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Abstract

The aim of the study is to obtain the solution of semilinear space-time fractional diffusion equation
for the first initial boundary value problem (IBVP), by applying an implicit method. The main idea of the
method is to convert the problem into an algebraic system which simplifies the computations. We discuss
the stability, convergence and error analysis of the implicit finite difference scheme with suitable example
using MATLAB.
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Introduction

Fractional differential equations play an important role in the study of various physical, chemical
and biological phenomena. Therefore, many researchers are attracted from the fields of theory, methods
and applications of fractional differential equations. Therefore, there is a need to study reliable and
efficient techniques to obtain either exact or approximate solutions of fractional differential equations.
The researchers have developed few numerical techniques and obtained approximate solutions of both
linear and nonlinear fractional differential equations.

Liu et al. [1] considered time fractional advection-dispersion equations and obtained its complete
solution. Eidelman and Kochubei [2] investigated the Cauchy problem for the time-fractional diffusion
equations with variable coefficients, and constructed the fundamental solution. Lin and Xu [3], Liu ef al.
[4] and Yuste [5] proposed an explicit finite difference scheme for the time fractional diffusion equation.
Zhuang and Liu [6], Zhuang et al. [7,8], Chen et al. [9], Murio [10] and Birajdar & Dhaigude [11],
developed an implicit finite difference approximation for the time fractional diffusion equation and also
discussed its stability and convergence. Liu et al. [12] employed an implicit finite difference scheme for
space-time fractional diffusion equation. Whereas Zhuang and Liu [13] developed an implicit difference
scheme for the 2 dimensional space-time fractional diffusion equation.

Nonlinear partial differential equations have lots of applications in various branches of sciences
[14,15]. In fact, published papers on the numerical methods for the nonlinear fractional partial differential
equations are limited. This motivates us to consider an effective numerical method for such problems.
Choi et al. [16] and Liu et al. [17] developed a numerical technique for fractional diffusion equation with
a nonlinear source term. Zhang and Liu [18] considered a Riesz space fractional diffusion equation with a
nonlinear source term. Also Yang et al.[19] provided a numerical solution of a fractional Fokker Plank
equation with a nonlinear source term and proved its stability as well as convergence. Recently, Dhaigude
and Birajdar [20-22] developed a discrete Adomian decomposition method for a nonlinear system of
fractional partial differential equations.
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We consider the space-time semilinear fractional diffusion equation;

0%u

e = a(x,t)D’u(x,t)+ f(u), a(x,t)>00<a<l,1<pB<2, 1)

with an initial condition;

u(x,0)=g(x) 0<x<l )
and boundary conditions;

u(0,0)=0=u(l,t) 0<t<T, 3)

it is called the first initial boundary value problem (IBVP) for a space-time semilinear fractional diffusion

a

equation. Note that is Caputo fractional derivative of order & and is defined [23] as;

a

1 J" ou(x,&) dg L 0< a<l
“u _|T(l-a)do 08 (1-&)”
or’ 6_u a=1
o’ ’

and the Riemann-Liouville fractional derivative of order £(1< f <2) is defined [24] as;

2
! 8_2J.t”(x’n)‘{?, I<p<2
LQ2-p) ox* do (t-n)”

o*u

— 5 9
o’

Dfu(x,t) =
p=2,

when @ =1 and f# =2 in (1), it reduces to the first IBVP for a reaction-diffusion equation.

Here our aim is to find the numerical solution of IBVP for space-time fractional diffusion Egs. (1) -
(3) by using an implicit finite difference method. We replace the time derivative by a Caputo fractional
derivative and the space derivative by a Riemann-Liouville fractional derivative respectively.

The plan of the paper is as follows. In section 2 we develop an implicit difference scheme for first
IBVP. Stability of the implicit difference scheme is proved in section 3. Section 4 shows that the implicit
difference scheme is convergent. Finally, a test problem is given as an application of the method.

Implicit finite difference scheme
Consider that the first IBVP for a space-time semilinear fractional diffusion equation is;

a

Y~ a4, )D u(x, )+ f(u) 0<x<L,0<t<T,0<a<l,1<p<2 @)

ta
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with an initial condition;
u(x,0) = g(x) ®)
and boundary conditions;
u(0,£)=0=u(l,f) ©)

Our aim is to find the discrete solution of the fractional IBVP (4) - (6). We divide the whole domain
into equal parts of rectangles. Define ¢, =k7,k=0,1,2,....,n, x,=ih, i=0,1,2,....,m where

T . .
T =— & h = — are the temporal and spatial steps respectively.
m m

Let ui/c be the numerical approximation to u(x;,?, ). First, we approximate the time derivative as
follows.

ou _ 1 r@u(x,é‘) dé

oL F(l—a) 0 08 (1-&)°
(j+D)r 5u(x &) dé
F(l a) Z'[(])T ( k+1 ‘f)
1 k u(xz’t]+1) u(xz> J)J‘(j"'l)r d(g
“T-a) & - D (e ~8)°

iu('xt’ j+1) u('xla /)J‘(k Jj+hr d?]

F(l a) =0 (k—))7 77“
Z":u(x,»f/m ]) u(x;, b, J)J-ml)rﬂ
F(l a)‘s (e n°
5“14 Tﬁa Tfa
= u(x;,t,,)—u(x;,t,) ]+ ————
o To-a )[ (6 L) —u(x;, 1] re—a)

Z[u(xntkﬂ ,) u(x;,t, j)][(]"‘l)l ‘- 1 “]

where bj. = (j+1)17a —jlfa, i=0,1,2,..,m; j=0,1,2,....k , we have;

O%u(x;,t,41) _ ¢ B
o T o) Ot 511+
—a k 1 (7)

]:1
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For every f(0<n-1<n) the Riemann-Liouville derivative exists and coincides with the

Grunwald-Letnikow derivative. The relationship between the Riemann-Liouville and Grunwald-Letnikov
definitions also has another consequence which is important for the numerical approximations of the
fractional order differential equations. This allows the use of the Riemann-Liouville definitions during the
problem formulation and then the Grunwald-Letnikov definitions for obtaining the numerical solution.

For Df u(x,t), we adopt the shifted Grunwald formula at all time levels for approximating the second

order space derivative.

i+1

1 .
Dfu(xi’tkﬂ) = h_ﬂzgju(xi —(J=Dh,t,,)+O(h)
Jj=0

where the Grunwald weights are defined by;

&=l g=C1’
J:

and the nonlinear function approximate as;
St ux, 1)) = f(x 1, ulx;, 1))+ O(7)

We rewrite the Eq. (7) as follows;

k k k
z[“(xia teo)—u(x, b, )b, = zu(xi’tkﬂ—j )b, — Zu(‘xi’tk—j )b,
= = =

k k-1
=bu(x,,t,)+ Zu(xi’tkﬂ—j )bj - Zu(xi’ tk—j)bj —bu(x,,1,)
J=1

Jj=2

k-1 k-1
= blu(xi’tk) + Zu(xiatk—j)bjﬂ - zu(xia tk—j)bj _bku(xia lO)
J=1

J=1

k-1
= bu(x;,1,)+ D (b, —b)u(x,,t,_;)—bu(x;,1,)
J=1

Now using Egs. (7) - (11);

i+1

u(x;, ty) = u(x;, 1) + rzgju(xi—jﬂ’ te) —bu(x;, 1) +

J=0

k-1
Z(bj _bj+] Ju(x;, tk—j) +hu(x,t)+r f(u(x,t,),x,t,)+ Rik+1
=1

at’TQR-a)
W’

where r =r(i,k) = J=7TQ2-a)

R < et (e + b’ + 1)

(L)L -D(B —.'2)-~-(,3—j +1) =123,

®)

©)

(10)

(11

(12)

(13)
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Let ulk be the numerical approximation of u(xi,t k) and let fik be the numerical approximation

of f(x,,t,,u(x;,t,)). Therefore the complete discrete form of the first IBVP (4) - (6) is;
i+l

(g —=r D g, =ul=if k=0

Jj=0,j#1
i+1 k-1 ] (14)
(1B =r D gl = A=buf +rff 4D (b =byuf ™ + bl k> 1
Jj=0,/#1 j=1
initial condition u =g, i=0,1,2,...m—1, 15
P =&
and boundary conditions u(l)‘ = u,l,‘l k=0,1,2,...,n. (16)

For k=0,i=1,2,...,m—1 in Eq. (14) we get the set of (m —1) equations. The matrix equation is;
AU'=U" +rF° (17

where U' =[u11,u§,...,u,1n_1]T;U0 =[u,°,u3,...,u§1_] 1% F° =[f10,f20,...,f”?_] 1" and A is a square

matrix of order (m —1)x(m—1) such that;

1+ pr -rg,
-rg, 1+ pr -rg,
—rg; -rg, 1+pr -rg,

_rgm—] _rgm—Z : : . _rgZ 1 + IBr

This can be written as;

0, when j>i+1;
A =<1+ fr, when j =1,

LJ
—rg, ;.» Otherwise.

Also for k =1,i =1,2,...,m —1 the matrix equation is;

AU =(1-b)U"'+bU° +r1,F".
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In general, kK >1,i=1,2,...,m—1 we can write as;

W +b U’ +1F* k>0 (18)

Jj+l1

k-1
AU =(1=b)U* +D (b, —b
j=1

whete F* = [f (). f (1) £ ey )Y 3 U = [l et

LU
Stability
Lemma 1 In Eq. (14), the coefficients b, (k =0,1,...,) and g (j=0,1,2,...) satisfy:
L bj > bj+l ,j=0,1,2,..;
2. bO :1, bj >07j:0,1,.,,;

3.8 :_ﬂ9gj Zo(j?fl),z_/:ogj =0;
4. For any positive integer n, we have Zl:: S <0.

Let L_tik be the approximate solution of the implicit finite difference scheme (4) - (6), and let j_’ik be

the approximations of fik. Setting El.k =u Ik - LTik , we obtain the roundoff error equation.

i+1 _
(l—l—ﬂ}")g;—l" Z gj‘c"ilJrl—j :gio_rl(f;o_fio)akzo
J=0,j#l
i+1 _ k—1 )
(1+ Bl —=r Y g, =U=b)e +n(ff =)+ Db, =b, el +bel k>1
J=0,j# J=1

for i=12,...m—1,k=0,1,2,....n, assuming || E* ||,= max \gk\.

1<i<m-1 !
We now analyze the stability via the method of induction. When k =1, assume that

1 Lyl 1 .
& = max{ &; |l & |rees| €y I} 1.0

i+1
1 1
L& IS+ e |-r D g, e
j=0,j#1
. i+1 .
<(+pr)|e |-r z gil&r il
J=0,j#1
| i+1 |
S|(1+/8”)‘9/ -r Z &gi€-jn |
J=0,j#1
—| ol 0 70
=le L +r(fi =S (19)

<& |+nLég) |
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<(1+nL)| & |

IE.<Cll&"|l, (- C=1+7L)

k+1 k+1 k+1

Let || EX |, =] &' = max{ &' |,| & |,...,| €57 |} and assume that

IE [|.<Cll&" |l j =1,2,..

i+1

.,k , we have;

& S+ pry e = D g e

J=0,j#1

i+1

S+ prye ™ —r ) g8

J=0,j#1

_ k-1 _
== +r(ff = f)+ 26, b6l +be! |
j=1

- k71 .
S(l—bl)‘é‘ik |+V1 ‘(f,k _f,-k)|+2(bj _bj+1)‘gik_j |+bk |8i0 |
J=1

<(A=b)|& |+rLls; |+(b =b) | & |+D | &) |

<(1+rL)| &) |

IES < Coll e L, (o Cy=C+nL).

Hence, the following theorem is obtained.

(20)

20

Theorem 1 Suppose that {;‘ik (i=12,...m—1,k=1,2,...,n) is the solution of the roundoff error
Egs. (4) - (6) and the nonlinear source term satisfies the Lipschitz condition, then there is a positive
constant Cysuch that || " ||,< C, || €° |,k =1,2,...,n.

Convergence

In this section, we analyze the convergence of the implicit finite difference scheme (4) - (6). Let
u(x,,t,) be the exact solution of the IBVP (4) - (6) at mesh point (x,,#,) and let ulk be the numerical
solution of (4) - (6) computed using the implicit finite difference scheme.

Define e/ =u(x,,t,)—u} and EX = (e ,e},...,et )';

i+1
1 1
(1+pr)e, —r Z g€
J=0,j#1
k+1 \ k+1
+ +
(l+ﬂr)e[ -r Z 8,61

J=0,j#1

=e’ -1 ("= f)+R k=0
=(1-b)ef +r(f - f)+

k=1
Z(bj _bj'+l)eikij + bke;) + +Rik+ls k>1

J=1
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where i =1,2,...m—1,k=0,1,2,...,n
|le+l I< clra(rlm +h” +7) fori=1,2,...m-1,k=0,1,2,...,n.

Using mathematical induction and Lemma 1, we give the convergence analysis as follows. For k=1,

assuming that || €' | =| ¢, |= max ‘eil‘;
1SisM-1

i+1

e [<(1+pr)ler|-r X g, e

j=0,j#1
| i+l .
<(I+pr)|e |-r Z g le
Jj=0,j=#1
| i+l .
S| (1+ﬂr)e, -r Z 8i€-jn |
J=0,j#1
1 0 70 1
=le +n(fi —fI)+R| (22)
0 0 1
e [+rLle [+]|R; |

IE <R
Using e” =0 and | R} [< ¢, (" + h” + 1), we obtain;
e |l.<b et (" +h" +71).

. . j = 1+ B _
Suppose that it holds for j, [l€/[,<b et (r+h" +7),j=1,2,...,k and
lef*! = max{| e ™! |,| 5 |,.... €5 1. Note that b;l <b':

i+1

e <A+ Bl |=r D g, le™ |

J=0,j#1
K+l O K+l
(e =r 3 g6l |
Jj=0,7#1
k PN < k—j 0 K+l
. - +
= (1=-b)e; +nr(fi" = 1 )+Z(bj_bf+1)ei "tbe + R
=1

_ k=1 _
<(=b)lef [+ [ = 1)1+, by ) e [+ R
j=1
<(A=b)[1¢ |l L1 € |l +B~b) [l [l +] R
< bk_l{(l—bl)-i-l’iL—F(bl —bk)—l-bk}clz'a(z-l"'a +hﬂ +T)
<b {1+ ALy (2 +h +7)
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€ |, < Cok“z (" + h” +7), (- (1+1L)c, = C,) (23)
If k7 <T is finite then, the following theorem is obtained.

Theorem 2 Let ulk be the approximate value of u(x,,t,) computed by using an implicit finite

difference scheme and source term to satisfy the Lipschitz condition. Then there is a positive constant C,

such that |u} —u(x,,t,) < Cy(z +h)

Test problem

Example 1 Consider the space-time semilinear fractional diffusion equation

0"u _ 0"*u

2
PYCD _ang +u +f, 0<x<m0<t<T

with initial condition, #(x,0) = sin(x);
and the boundary conditions #(0,¢) =0 =u(x,1);

where f = to'lsin(x)ELl_1 (1) —e'sin(x+0.97) - sin’xe?’ and exact solution is u(x,t) = e'sin(x) .

The solution of Example 1 is given as fallows with its error analysis (Table 1).

Table 1 Comparision between exact solution and obtainted solution at t = 0.01

u(x,ft) LF.D.M. Exact solution Absolute error Relative error % Error
T

u(E,O.OI) 0.5064 0.5050 0.0014 0.0028 0.2772
T

u(;,0.0l) 0.8751 0.8747 0.0004 4.573x10™ 0.04578
T

u(E,O.Ol) 1.0103 1.0101 0.00024 2.376x10™ 0.0238
2 4

u(—,0.01) 0.8754 0.8747 0.0007 8.0027x10 0.08
3
S

u(?,0.0l) 0.5064 0.5050 0.0014 0.0028 0.2772

L.LF.D.M. = Implicit Finite Difference Scheme

The solution of Example 1 at different time levels and its graphical representation is given as
fallows (Figure 1).
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14 T T T 1.4 T T T T T T
121 —— Exact solution | ———Exact solution .
+  humerical solution 12¢ @ Mumerical solution |
W 1 1 e S s 4
-~ -
7 &
08 ] | \ |
ne / \
4 f
4 5
oe ] 06} 4 e N
;{ \
K o
# 1 04r \ §
d \
_ . / i

& oz2p / y 2

; \

/ \
D 1 L Il 1 I L y
0 05 1 15 2 25 3 35 [ L 1 L 1 1 1
1] D& 1 15 2 25 3 35

Figure 1 Comparison between the exact solution and the numerical solution when ¢ =0.02 and ¢ = 0.05.

Example 2 Consider the space-time semilinear fractional diffusion equation

0%u oPu
=x—
ot* ox?

+sin(u), 0<x<I1,0<¢{<T, 0<a<l,1<B<2

with initial conditions, #(x,0) = x(1—x);
and boundary conditions #(0,7) =0=u(1,1);
Th solution of Example 2 is given as fallows with different values of alpha and bita (Figure 2).

0.25 . . . : . . . . .
R =
02t Z e .
7
P ~
=3
e *———— = .
o - .
018+ 7 o ! \\ 4
f{ gl R
T # T X
F i : e N
01f S WA -
£ ,-"- LR
f8 s Wk

o W

Gt W
0.05F  fily e

2 o
i
D 1 1 1 1 1 1 1 1 1
] 0.1 0z 03 04 05 0B 0OF 08 09

Figure 2 Numerical solution of u(x,#) at different time steps when & =0.9 and f=1.8.
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Conclusions

This method is very useful to find the numerial solution of semilinear fractional partial differential
equations. Stability as well as convergence of the implicit finite difference method is developed by using
the matrix method. The theoretical results are demonstrated with the help of numerical problems.
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