
2
1 22242 trqqrppxpqr +−−=−=Ψ ξ rqp ,,  are arbitrary constants. 
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wherever A and B are non-zero constants and gratifying the composition 022 >− BA . 
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Family 2: when 042 >− qrp  and  ),0or    (0 ≠≠ qrqp the soliton solutions of Eq. (6) are; 
 

( )
( )

( )
( ) ,

tanh2
sec2

2
3

tanh2
sec264

22222
2

13 







∆∆+
∆∆

−







∆∆+
∆∆

++−=
ξ
ξ

ξ
ξ

p
h

p
hprqpu

                               (25)
 

 

where ( )trqqrppxqrp 22242 168,4
2
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constants. 
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wherever A and B are non-zero constants and gratifying the composition .022 <− BA  
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Family 3: when 0=r  and ,0≠qp the solutions of Eq. (6) are; 
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where d is an arbitrary constant. 
 

Family 4: when 0≠q  and ,0== pr  the solutions of Eq. (6) are; 
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where 1d  is an arbitrary constant. 
 
Graphical presentation 

Graphs are influential tools for communication, and depict coherently the solutions of problems. 
Consequently, some graphs of the solutions are given (Figures 1 - 6). 
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Figure 1 Represents the periodic traveling wave solution corresponding to 1u  for ,1=== rqp

1010 ≤≤− x and .10 ≤≤ t  
 
 
 

 
 
Figure 2 Represents soliton solution analogous to 13u for 1,2,3 === rqp and .10,10 ≤≤− tx  
 
 

The soliton solution is a spatially confined solution, hence 0)(),(),( →′′′′′′ ξξξ uuu  as
,∞±→ξ .tVx −=ξ  An amazing property of solitons is that it maintains its individuality upon 

interacting with other solitons. 
 



Alternative (G’/G)-Expansion Method  Muhammad SHAKEEL and Syed Tauseef MOHYUD-DIN 
http://wjst.wu.ac.th 

Walailak J Sci & Tech 2015; 12(10) 
 

957 

 
 
Figure 3 Represents the singular soliton solution to 14u for 1,2,3 === rqp and .10,10 ≤≤− tx  
 
 
 

 
 
Figure 4 Represents soliton solution corresponding to 20u  for 2,1,3 === rqp and 

.10,10 ≤≤− tx  The soliton solution is a spatially restricted solution, hence
0)(),(),( →′′′′′′ ξξξ uuu  as .∞±→ξ  
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Figure 5 Represents soliton solution corresponding to solution 26u for 0,1,5.1 === rqp and 

.10,10 ≤≤− tx  
 
 

 
 
Figure 6 Represents the singular soliton solution corresponding to solution 27u for 0,1,0 === rqp  

and .10,10 ≤≤− tx  
 
 
Discussion 

In this article, an alternative (G′/G)-expansion method together with the generalized Riccati 
equation is suggested and applied to construct the copious new exact traveling wave solutions of CDGSK 
equation. It is obvious that the obtained solutions are more general with more arbitrary constants. The 
copious traveling wave solutions including; trigonometric function solutions, hyperbolic function 
solutions, and rational solutions are obtained in the form of four different families. The projected method 
is relatively resourceful and virtually well-matched to be applied in finding exact solutions of nonlinear 
evolution equations. 
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Conclusions 

The alternative (G′/G)-expansion method, along with the generalized Riccati equation, was used in 
this work for searching abundant exact traveling wave solutions to the equation, with the help of symbolic 
computation, such as Maple. We assured the correctness of our solutions by putting them back into the 
original Eq. (6). The new type of traveling wave solutions found in this technique may be applicable to 
other kinds of NLEEs in mathematical physics. 
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