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Abstract 

 A height function method has been used to solve the shape of free surfaces in incompressible 
viscous flows for hydrodynamics. Three proposed discretization techniques for the height function 
method are developed with particular attention to the law of mass conservation. The concept of the 
proposed techniques is to place a control volume on the most appropriate location in any staggered grid 
system. First, the proposed techniques and the conventional technique are verified with a simple problem 
whose exact solution is known. Then, all numerical techniques are examined with a more complicated 
problem to investigate their accuracy. The simulated results of the proposed techniques are compared to 
those of conventional technique. Finally, it is concluded that (1) the proposed techniques will give better 
results than the conventional technique if the grid resolution is sufficiently fine, (2) the first proposed 
technique gives poorer results than the other proposed techniques, and (3) the second proposed technique 
gives better results than the third proposed technique, but the third proposed technique is easier to apply 
due to its explicit form of the equation. 
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Nomenclature 

Alphabets 
A  Area 
B  Bottom 
b  Flow depth 
C  Chord 
c  Grid velocity 
CV  Control volume 
f  Body force per unit mass 
g  Gravity acceleration 
H  Height function 
L  Length 
m  Mass flux 
p  Static pressure 

 

p  Hydrodynamic pressure 
R  Radius 
t  Time 
u  Velocity component on x-direction 
V  Velocity 
w  Velocity component on z-direction 
x  Location on x-direction 
z  Location on z-direction 
δ  Film thickness 
µ  Liquid viscosity 
θ  Incline’s angle 
ρ  Liquid density 
σ  Surface tension 

Superscripts and Subscripts 
c  Center of grid cell 
F  Free surface 
i  Horizontal spatial index  
k  Vertical spatial index  
l  Liquid  

n  (superscript) Time index 
n  (subscript) Normal 
t  Tangent 
v  Vertex of gridlines 
W  Wall 
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Introduction 

 Flows in nature sometimes occur not only with one fluid but also with several fluids interacting in a 
flow. When the 2 fluids are a gas and a liquid the interface between these 2 fluids could be considered as 
a free surface since the viscosity of gases is much less than the viscosity of liquids [1,2]. Flows in which 
any free surface exists are called free surface flows which have long been studied with experimental and 
numerical methods [3-9]. 
 Numerical methods can be briefly divided into 2 groups, namely interface-tracking methods and 
interface-capturing methods [10]. Interface-tracking methods solve problems of free surface flows by 
following the movement of free surface directly. The height function method [11] and surface marker 
method [12,13] are categorized as interface-tracking methods. In a different way, interface-capturing 
methods solve problems of free surface flows by calculating other parameters which are eventually used 
to predict the shape of free surfaces. Examples of these parameters include markers in the marker-and-cell 
(MAC) method [14,15] and fluid volume fraction in the volume-of-fluid (VOF) method [16,17]. 
 It is well-known that interface-tracking methods cannot predict the complicated shapes of free 
surfaces, unlike interface-capturing methods. However, interface-tracking methods are sometimes 
suitable for use with problems where free surfaces are not complicated but where the tension effect is 
important. Nevertheless, many researchers have recently tried to develop techniques using interface-
capturing methods (VOF method) with interface-tracking methods (height function method) as a 
supplement, but the tension effect is still taken into account separately [18-22]. 
 The height function method, which is a familiar interface-tracking method, is used in the current 
research work in order to give better results on mass conservation. Details of the developed techniques 
and the verification of the developed techniques are successively presented. Finally, all developed 
techniques are examined to investigate their accuracy. 
 
Mathematical formulation 

 There are basically 2 types of governing equation for calculating height function, i.e. the kinematic 
boundary condition and the conservative form of the free surface equation. The latter one is usually 
selected when mass conservation needs to be rigorously maintained which is the objective of this work. 
The conservative form of the free surface equation is thus employed to investigate how it can be 
improved. Although the original equation is 3 dimensional, for the sake of simplicity, when its results are 
analyzed, it is reduced to be 2 dimensional, i.e.; 
 

0
H

B

H udz
t x

∂ ∂
+ =

∂ ∂ ∫ .         (1) 

 
The velocity in the z-direction ( w ) will be not taken into account because it does not affect flow rate if 
controlled volumes are drawn with 2 vertical lines on the left and right hand side as shown in Figure 2. 

This is because flow rate { } ( ) ( ){ }ˆ ˆˆ ˆ 0
H H H

B B B

V dA ui wk dz i k udz   = ⋅ = + ⋅ + =   ∫ ∫ ∫


. 

 Staggered grids (as shown in Figure 1) are often exploited for solving problems of free surface 
flows. When Eq. (1) is numerically used, it must be discretized to be compatible with an exploited grid 
system. It is conventionally discretized as; 
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where 
 

( ), 1,0 , 1,0 2
v v v

n n
i v i v ix x x+ −∆ = − , 

( ), , 1, , , , 1, 1 , , 1 2
v v v v v v v v v v

n n n n
i k v i k v i k v i k v i kz z z z z−

− − − −∆ = + − − , 

( ), , , , 1, , , 1 , 1, 1 2
v v v v v v v v v v

n n n n
i k v i k v i k v i k v i kz z z z z+

+ − + −∆ = + − − , 

( ), 1, , 2
v c v c v c

n n
i k i k i ku u u−

−= + , 

( ), , 1, 2
v c v c v c

n n
i k i k i ku u u+

+= + , 

in accordance with the control volume shown in Figure 2a. In this case the velocities on cell faces ( ,v ci ku−  

and ,v ci ku+ ) can be determined by averaging from 2 nodes of horizontal velocity on their left and right 
hand sides because all x∆ ’s in each grid are equal. If x∆ ’s are not equal, interpolation will be needed. 
 If we know the average variables, i.e. 

vix∆ , ,vi kz−∆ , ,vi kz+∆ , ,vi ku−  and ,vi ku+ , Eq. (2) will explicitly give 

us the height function at position vi  in the next time step without considering the adjacent height function. 
This is because the conventional method assumes that 1

1v

n
iH +
− , 1

v

n
iH +  and 1

1v

n
iH +
+  change their value with 

the same height difference. This is not correct because each height function does not need to change with 
the same height difference. Although some research, e.g. [11], has exploited techniques of spline curves 
to smooth free surface curves, the techniques do not consider the law of mass conservation. New 
discretization techniques are, thus, developed to conserve mass in the system of free surface flow. The 
first proposed technique is developed by considering the different changes of the adjacent height 
functions. According to Figure 2a, the control volume is generally pentagonal, the change of the control 
volume should be written as; 
 

( ) ( ) ( ) ( )1 1 1 1
1 1 1 1
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∑          (3) 

 
or 
 

1 1 1
1 1 1 1v v v v v v v v v v v v v

n n n n n n
i i i i i i i i i i i i iA H B H C H A H B H C H+ + +

− + − ++ + = + + −Θ          (4) 
 
where 
 

v vi iA x−= ∆ , 

( )3
v v vi i iB x x− += ∆ + ∆ , 
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( ), 1,0 , ,0 2
v v v

n n
i v i v ix x x+

+∆ = − , 

( ), , 1, , , , 1, 1 , , 1 2
v v v v v v v v v v

n n n n
i k v i k v i k v i k v i kz z z z z−

− − − −∆ = + − − , 

( ), , , , 1, , , 1 , 1, 1 2
v v v v v v v v v v

n n n n
i k v i k v i k v i k v i kz z z z z+

+ − + −∆ = + − − , 

( ), 1, , 2
v c v c v c

n n
i k i k i ku u u−

−= + , 

( ), , 1, 2
v c v c v c

n n
i k i k i ku u u+

+= + . 

 
 So far, the first technique shown in Eq. (4) takes into account the adjacent height functions and is 
likely to give better results. Nevertheless, it still uses interpolated variables (i.e. 

vix∆ , ,vi kz−∆ , ,vi kz+∆ , ,vi ku−  

and ,vi ku+ ) which may cause some errors. The second proposed technique is developed to prevent error by 
drawing each control volume so that it is coincident with the gridlines as shown in Figure 2b. The 
governing equation of height function which is compatible with the control volume can be written as; 
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Figure 1 Example of the staggered grid system used in this work; circles, triangles and squares indicate 
the positions of pressure, horizontal velocity and vertical velocity, respectively. 
 
 
 Both Eqs. (4) and (6) are simultaneous equations which require some effort and resource to be 
solved. The third proposed technique is developed to avoid this problem by drawing each control volume 
so that it is coincident with successive vertical gridlines as shown in Figure 2c. 
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(a) Controlled volume for the conventional method and the 1st proposed technique. 
 

 

 
 
(b) Controlled volume for the 2nd proposed technique. 
 

 

 
 
(c) Controlled volume for the 3rd proposed technique. 
  
Figure 2 Schematic diagram showing a control volume (dash line) used for computing the height function 
at position vi  with the conventional method and the proposed techniques. 
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 The value of the height function at position vi  ( 1
v

n
iH + ) can be explicitly obtained from Eq. (8) if the 

value of the height function at position 1vi − ( 1
1v

n
iH +
− ) is given and vice versa. This means that all height 

functions can be simply determined if the value of a height function at either position 0vi =  or maxvi i=  
is given as a boundary condition. 
 
 

 
 
Figure 3 Schematic diagram showing a thin film flow over an incline and its dimensions used for 
verifying the proposed techniques. 
 
 

 
 
Figure 4 Computational domain of a thin film flow over an incline.  
 
 
Verification with a simple problem 

 The proposed techniques derived in the former section are going to be verified in this section with 
the use of a simple problem. The problem of a thin film flow over an incline (Figure 3) is chosen since its 
exact solution is already known. The exact solution is derived from the continuity equation and Navier-
Strokes equations whose reference axes are normal and tangential to the incline, i.e.; 
  

0W Wt n

W W

V V
t n

∂ ∂
+ =

∂ ∂
,         (9) 

 
2 2

2 2
W W W W W

W W W

t t t t t
t n t

W W W W W

V V V V VpV V f
t t n t t n

ρ ρ ρ µ ρ
 ∂ ∂ ∂ ∂ ∂∂  + + = − + + +

∂ ∂ ∂ ∂ ∂ ∂  
,       (10) 
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2 2

2 2
W W W W W

W W W

n n n n n
t n n

W W W W W

V V V V VpV V f
t t n n t n

ρ ρ ρ µ ρ
 ∂ ∂ ∂ ∂ ∂∂  + + = − + + +

∂ ∂ ∂ ∂ ∂ ∂  
.       (11) 

 
By assuming that (i) the flow is steady, incompressible, laminar, fully developed; (ii) the interface 
between the incline and the liquid is a no-slip wall and (iii) the interface between the liquid and gas is a 
free surface along which the pressure gradient is equal to zero, this yields the exact solution of a thin film 
flow over an incline, i.e.; 
 

( )2sin 2
2Wt film W W

gV n nρ θ δ
µ

= − ,       (12) 

 
0

WnV = ,       (13) 
 

( )cosfilm W atmp g n pρ δ θ= − + .       (14) 

 
As a result, velocity along the x-axis ( u ), velocity along the y-axis ( v ) and hydrodynamic pressure ( p ) 
can be calculated as follows; 
 

( )2sin coscos sin 2
2W Wt n film W W

gu V V n nρ θ θθ θ δ
µ

= + = − ,       (15) 

 

( )
2

2sinsin cos 2
2W Wt n film W W

gw V V n nρ θθ θ δ
µ

= − + = − ,       (16) 

 

( ) ( ) ( )cosfilm W atmp p g H z g n p g H zρ ρ δ θ ρ= − − = − + − − ( ) ( )2cos 1 atmg H z pθ ρ= − − + .      (17) 

 
when the problem is numerically solved, a computational domain has to be set. Figure 4 shows the 
computational domain confining a flow field whose upper, lower, left and right boundaries are a free 
surface, a no-slip wall, an inflow and an outflow, respectively. The grid shown in Figure 4 is the coarsest 
employed resolution, namely 30×10. Gridlines evenly divide the domain in order to get rid of any 
advantages and disadvantages relevant to grid structure when the computational results are finally 
compared. Herein, the value of the variables in the figure is assigned as g = 9.81 m/s2, atmp = 0 Pa, filmL = 

3 cm, filmH = 1 mm and θ  = 1°. The liquid in the flow is water at 25 °C so its density and viscosity are 

997.13 kg/m3 and 0.891×10-3 kg/m⋅s. The surface tension between water and air on the free surface is 
assigned to be 72.14×10-3 N/m. 
 
 Solving the problem numerically requires a governing equation set composed of 4 equations, i.e.; 
 

( )ˆˆ 0ui wk dL+ ⋅ =∫


 ,       (18) 
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( )ˆ ˆˆ
z

CV

udA c uk dL u ui wk dL
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∂  
∫ ∫ ∫
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wdA c wk dL w ui wk dL
t

ρ
 ∂ − ⋅ + + ⋅
∂  
∫ ∫ ∫

 

                 ,       (20) 

 
 
 

 

0
H

B

H udz
t x

∂ ∂
+ =

∂ ∂ ∫ ,       (21) 

 
which are continuity equation, momentum equations and the conservative form of the free surface 
equation, respectively. In this work, a pressure-correction method is exploited to discretize the set of 
equations from Eqs. (18) to (20). Meanwhile, Eq. (21) is discretized by 4 techniques, i.e. Eqs. (2), (4), (6) 
and (8). 
 Since the boundary condition on the upper side of the computational domain is a free surface, 
variables must be satisfied with kinetic and dynamic conditions [23], namely; 
 

, ,F Fl n F nF
V V= ,       (22) 

 

, , 0F Fl t l n

F F F

V V
n t

∂ ∂ 
+ =  ∂ ∂ 

,       (23) 

 

,
,

1 2 Fl n
l F atm F

F F F

V
p p

R n
σ µ

∂ 
= + +   ∂ 

,       (24) 

where 

3
2 22

2
1 1
F FF

z z
R xx

− 
   ∂ ∂  = +     ∂∂    

  

. 

 
Next, the variables on the lower side of the computational domain must be satisfied with a no slip 
condition, namely velocity is zero and; 
 

W Wwall wall

p Hg
n n

ρ∂ ∂
= −

∂ ∂
 .       (25) 

 
Then, the velocities along the inflow boundary condition on the left side of the computational domain can 
be determined with Eqs. (15) and (16). In addition, the height function is consistently assigned to be 
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filmH  so that the mass flux across the boundary will be constant. Whereas the pressure on this boundary 
must satisfy the condition; 
 

0
W inflow

p
t
∂

=
∂


.       (26) 

 
Finally the outflow boundary condition is posed on the right side of the computational domain. 
Subsequently, the velocity and hydrodynamic pressure must satisfy;  
 

0
W outflow

V
t
∂

=
∂

,       (27) 

 

( ) ( )2
,cos 1outflow outflow l Fp g H z pθ ρ= − − + .       (28) 

 
If it is possible, height functions on the boundary will be calculated. Otherwise, linear extrapolation is 
employed. 
 The initial condition is set to be close to the exact solution. This means that velocities and 
hydrodynamic pressure are initially approximated with Eqs. (15), (16) and (17). The height function is set 
with a value so that the free surface is parallel to the incline with an offset of filmδ . 
 At first, a coarse grid (30×10 resolution) is employed. The velocity fields shown in Figures 5a to 5d 
are computed from the 4 different numerical techniques. Looking at these 4 velocity fields, we find that 
they are similar: namely, all flows adjust themselves within the region close to the inflow boundary 
leading to oscillations of the free surfaces before they become fully developed downstream. However, it 
seems that the conventional technique gives the smallest oscillation of the free surface which is the 
closest to the exact solution. This is clearer in Figure 6a, which shows that the free surface curve 
obtained from the conventional technique is the closest to the exact solution. Although the free surface 
curves obtained from the proposed techniques are further from the exact solution, they still remain in 
relative proximity. 
 Considering the free surface curves in the downstream region of Figure 6a, we find that all curves 
are straight with similar steepness but different heights. This is interesting because different heights of the 
free surface may cause different velocity profiles as well as cross-sectional mass fluxes, which is a central 
concept of this work. According to Figures 3 and 4 and Eq. (15), the exact cross-sectional mass flux per 
unit depth can be calculated with; 
 

( )
2 3 2

0

sin cos 6.37 10
3

filmH

film
m gudz H
b

ρ θρ θ
µ

−= = = ×∫


,       (29) 

 
and numerically estimated with; 
 

( )
max

, , , , , 1
1

v v v
v

k

i k v i k v i k
i k

m u z z
b

ρ −
=

  = − 
  ∑

.       (30) 

 
Figure 7a shows variation along the x-direction of mass fluxes per unit depth obtained from the flow 
fields computed with 4 techniques. It is obvious that the conventional technique gives the greatest 
numerical loss of mass flux while the 3 proposed techniques give much smaller variations. There is, 
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indeed, variation in the mass flux of the proposed techniques as represented in a magnified form in 
Figure 8a. 
 In accordance with Figures 7a and 8a, it may be concluded that the law of mass conservation is 
well maintained in the order the 2nd, 3rd and 1st proposed, and conventional techniques, respectively. This 
is because the conventional technique computes the height function at each position without considering 
adjacent height functions, leading to a greater numerical loss or gain. While in the 1st proposed method, 
which requires interpolation for both u  and z∆  as shown in Eq. (4), there is greater variation of mass 
flux compared to the other proposed techniques which does not need any interpolation as shown in Eqs. 
(6) and (8). Finally, the 2nd proposed technique gives a better result than the 3rd proposed technique since 
the basis of the 2nd proposed technique is second-order accurate. 
 Considering Figure 6a together with Figure 7a, it may be concluded that the oscillation of the free 
surface computed with the proposed techniques next to the inflow boundary is caused by the mass 
conservation. This oscillation may be diminished by increasing the fineness of the grid resolution. Figure 
6b shows the surface curves obtained from 4 numerical techniques with a finer grid (30×40 resolution) 
compared to the exact solution. Now all techniques give a reasonably acceptable free surface curve. This 
may imply that the grid with 30×40 resolution is fine enough for predicting the flow even if it is uniform. 
 The variation along the x-direction of mass fluxes per unit depth obtained from the flow fields 
computed with 4 techniques in the case of the finer grid is shown in Figure 7b. It is clear that the result of 
the conventional technique is greatly improved when the grid is finer. The finer grid also reduces the 
variation of mass flux obtained from the 1st proposed technique. This is apparent if Figure 8b is 
compared to Figure 8a. The finer grid adversely affects the mass flux obtained from the 2nd and 3rd 
proposed techniques but not to a significant degree. 
 To get more insight into the influence of the grid resolutions, the relative percent difference; 
 

%Rel.Diff.
( ). .

100%
.

Max Min
Avg
−

= × ,       (31) 

 
is employed. Table 1 shows the comparison of relative percent differences of mass flux computed with 4 
numerical techniques between 2 different grids. The influence of grid resolution is very strong in the case 
of conventional and 1st proposed techniques, the %Ref.Diff. respectively reduces to ~1/5 and ~1/10 times 
when the grid is finer. While the %Ref.Diff. in the case of the 2nd and 3rd proposed techniques increases 
only ~2 times when the grid is finer. In addition, the average mass fluxes obtained from the proposed 
techniques are equal to the exact solution obtained from Eq. (29) for both coarse and fine grids whereas 
those obtained from the conventional technique are significantly different. This means that the 
conventional technique requires a much finer grid than the proposed techniques in order to achieve 
similar accuracy for both surface curve and mass conservation. 
 
 
 
 
 
 
 
 
 
 
 
Table 1 Comparison of relative percent differences of mass flux computed with 4 numerical techniques 
using a coarse grid (30×10 resolution) and fine grid (30×40 resolution). 
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Grid Technique Max. 
(kg/m⋅s) 

Min. 
(kg/m⋅s) 

Avg. 
(kg/m⋅s) 

Diff. 
(kg/m⋅s) %Ref.Diff. 

30×10 

Conventional 6.37×10-2 6.11×10-2 6.15×10-2 2.63×10-3 4.27×10 0 
Proposed#1 6.38×10-2 6.37×10-2 6.37×10-2 1.65×10-5 2.59×10-2 
Proposed#2 6.37×10-2 6.37×10-2 6.37×10-2 4.10×10-7 6.43×10-4 
Proposed#3 6.37×10-2 6.37×10-2 6.37×10-2 1.60×10-6 2.51×10-3 

30×40 

Conventional 6.37×10-2 6.31×10-2 6.32×10-2 5.93×10-4 9.38×10-1 
Proposed#1 6.37×10-2 6.37×10-2 6.37×10-2 1.46×10-6 2.29×10-3 
Proposed#2 6.37×10-2 6.37×10-2 6.37×10-2 1.09×10-6 1.71×10-3 
Proposed#3 6.37×10-2 6.37×10-2 6.37×10-2 3.44×10-6 5.40×10-3 

 
 

                
 
(a) Conventional technique        (b) 1st proposed technique 

 
 

             
 
       (c) 2nd proposed technique          (d) 3rd proposed technique 

 
Figure 5 Velocity field of a thin film flow over an incline in the coarse grid (30×10 resolution) obtained 
from the height function computed with (a) the conventional technique, (b) the 1st proposed technique, (c) 
the 2nd proposed technique and (d) the 3rd proposed technique. 
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(a) Results for the coarse grid (30×10 resolution) 
 
 

 
 
(b) Results for the fine grid (30×40 resolution) 
 
Figure 6 Comparison of free surface curves obtained from 4 numerical techniques and the exact solution 
for a thin film flow over an incline with (a) the coarse grid and (b) the fine grid. 
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(a) Results for the coarse grid (30×10 resolution) 

 

 
 
(b) Results for the fine grid (30×40 resolution) 
 
Figure 7 Variation along the x-direction of mass fluxes per unit depth obtained from the flow fields 
computed with 4 numerical techniques for a thin film flow over an incline with (a) the coarse grid and (b) 
the fine grid. 
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(a) Results for the coarse grid (30×10 resolution) 
 

 
 
(b) Results for the fine grid (30×40 resolution) 
 
Figure 8 Variation along x-direction of mass fluxes per unit depth obtained from the flow fields 
computed with 3 proposed techniques for a thin film flow over an incline with (a) the coarse grid and (b) 
the fine grid. 
 
 
Examination with complicated problem 

 After being verified with a simple problem, the numerical techniques are examined with a more 
complicated problem in this section to prove whether or not the techniques are workable with problems 
whose exact solution is unknown. A thin film flow over an incline with a weir as shown in Figure 9 is 
chosen. Herein, the liquid in the flow is water whose density and viscosity are 997.13 kg/m3 and 
0.891×10-3 kg/m⋅s, respectively. The surface tension on the free surface is 72.14×10-3 N/m. The values of 
the variables in the figure are assigned as g = 9.81 m/s2, atmp = 0 Pa, filmL = 1 cm, filmH = 1 mm and θ = 

1°. The entrance length, equal to 4 filmL , is selected because it is expected that the inflow boundary 
cannot affect the flow field over the weir according to the information obtained from Figure 6b. 
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As illustrated in Figure 10, the weir is a circular arc whose curve can be calculated with; 
 

( )22
center weir centerz z R x x= + − − ,       (32) 

 
where 
 

2

2 8
weir weir

weir
weir

H C
R

H
= + , 

cosweir filmC L θ= , 

( )sincenter weir weir weirx x R H θ= − − , 

( )coscenter weir weir weirz z R H θ= − − , 

( )9 2weir filmx L= , 

( )9 2 tanweir filmz L θ= − . 
 
 The grid resolution is 70×40 since this resolution is as fine as the fine grid used in the verification so 
it is anticipated that the resolution is fine enough even if it is uniform. Boundary conditions are similar to 
those of the verification. Since an exact solution is not available, initial conditions have to be guessed. 
Therefore they are set to be similar to the method used in the verification. Each simulated velocity field 
obtained from 4 numerical techniques is shown in Figures 11a to 11d. The free surface curve violently 
flutters above the weir in the case of the conventional techniques shown in Figure 11a. While the free 
surface curves above the weir are less wavy in the case of the 3 proposed techniques. However, there is a 
small-amplitude oscillation of the free surface curve in the upstream region of the flow computed with the 
1st proposed technique as shown in Figure 11b. This is more obvious in Figure 12 which is a comparison 
of free surface curves computed with the 4 numerical techniques. So far, it may be concluded that the 
wave of the free surface curve will be more violent if only one height function is computed without 
considering its adjacent height functions. This may be because the adjacent height functions try to restrain 
the movement of the height function which is being computed. Thus, the interpolation of both u  and z∆  
in the 1st proposed technique causes a small-amplitude oscillation in the upstream region of the weir. 
 A comparison of the mass fluxes shown in Figure 13 shows that the conventional technique gives a 
moderate loss of mass flux in the entrance region at first, and then gives a large loss and a large gain in 
the region above the weir, before finally giving a moderate loss in the downstream region. The mass 
fluxes obtained from velocity fields computed with the proposed techniques are apparently more constant. 
However, the small oscillation in the mass flux of the 1st proposed technique is noticeable. This 
oscillation is clearer as illustrated in Figure 14 which is a comparison of mass fluxes from the proposed 
techniques only. The figure reveals that the 1st proposed technique not only gives oscillation in its result 
but also its average mass flux is different from the others. The cause of these differences is the 
interpolation of both u  and z∆  in the 1st proposed technique as previously mentioned. Nevertheless, the 
average mass flux of the 1st proposed technique is just 0.1 % different from those of the other proposed 
techniques, so the difference is not significant. 
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Figure 9 Computational domain of a thin film flow over an incline with a weir. 
 
 
 

 
 
Figure 10 Dimension of the circular weir on the incline.  

 
 
 

    
 
      (a) Conventional technique            (c) 2nd proposed technique 
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          (b) 1st proposed technique            (d) 3rd proposed technique 

 
Figure 11 Velocity field of a thin film flow over an incline with a weir obtained from height function 
computed with (a) the conventional technique, (b) the 1st proposed technique, (c) the 2nd proposed 
technique and (d) the 3rd proposed technique. 
 
 

 
 
Figure 12 Comparison of free surface curves obtained from the 4 numerical techniques for a thin film 
flow over an incline with a weir. 
 
 

 
 
Figure 13 Variation along the x-direction of the mass fluxes per unit depth obtained from the flow fields 
computed with the 4 numerical techniques for a thin film flow over an incline with a weir. 



Discretization Techniques of Height Function Method  Boonchai LERTNUWAT 
http://wjst.wu.ac.th 
 

Walailak J Sci & Tech 2015; 12(2) 
 

199 

 
 
Figure 14 Variation along the x-direction of mass fluxes per unit depth obtained from the flow fields 
computed with the 3 proposed techniques for a thin film flow over an incline with a weir. 
 
 
Conclusions 

 Three proposed techniques were developed for maintaining the law of mass conservation. By 
comparing them to one another as well as to the conventional technique, it is found that: 

1. The proposed techniques give better results than the conventional technique does since: 
1.1. The mass fluxes per unit depth obtained from the velocity field computed with the proposed 

techniques are well conserved. Whereas, those of the conventional technique are not constant even in the 
case where the free surface curve is still a straight line. 

1.2. The shapes of the free surface curve obtained from the proposed techniques are less wavy than 
those obtained from the conventional technique. This may be due to the restraint of adjacent height 
functions which are neglected in the conventional technique.  

However, caution is required in applying the proposed techniques as they require a sufficiently fine 
grid in the vertical direction. Using too coarse grids with the proposed techniques may cause fluttering of 
the free surface in the region close to the inflow boundary since the proposed techniques try to conserve 
mass flux. This is proved by comparing the simulation results in the coarse grid (30×10 resolution) and 
those in the finer grid (30×40 resolution). 

2. Among the proposed techniques, the 1st proposed technique gives the worst result due to the 
linear interpolation of both u  and z∆ . The weakness is more apparent in the case where nonlinearity 
dominates. It is expected that the 1st proposed technique could be improved by applying an interpolation 
scheme with a higher-order accuracy. However, this requires more effort. 

3. Although both the 2nd and 3rd proposed techniques give acceptable results, the 2nd proposed 
technique gives comparatively better results due to the second-order nature of the accuracy scheme. The 
3rd proposed technique is, however, easier to use due to its explicit form. 
 Recently, the height function method, which is a surface tracking method, is not only used alone but 
also blended with surface capturing methods. The VOF method, which is a surface capturing method, is 
often blended with the height function. The combination of both techniques leads to utilizing their strong 
points, i.e. the VOF method possesses superior mass conservation properties while the height function is 
good at estimating surface curvatures [18]. The combination needs algorithms for transmitting 
information from the VOF method to the height function and vice versa. One of basic algorithms used is 
the continuum surface force (CSF) with a piecewise linear interface calculation (PLIC) [24]. The 
algorithm is simple but brings a formidable problem that is discontinuity of surface curves, resulting in 
unrealistic surface shapes. To solve the problem, several algorithms have been developed and proposed. 
For example, the height function is shifted to lie outside grid cells but this needs more complicated 
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techniques which are still being developed at present [18]. Another way to solve the problem of 
unrealistic surface shapes is using an adaptive grid [20] but this consumes computational resources in 
return. 
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