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Abstract 

Record linkage is a challenging task for Big Data. This paper, hence, attempts to shed light on  
record linkage approaches for Big Data by comparing three dimensions involving record linkage phases, 
dataset properties, and parallel processing approach for Big Data. The current state of art have only 
conducted comparative studies between record linkage approaches. There has been only one comparative 
study exploring the whole record linkage framework of the relational database. It is believed that the 
focus of the present study on the dimensions of the parallel processing approaches for Big Data and 
dataset properties was worth exploring. It was found that first, data exploration was almost a non-existing 
phase despite its importance of exploring the dataset being examined; second, techniques that handle data 
standardization and preparation phase of the first dimension were not extensively covered in the literature 
which can directly affect the results’ quality; third, the record linkage in unstructured data was not yet 
explored in literature; fourth, the MapReduce was used in about 50 % of the selected studies to handle the 
parallel processing of Big Data, but due to its limitations, more recent and efficient approaches had been 
used, such as Apache Spark and Apache Flink. Apache Spark is just recently adapted to resolve 
duplicates due to its supporting of in-memory computation, which makes the whole linkage process more 
efficient. Although the comparative study includes many recent studies supporting Apache Spark, 
adopting Apache Spark to solve the problem of record linkage is not yet well explored in literature, as 
more researches need to be conducted. In addition, Apache Flink is still rarely used to solve the record 
linkage problem of Big Data. Fifth, pruning techniques, used to eliminate unnecessary comparisons, are 
not adequately applied in the covered studies despite their effect on reducing the search space resulting in 
a more effective Record Linkage process. 
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Introduction 

Big Data are not about how much the size of data is increasing, but rather aboutthe situations where 
the size, the variety, and the velocity of the data exceed an organization’s capability to process such an 
amount of data [1]. In such situations, data processing software are usually inadequate to handle it, and 
there must be alternative ways to process Big Data to gain value from it [2]. Since the data size is growing 
extremely fast, taking the right decision on time becomes very time-consuming, especially if the data 
comes from different sources with different formats. There are many challenges involved in Big Data 
such as capturing, storing, analyzing, querying, processing, and visualizing data [3]. The size of data 
(volume) is not the only factor that characterizes Big Data, but there are many other factors; the most 
famous five are volume, variety, veracity, velocity, and value, known as 5 vs. of Big Data [1]. Real-world 
data are dirty and contain many potential errors, happening due to incomplete, noise, and inconsistent 
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values of the data. Data cleaning is the process of detecting and resolving corrupted, missing, and 
inconsistencies from the dataset. Record linkage is an important issue in data cleaning. Record linkage in 
literature has many equivalent names such as entity matching, entity resolution, and duplicate detection. 
Record linkage is one of the key challenges of data integration, which is the process of matching records 
that refer to the same real-world entity [4]. Lack of data standardization, typographical errors, changing 
demographical data and data integration are all reasons for duplicates in the datasets. Preparing and 
cleaning data for analytics purposes are very important tasks because they affect the quality of the 
obtained results; they are considered the hardest and most time-consuming tasks, taking approximately 
more than 80 % of the whole time spent in the analytics process. 

According to Gartner, $44 billion in 2014 alone were spent on preparing data from many sources for 
use in data analysis [5]. Integrating data from many sources is critical for maximizing the capability of 
data-driven decision-making. Data integrated from multiple sources can drastically increase the power of 
retrieved information and provide the opportunity to answer questions that are impossible to be solved 
with a single data source. As an example, the analysis of health data integrated from multiple sources like 
electronic health records, drug and toxicology databases, genomics, and social media environments, is a 
key driver to advanced precision medicine [4]. 

According to Dong et al. [6], adding the dimensions of Big Data makes record linkage more 
challenging and time-consuming process due to many reasons such as:  

1. The increasing volume of Data that needs efficient parallelization techniques to process it 
2. The heterogeneity of data structure as data comes from different sources with different formats  
3. The dynamic and continuously evolving data 
4. The data comes from multiple applications with different accuracy requirements. All the above 

challenges call for new approaches for handling Big Data. 
The main objective of this paper is to conduct a comparative study on the relevant available 

literature about record linkage approaches for Big Data. The structure of the comparative study consists 
of three dimensions: the first dimension is about record linkage phases, the second dimension is about the 
used dataset properties, and the third dimension is about parallel processing approaches for Big Data. 

The rest of this paper is organized as follows. Section 2 discusses the proposed dimensions of the 
comparative study of record linkage for Big Data. Section 3 presents a classification of the covered 
studies according to parallel processing approaches for Big Data. In section 4, the results of the 
comparative study are discussed. Finally, the conclusion and future work are given in section 5. 
 
Proposed dimensions of the comparative study 

Comparative studies of record linkage approaches for Big Data are still insufficiently conducted. 
The available literature has only published comparative studies about record linkage approaches or 
techniques for relational databases. There has been only one comparative study focusing on record 
linkage frameworks of the relational database, thereby encouraging the present study to perform a 
comparative study about record linkage approaches for big data. 

Kopcke et al. [7] comparatively analyzed eleven frameworks of entity matching. Their proposed 
framework utilized both training and non-training data, as it compares three frameworks with no training 
data and 8 frameworks with training data. They suggested two types of comparison criteria: criteria for 
functional comparison and criteria for evaluation comparison. The criteria for functional comparison 
included entity type, blocking methods, training selection, matcher, and the combination of matchers. The 
criteria for evaluation’s comparison included the type of problem, the applied matching strategy, and the 
achieved effectiveness and efficiency performance. 

In the present study, record linkage approaches has been extended to include parallel processing 
approaches for Big Data, aside from adding many unaddressed comparison features, which will be 
explained in the next subsections. The proposed comparative study could be exploited as a guide or 
framework for a more efficient and effective record linkage process of big data or even relational datasets. 
As depicted in Figure 1, the proposed comparative study consists of three dimensions. 
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The first is about record linkage phases, the second is about the used dataset, and the third discusses 
the used approaches for processing Big Data and Very Large-Scale datasets. All these approaches are 
centralized around the parallel distribution of the large dataset. Next, the three dimensions are detailed. 
 
 

 
 
Figure 1 The proposed dimensions of the comparative study of record linkage for Big Data. 
 
 

Dimension 1: The record Linkage phases 
As depicted in Figure 1, the traditional record linkage process runs through 6 steps as shown in the 

first dimension. Record linkage process begins with data exploration, aimed at investigating the dataset 
that will be analyzed and comprehended well. The second step is data preparation in which the dataset is 
prepared to be ready for data cleaning or data integration. In this step, the features of record linkage are 
chosen, and some data transformation and standardization are done. The third step is blocking which aims 
to reduce the search space of the record linkage process and hence increase the efficiency, as the time of 
performing the record linkage will be reduced. In the blocking step, the data is distributed to a number of 
blocks in which the elements that only reside in the same block are compared. The fourth step is selecting 
similarity detection techniques. In this step, the elements are compared by using one or more of the 
similarities techniques. The fifth step is selecting the record linkage approach for Big Data in which the 
whole record linkage process among entities is done using one or a mixed number of approaches. Many 
approaches can be applied such as probabilistic approaches, machine-learning approaches, distance-based 
approaches, rule-based approaches, and graph-based approaches. The final step tests the accuracy of the 
selected approach for record linkage by the quality matrix measures. The next subsections explain these 6 
phases in detail. 

 
Data exploration 

Data exploration is the analysis to understand such characteristics as data size, data completeness, the 
collaboration between attributes, and data outliers. It aims to describe the data by using statistical and 
visualization techniques. Data exploration brings an important aspect of data for further analysis. There 
are many statistical functions used to analyze the data such as count, max, min, mean, median, mod, 
variant, standard deviation, skewness, correlation, and charts. R, SPSS, Python, and tableau are the best-
known data visualization and analytical tools used for data analysis. 
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Data preparation  
It means manipulating the data to be ready for analysis. Taking the data as it is will not guarantee to 

have an accurate model and hence accurate results. Data preparation has many steps, which are: 
Feature selection: it studies how to select the best list of attributes that will be used to construct the 

model. It includes reducing the dimensionality, removing redundant features, reducing the amount of data 
needed for algorithm learning, and improve algorithm accuracy [8]. Feature selection has the following 
advantages:  

1. It reduces the time taken to learn by Machine Learning algorithms.  
2. It reduces complexity.  
3. It makes the model easier to interpret.  
4. It improves the accuracy of the model if the right subset is chosen. 
• Handling null values: null values may be predicted using many methods as taking the average 

values, taking the values of similar objects attributes or simply omitting the whole record. 
• Normalization or data transformation: It is the technique that transforms a string to a common 

and smaller set of string values. Usually, normalization is accomplished in 2 phases: (1) finding a pattern 
in the string using Regular Expression (RE), and (2) replacing one pattern by another [5] 

• Standardization: It is the process of implementing a certain standard or format to the data (e.g. 
Date, time, name, and title) [5]. 

 
Blocking 
Traditional record linkage approaches apply matching techniques on a Cartesian product of n inputs 

entities. These approaches result in a complexity of O(n2) which causes enormous execution time for the 
big dataset. Blocking techniques have been proposed to reduce such execution time by only comparing 
the elements that are more likely to be matched. Blocking is done by partitioning the data into smaller 
blocks to process them in parallel where records exist in the same block are only compared. Blocks are 
chosen in a way such that records of the same block are more likely to be similar and records rely outside 
that block are dissimilar. Blocking is done using blocking techniques such as choosing the initial 3 
characters for the first name of the employee. There are other different blocking methods for record 
linkage such as Standard Blocking, Sorted Neighborhood, Q-gram Indexing, and Canopy Clustering with 
TF-IDF [9]. 
 

Selecting matching techniques 
The purpose is to identify the similarities between the values of the fields used in the record linkage 

process. Matching is done by using one or more methods of record linkage, which includes: 
• Character distance similarity-based: Distance functions map 2 pairs of strings to a real number r, 

where the smaller value of r indicates greater similarity between the two strings [10].  
• Token similarity-based: Character-based similarity’s methods work well for typographical errors 

but not well in case of words re-arrangements in the same sentence like computer science faculty vs. 
faculty of computer science. In such cases, token-based is a good choice [10].  

• Phonetic similarity-based: Character or token-based Similarity methods only focus on detecting 
string similarity between items but fail to detect similar phonetic items. In such cases, phonetic similarity 
methods are a good choice. They are measures based on phonetic [11].  

• Numeric similarity-based: Aims to detect similarity between numeric fields. The same methods 
described above are used in this case. A simple query to detect the exact number or range of numbers can 
be used to detect similar numeric items. 
 

Selecting the suitable record linkage approach for Big Data 
Record linkage approaches are used to detect similarity between database records that consist of 

multiple fields. These approaches can be classified into 5 categories as summarized below: 
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1. Probabilistic approaches: Probabilistic approaches use likelihood ratio or more likely decision 
and statistical theory to establish accurate links between records of typographical errors. Probabilistic 
approaches assign a percentage to indicate the matching probability [12]. 

2. Machine learning-based approaches (ML): record linkage can be viewed as a pattern 
classification problem, which aims to classify a pattern into a finite number of classes. Similarly, the goal 
of record linkage is to classify the status of pairs of records into match or non-match. In particular, given 
a set of labeled classes, machine-learning algorithms build a model that can be used to predict the class of 
new unlabeled data [13]. 

3. Distance-based approaches: Distance-based approaches compute the distance between records in 
two datasets. In general, for each record in file “A”, a distance between it and every record in file “B” is 
computed, then the nearest distance and second nearest distance in file “B” are considered [14].  

4. Rule-based approaches (deterministic matching approaches): Deterministic approaches use 
combinations of algorithms and business rules to determine when 2 records are matched. Deterministic 
approaches can catch simple errors like typos, transpositions, and phonetic variations [12].  

5. Graph-based approaches: The graph is constructed of the chosen attributes. Matched records of 
the graph will be linked together. The nodes of the graph represent the attributes. Edge is used to connect 
two nodes labeled by the similarity between them. The graph-based approach can achieve high linkage 
quality at the cost of higher computational complexity. 

 
Measuring the quality of record linkage (Quality matrix) 
According to Köpcke et al. [7], there are many requirements that any record linkage approach 

should fulfill. (1) Effectiveness: The main goal of record linkage approaches is to achieve high-quality 
results w.r.t precision and recall, which means the results of it, should only include elements that refer to 
the same real-world entity and no other elements. (2) Efficiency: record linkage systems should retrieve 
results in a fast manner even for a large or big dataset by applying some blocking approaches. (3) 
Generality: Entity resolution methods should be applicable in many matching tasks in various application 
domains and for the different data models. As Yousef illustrates in [15], the quality of record linkage 
approaches is measured by the confusion matrix, which is used to compare actual matched records with 
non-actual matched records. These measures include True Positive (TP), True Negative (TN), False 
Positive (FP), and False Negative (FN). 

 
Dimension 2: Dataset properties 
It represents the properties of the used dataset. Two properties are used: the first one is the type of 

the used dataset, and the second one is the size of the used dataset. The type of the used dataset may be 
structured, semi-structured or unstructured while the size of the used dataset may be a very large-scale 
dataset or Big Data. Structured data concerns all the data that can be stored in relational DB. It is very 
simple to enter, store or query. As the sources of data are growing very fast, structured data is only about 
10 % of the available data. Semi-structured data does not reside in a structured manner but it has some 
organizational properties. CSV, XML, and JSON files are examples of semi-structured data. Unstructured 
data represents the majority of Big Data as it represents about 80 % of the data and it cannot comply with 
any structure. It is everywhere and often includes images, text, videos, and web pages. Unstructured data 
is either human-generated or machine-generated. Satellite images, scientific data, photographs, videos, 
and radar or sonar data are all examples of machine data while social media data, mobile data and website 
contents represent human-generated data. Context analysis is used to organize a large amount of textual 
data into a standardized format. It could be carried out in two ways: quantitatively by counting the words 
or qualitatively by coding. The quantitative method is done by counting the frequency of certain 
keywords while the qualitative method is done by identifying similar themes or concepts in the dataset. 
 

Dimension 3: Parallel processing approaches for Big Data 
Preparing and cleaning data for an analytic process is a very important step to guarantee an accurate 

result because of the concept of garbage in garbage out. Actually, it is the most exhausting and time-
consuming process as it takes more than 80 % of the time dedicated to the analytic process. 44 billion 
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dollars were spent in 2014 to prepare the data integrated from many sources for the analytic process 
according to Gartner [5]. Record linkage is not an easy or trivial process as it takes many hours or even 
days if the size of the data is increasing [3]. In such cases, traditional record linkage will not be efficient 
nor effective hence, new approaches have been proposed to address the challenges of record linkage for 
Big Data. These approaches could be categorized into 4 main categories: MapReduce based, Spark-based, 
Flink based and other approaches. All three approaches are depending on partitioning the big dataset into 
a number of blocks and processing them in parallel according to the techniques of each approach. Next is 
a brief description of these approaches followed by a comparison between them. 
 

MapReduce-based approach 
MapReduce is a shared-nothing architecture specially designed to process the exhaustive workload. 

MapReduce depends on parallelly distribute the workload between many numbers of nodes in a way that 
guarantees fault-tolerant [16]. The main advantage of MapReduce programming model is its cost-
efficiency as it relies on commodity hardware, so it is not expensive to scale out at reasonable prices. 
MapReduce is designed to detect and handle failures at the application layer, as it provides fault tolerance 
and high availability. In MapReduce paradigm, the input data is partitioned into smaller chunks or blocks 
and each one is processed separately. The data in each block is presented in the form of a key-value pair.  

The processing is done where the data is located using 2 main functions, Map and Reduce. The Map 
function is responsible for generating an intermediate result in the form of key-value pairs according to 
the required query. The reduce function aims to generate the result by collecting the output of each 
mapper and produce one final output [16]. MapReduce can be utilized to solve the record linkage problem 
for Big Data. The Map function will be responsible for reading the input data in parallel after partition 
them into small chunks in key-value pairs (blocking key, entity). The default hash function is responsible 
for redistributing the blocks using their blocking key to the reduce functions. The reduce function is 
responsible for running the record linkage techniques in parallel using one or combinations of similarity 
techniques where blocks have the same blocking keys will be processed by the same reducer as illustrated 
in the pseudocode depicted in Figure 2 [9]. 
 
 

 
 
Figure 2 Pseudocode of record linkage for Big Data using basic MapReduce model [9]. 
 
 

Spark-based approach 
Apache Spark is a fast clustering computing technology built on top of the MapReduce framework. 

It extends the functionality of the MapReduce model to efficiently handle big data streams, as it is an in-
memory clustering computation. Handling data streams in memory helps to increase the processing speed 
of the applications, as there is no time spent on moving the data to and from disk. Spark provides an API 
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for many programs as Java, Scala, and Python. Spark provides a layer for a large number of tools such as 
Mlib for machine learning, Structure data processing, Spark SQL, GraphX for graph processing, and 
Spark Streaming for stream processing [17]. 

Spark is a framework based on the design of Resilient Distributed Dataset (RDD). There are 2 types 
of RDD operations: transformations and actions. Transformation is a function, which produces a new 
RDD from the existing one. There are many functions of transformations such as map(), unions(), 
distinct(), groupby(), key(), sortbykey() and join(). Actions are following transformations and return 
results to the driver program. There are many functions of actions as collect(), Count(), reduce(), take(), 
CountByValue(), foreach(), and aggregate(). Transformations are lazy executions that mean they should 
be followed by actions to take place. In-memory computation is the main advantage of Spark, which 
means intermediate data is kept in memory, therefore it will allow 100 times faster computations than the 
Hadoop MapReduce paradigm [18]. 
 

Apache Flink-based approach 
Apache Flink is an open-source stream processing framework developed by Apache software 

foundation. It is a distributed streaming engine written in Java, Scala, Python, and SQL. Flink executes 
the program in a parallel manner. It also enables the execution of batch and streaming processing. Also, it 
provides a high throughput, low latency streaming engine. Flink is used for executing the data as a 
pipelined fault-tolerant data flow [19].  

Flink architecture has four main layers, which are deployment, core, APIs, and libraries. The core of 
Flink is a distributed data flow engine, which is responsible for executing data flow programs. Flink has 
two types of APIs, the first one is dataset API which is used for processing finite datasets (batch 
processing) and the second one is data stream API that is used for processing potential unbounded data 
streams (stream processing). Flink core runtime is a streaming data flow engine and both dataset and data 
stream APIs create runtime programs executable by engines on top of the core APIs. Flink has libraries 
and APIs that generate datasets and data stream API programs. Currently, there are many specific 
libraries such as Flink machine learning for machine learning, Gelly for graph processing, and table for 
SQL-like operations. Flink cluster includes three types of processes: the client, job manager, and track 
manager. Clients take the program code, transform it into a data flow graph, and then submit it to the job 
manager. The transformation phase examines the schema of data exchanged between operators and 
creates serializer and other schemas specific code. Dataset programs go through a query optimization 
phase similar to the optimizer of the relational database. The job manager is responsible for coordination 
between the distributed executions of the data flow, as it tracks the progress and state of each operator and 
stream, schedules new operators, and finally monitors checkpoints and recovery. The actual data 
processing happens in the task manager, which is responsible for the execution of one or more operators 
that produce streams and report the status of them to the job manager. The task manager keeps a buffer 
pool to buffer the streams and the new connections to exchange the data streams among operators [19]. 
 

Other approaches 
This category discusses studies that process Big Data using approaches rather than MapReduce, 

Spark, or Fink. There are many popular programming languages for data science as R, SAS, and SPSS. R 
specifically gains a lot of popularity, as it is an open-source statistical programming language with some 
extensions that support machine learning and data processing tasks. Currently, more than 8,000 packages 
could be easily downloaded from Cran. R has many limitations as, it is a single-core, single-threaded 
because of its sequential processing, does not support parallel processing, supports in-memory processing 
as data has to be loaded in ram, and finally, it is not a distributed processing. R has a package for record 
linkage called record linkage, which aims to facilitate the record linkage process. The record linkage 
package provides a way to perform and evaluate efficient record linkage methods. To reduce computation 
time, blocking methods could be employed [20]. 

There is an increasing need for interactive analysis for Big Datasets. Data scientists often use R to 
perform advanced analytics on the dataset, however, data analysis using R is limited by the available 
memory on a single machine, as it is single threading, so it is often impractical to use it on a large dataset. 
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Many solutions address these limitations by better I/O support, integration with Hadoop, and by designing 
a distributed R runtime that can be integrated with DBMS engines. Venkataraman et al. [21] present a 
SparkR, an R package with a frontend to Spark which uses Spark’s distributed processing capabilities to 
analyze large datasets from R shell. SparkR aims to scale R programs and deploy them across some 
workloads. 
 

Comparison between MapReduce, Flink and Apache Spark 
Hadoop, Spark, and Flink are the top 3 Big Data technology that entered the IT market so rapidly. 

Spark entered the market because of the Hadoop limitations, as Hadoop does not support real-time data 
processing, only batch processing is supported. Besides, Hadoop MapReduce is not efficient with 
processing small datasets. Finally, Hadoop MapReduce has a latency time. The Apache Flink appears 
because of the limitations of Spark such as latency, manual optimization, and less number of algorithms. 
A detailed comparison is illustrated in Table 1. 
 
 
Table 1 Comparison between Hadoop MapReduce, Apache Spark, and Apache Flink. 
 

Criteria Hadoop MapReduce Apache Spark Apache Flink 
Data processing Batch processing  Batch processing  

Stream processing 
Batch processing  
Stream processing 

Performance Slower than Spark or 
Flink 

Its stream processing is not 
much efficient like Apache 
Flink as it uses micro-batch 
processing. 

Excellent as compared to 
any other data 
processing system  

Fault tolerance Support fault tolerance  Support fault tolerance  Support fault tolerance  

Scalability Scalable  Scalable  Scalable  
Optimization Manually optimized  Manually optimized  Has an optimizer 

Latency Higher latency than both 
Spark and Flink 

Relatively faster than Hadoop 
MapReduce  

Low latency and high 
throughput 

Processing speed Slower than Spark and 
Flink.  

100 times faster than 
MapReduce (due to in memory 
computations of it)  

Faster than Spark 
because of its streaming 
architecture  

Real-time analysis No real-time analytics  Perform real-time data analysis Perform real-time data 
analysis 

Machine Learning Requires Machine 
Learning tool as Apache 
Mahout 

Has its own Machine Learning 
library (MLlib)  

Has its own Machine 
Learning library 
(FlinkML)  

High availability Configurable in high 
availability mode 

Configurable in high availability 
Mode 

Configurable in High 
Availability Mode 

Duplication elimination There is no duplication 
elimination 

Processes every record exactly 
one time hence eliminates 
duplication 

Processes every record 
exactly one time hence 
eliminates duplication 

 
 
 
 
 

http://data-flair.training/blogs/hadoop-high-availability-tutorial/
http://data-flair.training/blogs/hadoop-high-availability-tutorial/
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Classification of the covered studies according to the parallel processing approaches for Big Data 

The techniques that handle the increasing volume of data depend on parallel processing, where the 
input data is partitioned into several blocks to distribute the workload between them, then these blocks 
will be processed using one of the technologies described above.  

This paper aims to conduct a comparative study of record linkage approaches for Big Data. To 
accomplish our comparative study, we searched many electronic databases to determine if similar work 
has been performed or not and locate the most recent and relevant studies. We conducted our search using 
search strings constructed using combinations of keywords and synonyms. The search string included 
(record linkage AND big data) OR (entity resolution AND big data) OR (duplicate detection AND big 
data) OR (data matching AND big data) OR (deduplication AND big data) OR (MapReduce AND entity 
resolution) OR (MapReduce AND record linkage) OR (MapReduce AND deduplication) OR 
(MapReduce AND deduplication) OR (Spark AND entity resolution) OR (Spark AND record linkage) 
OR (Spark AND deduplication) OR (Spark AND deduplication) OR (Flink AND entity resolution) OR 
(Flink AND record linkage) OR (Flink AND deduplication) OR (Flink AND deduplication) OR (parallel 
processing approaches for Big Data) AND (Data >=2012). From the entire received list, we choose the 
most recent publications. We selected 21 studies from 2012 to our present date. We limited our search to 
only include English papers published in journals or conference proceedings. We excluded papers that are 
not directly related to our research and paper that have not any data about them. We also excluded news, 
comments, and a duplicate paper of the same study. The inclusion of the papers depends on its title and 
abstract where the title by itself may not sufficient to determine the inclusion of the paper as a candidate 
study. If the title and abstract are not enough to take the decision, then the introduction is read or even the 
whole paper. Papers passing the selection criteria are read in-depth to fill a pre-defined extraction form. 
We created an extraction form to extract relevant information from each selected paper. The extraction 
form is organized into 3 tables. Table 2: contains the relevant papers covered in the comparative study. 
Table 3 contains the summary and abbreviations of the phases, properties, and techniques of the three 
dimensions of the comparative study, and finally, Table 4 presents the results of the comparative study 
according to the three proposed dimensions. 

As the topic of the research is still recent, the number of found studies is limited. The studies in this 
paper are divided according to the parallel processing approaches discussed before to four categories. 
Category 1 contains studies that adopt MapReduce based approach for resolving duplicates. This category 
has ten papers. Category 2 contains studies that adopt Spark-based approach for resolving duplicates. This 
category contains eight papers. Category 3 contains studies that adopt Flink based approach for resolving 
duplicates. This category has 2 papers. Category 4 contains studies that adopt other approaches rather 
than MapReduce, Spark, or Flink. This category also has only one paper. In the following subsections, we 
will explain each category. 
 
 
Table 2 Studies Covered in This Research. 
 

Study Number (SN) Study name Publication year 

S1 Spark-based workflow for probabilistic record linkage of healthcare 
data 

2015 

S2 Distributed holistic clustering on linked data  2017 
S3 Data linkage for Big Data using Hadoop MapReduce 2015 
S4 Entity resolution in Big Data framework 2015 
S5 Geocoding billion of address: towards a special record linkage system 

with Big Data 
2012 

S6 Big Data entity resolution from highly to somehow similar entity 
descriptions in the Web 

2015 
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Study Number (SN) Study name Publication year 

S7 Cross language duplicate record detection in Big Data 2015 
S8 Elodu: Entity resolution in Big Data 2015 
S9 A Machine Learning approach to census record linking 2016 
S10 Minoan ER: Progressive entity resolution in the Web of Data 2016 
S11 Hadoop framework for entity resolution within high-velocity streams 2016 
S12 SparkER: Scaling Entity resolution in spark 2019 
S13 Data matching and deduplication over Big Data using Hadoop 

framework 
2016 

S14 BigDedup: A Big Data Integration Toolkit for duplicate detection in 
industrial scenarios 

2018 

S15 Entity Resolution and data fusion an integrated approach 2019 
S16 Parallel Entity Resolution with Apache Spark 2017 
S17 Scalable Matching and Clustering of Entities with FAMER 2018 
S18 An efficient Spark-Based adaptive windowing for entity matching 2017 
S19 Parallel duplicate detection in adverse drug reaction database with 

spark 
2018 

S20 Exploring Spark-SQL-Based Entity Resolution using the persistence 
capability 

2018 

S21 Dedoop: Efficient Deduplication with Hadoop 2012 
 
 

Category 1: Papers adopted MapReduce approach 
MapReduce is used to parallelize the process of record linkage effectively and efficiently. 

Parallelizing the process of record linkage depends on effectively distribute the workload between many 
nodes exploiting the techniques of adaptive blocking [22]. The papers adopt this approach are the 
majority of the studies being explored. Ten studies adopted this approach. Next, are a summary of each 
study. 

In S3, C et al. [23] proposed a method based on One Class-Clustering Tree (OCCT) to characterize 
the entities that should be linked together. OCCT is built using the MapReduce framework for parallel 
execution of one-to-many record linkage tasks to reduce their associated execution time. The objective 
was to match records from a dataset with their corresponding records in the other dataset using the One-
Class Clustering Tree. In OCCT, each one-to-many record linkage task is executed using the Map class 
while the reducer is responsible for combing the results of all mapper tasks. The proposed solution of 
record linkage is implemented using the MapReduce framework and consisted of two steps. The first one 
is linkage model creation where the clustering tree is created using maximum likelihood splitting to 
determine which attributes will be used for building the tree. The second step is the leaf representation in 
which each leaf has a dataset containing matching records from the other dataset.  

In S4, Kejriwal [23] discussed the record linkage in Linked Open Data (LOD). LOD is a collection 
of Resource Description Framework (RDF) dataset. LOD currently contains over 30 billion triples over 
500 million property edges publishes in over 300 datasets. The aim of this paper is to build an 
unsupervised record linkage prototype, which accepts N ≥ 1 heterogeneous datasets as inputs and outputs 
a set of matched entities. The current record linkage system is only designed for N = 1 or N = 2. Kejriwal 
[23] designed a workflow for arbitrary N, which is an area for research and involves a novel challenge. 
The workflow starts by accepting N heterogeneous datasets then goes through 2 MapReduce Algorithms. 
The first MapReduce workflow accepts N heterogeneous datasets as inputs and learns N-way Blocking 
schema and train N-way classifier while the second MapReduce algorithm accepts the output of the first 
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MapReduce algorithm and N heterogeneous datasets as inputs. The output of the second MapReduce 
algorithm is the clusters of matching entities. 

In S5, Xu et al. [25] implemented a geocoding billion address using Hadoop and Amazon Web 
Service (AWS) cluster. They deployed it on 25 nodes of the Hadoop cluster. The system begins with a 
data preparation phase, which takes billions of addresses as an input to extract full addresses string, assign 
a unique id, and remove the redundant address. The second phase is running Intelius Address Parser IAP 
on Hadoop cluster setup on AWS consisting of 25 nodes. The execution time takes 38 h, which is less 
than any commercial tool. Although partitioning the Big Data for parallel execution is very important for 
efficient and effective record linkage, they did not use any blocking methods, which of course will have a 
great impact on execution time. 

In S6, Efthymiou et al. [26] focused on record linkage for the web data i.e. identifying descriptions 
that refer to the same real-world entity. They used blocking as a pre-processing method to compare only 
elements in the same block. They also studied existing blocking algorithms to determine the factors that 
make blocking algorithms take different decisions about the potential matching of two descriptions. They 
proposed 3 different blocking methods. The first one is “token clusters” in which descriptions in the same 
block should at least share a common token. The second one is the “attribute cluster” where descriptions 
should at least have a common token in attributes values that have similar values overall. The third one is 
“prefix-infix-suffix blocking” where also the descriptions should share a common token at least in their 
literal values. They adopt MapReduce in evaluating each of the three blocking techniques using real data 
from billions of triples datasets. They perform pairwise Jaccard similarity measures between trigram sets 
of all attributes. They concluded that highly similar descriptions are met in central Linked Open Data 
(LOD) and have many common tokens in their descriptions, while somehow similar descriptions are met 
in the peripheral collections and have few common tokens in their attributes. 

In S7, Yousef [15] discussed duplicate detection when the same object is represented in multiple 
languages especially the name of the object. This study presented a generic cross-language based solution 
architecture for duplicate record detection. The current duplicate detection tools have many limitations for 
detecting the object’s name represented in many languages like Arabic, English, French, German, and 
Greek. Architecture had been proposed to support duplicate detection of the name of the object written in 
many languages. The proposed architecture was designed using a dictionary based on phonetic algorithms 
and supports different blocking techniques. The proposed duplicate record detection framework began 
with stating the required information about language extension, data sources, blocking options, and other 
parameters for the duplicate detection process. General cleaning and standardization rules are applied to 
the dataset containing Arabic or English languages. As the Arabic language is detected, a special 
treatment is applied to cover the wide range of typographical variations of Arabic. To reduce the 
complexity of the overall duplicate detection process, a blocking technique is performed. To detect the 
duplicate records, they are compared using Jaro-Winkler string similarity matching. After calculating the 
similarity between records, they are classified into duplicates, non-duplicates, and possible duplicates. 
The proposed framework used training data in order to identify the upper and lower bound of the 
threshold value. The final step of the framework is a quality evaluation, which is done using a confusion 
matrix. Implementing the above framework in Big Data is done using Hadoop and HBase.  

In S8, Pham et al. [27] discussed and illustrated the usage of Hadoop for entity resolution in Big 
Data. The proposed workflow consists of four MapReduce functions. Those functions are counting 
frequency, token ordering, similarity join, and similarity join post-processing. Each of them is a separate 
java function consists of mappers and reducers. The count frequency job takes as input the dataset sorted 
in HDFS, finds the join fields and divide it into tokens, calculate token frequency and finally write token 
and their frequency as key-value pairs in a MapReduce job. The second job (token order) swaps key-
value pairs and sorts the tokens. The third job (similarity join) accepts the token ordering of the two 
datasets as inputs. The candidate records are found using the order of tokens, and then those candidate 
records are checked to find records that are joined together. The final job is similarity join post-processing 
which filters the last job output to get clean results. 

In S10, Efthymiou et al. [28] presented a Minoan platform for resolving similar entity descriptions. 
The entities are presented in the form of Resource Description Framework (RDF) DB. The proposed 
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platform consists of many steps that started with blocking and meta-blocking. Entities in the same block 
will only be compared using similarity matching algorithms. It is the only study that applies pruning 
methods as it accompanies blocking with meta-blocking where meta-blocking prunes or discards 
comparisons between descriptions that share few common blocks and are not likely to match. Minor 
entity resolution extended the traditional entity resolution workflow by a scheduling phase that will select 
the pairs of the description, which will be compared in the entity matching process and their order. 

In S11, Benny et al. [29] proposed a Hadoop MapReduce framework for entity resolution. The 
proposed framework consists of six steps. In step 1, preprocessing was done where unwanted words such 
as stop words were removed. The output of this step was a set of entities. This output was used as an 
input to the second step (token blocking step). The output of this phase was a set of tokens from input 
data. The third phase was a blocking graph. The input of this phase was a collection of blocks to construct 
a blocking graph (G) from its block assignments. The nodes of the graphs were the elements. The values 
in the edges represented the frequency of the tokens between two elements. The next phase was the 
pruning phase where some edges with less weight were removed. The next step was the entity resolution, 
which performed the similarity computation, and then the results were passed to the mappers. Similarity 
computation was done using Hive user-defined function. The results of the function were passed to the 
reducer phase. The average of thirteen similarity measures was used to calculate the similarity between 
two elements. The calculated similarity was compared with a threshold value. Actually, using 13 different 
kinds of similarity measures is a huge number, which was not appropriate for the big dataset, as it would 
take a very long processing time. In the reduce phase, the average of the calculated similarity was 
compared with the threshold value. If it was greater than the threshold value, then the pairs were 
considered matched. The final step was generating rules, where the matched pairs were stored. These 
rules were used to test the new data and were updated periodically with the entry of new entity pairs. 

In S13, Albanese et al. [30] proposed a method for solving entity resolution and deduplication 
problems using MapReduce over the Hadoop framework. The proposed method includes pre-processing, 
indexing by one or more key fields using slandered blocking, comparison, and classification tasks. Using 
more than one blocking key field to partition the dataset may generate a redundant comparison of records 
if two records have similarities in more than one key field. To avoid this problem, they used a method 
combiner MapReduce which is used as a filtering or aggregation step to prevent the map phase to write 
duplicate pairs (key, value) that are then processed by the reducer phase. This method operates on one or 
more datasets and can work on structured and semi-structured datasets. They used the standard partitional 
to distribute candidate records on reducers. Using a standard partitioner is vulnerable to data skew. 

In S21, Kolb, et al. [31] devolved a tool called Dedoop (Deduplicate with Hadoop) which supports 
MapReduce-based Entity Resolution for large datasets. Dedoop had a GUI for its workflow that consisted 
of three steps; blocking, similarity computation, and matching decision of the input blocks depending on 
their similarity value. The final step (match classification) could depend on a trained classifier using a 
Machine Learning algorithm on the training dataset. Several blocking techniques could be used in the 
blocking, similarity computation, and match classification. Dedoop did not offer any pruning steps to 
reduce the number of unnecessary comparisons.  

 
Category 2: Papers adopted Spark 
Eight studies adopted this approach. Next, are a summary of each study. Study1 (S1) adopted a 

Spark bases to detect duplicates. In S1, Pita et al. [18] presented Spark-based framework of probabilistic 
record linkage. The proposed framework integrated three databases from different sources. They also 
used a bloom filter technique for anonymization before applying the linkage stage. The framework 
consisted of four phases: 

• Phase 1: data quality assessment. Aims to identify the attributes more suitable for probabilistic 
record linkage. The attributes were chosen based on their co-existence in the DB, their discriminatory 
capabilities, and their quality in terms of missing values or null. They used SPSS for achieving these 
tasks.   
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• Phase 2: Pre-processing. Aims to apply data transformation and standardization to prepare the 
dataset for record linkage process such as transforming to uppercase, substitute null values with pre-
defined values. For data privacy, a bloom filter has been applied to anonymize the fields before the record 
linkage phase takes place. Spark is used for performing the transformation and standardization tasks. 

• Phase 3: Linkage process. A deterministic record linkage had been applied between two DB 
using direct join and probabilistic record linkage where Spark was used to perform record linkage.  

• Phase 4: Evaluate data mart. SPSS was used to evaluate the produced data marts. 
 

Study12 (S12) Gagliardelli et al. [32] introduce SparkER, a distributed entity resolution tool that 
can scale entity resolution algorithms. SparkER runs on top of Apache Spark to take off the advantage of 
parallel processing and computations. SparkER in its first version focuses on blocking steps and 
implements both structure agnostic and blast meta-blocking approaches. Then, SparkER was extended by 
adding entity matching and entity clustering modules. Meta-blocking aims to restrict the collection of 
blocking by removing the least promising comparisons, which are achieving constructing graphs where 
nodes represent profiles and edges, represent comparisons. SparkER consists of 3 main modules: (1) 
blocker: it is responsible for taking the input profiles, performs a blocking phase, and produces the 
candidate pairs as output; (2) entity matcher: it takes the candidate pairs generated by the blocker and 
label them as matched or unmatched; (3) entity cluster: takes the matcher pairs to group the similar 
entities on the same cluster. 

Study14 (S14) Gagliardelli et al. [33] present dedup, a toolkit. An efficient toolkit to detect 
duplicate records on big data sources using Apache Spark. It can process structured and unstructured data 
in an efficient manner. They implement two blocking techniques to reduce the number of comparisons. 
The first one is schema-agnostic blocking which is employed to avoid schema alignment (it does not 
consider the schema) which is a heavy task in the case of different data sources. For example, the token 
blocking is used to generate a blocking key that will result in a high recall but a very low precision 
because it retains a high number of unnecessary comparisons. To overcome such a problem and improve 
the precision, Simonini et al. [34] present a schema-aware version of token blocking called loose schema-
aware blocking (LSB). LSB generates clusters of similar attributes by applying LSH on their values and 
give them weight, then apply token blocking in which records have the same blocking key are clusters 
together only if the blocking key belongs to the same cluster of attributes. However, using blocking is not 
adequate to reduce the number of comparisons; more sophisticated techniques are required. Papadakis et 
al. [35] proposed meta-blocking which aims to solve that problem. Meta-blocking depends on creating 
clusters that contain entities that share the same tokens, then, a graph is constructed where nodes are 
entities and edges represent that they have a common token indicated by weights such that higher values 
of them represent a higher value of tokens. All edges have a weight less than a threshold value (the 
average value of all edges) are pruned. They used 3 real-world datasets to test BigDedup. They measure 
the performance in terms of precision, recall, and execution time. All three datasets have a ground-truth 
that provides the true duplicate which made it easy to test the proposed tool. BigDedup is not tested using 
Big Data in a distributed manner because all the three datasets have a very small size that doesn't require 
a cluster, so, they only perform tests on a single machine. 

Study15 (S15) Beneventano et al. [36] presented SparkER-MOMISDF (Spark Entity Resolution 
Mediator envirOnment for Multiple Information Sources Data Fusion) where SparkER presented in [32] 
will be extended with post-processing methods to obtain one-to-one matching by integrating SparkER 
with the MOMIS framework. The output of SparkER will be used as an input to the MOMISDF system. 
MOMISDF is responsible for performing data fusion and it is extended with a method for the evaluations 
of data fusion results. The complete SparkER-MOMISDF workflow consists of 2 main parts: (1) 
SparkER: it consists of two main modules; (a) Blocker: which performs blocking of the input records and 
provides candidate pairs as output. (b) Entity matcher: it takes the candidate pairs provided by blocker 
and labels them as matched or un-matched by comparing pairs’ similarity with threshold value then 
producing a match table of similar records. (2) the one-to-one matching module takes match table as an 
input (Match table may contain many to many matching) and returns a one-to-one matching. (3) 
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MOMISDF: it is responsible for performing data fusion of the input records using a one-to-one matching 
table.  

They implement three strategies to perform one-to-one matching: (1) symmetric best match (Max-
both): where for every record, only the best matching record from other sources is accepted. (2) Max. 
Weight Matching(MWM): it is the matching that has the max. A weight that maximizes the sum of the 
overall similarities between records in the final linkage results (3) Stable marriage (SM): a matching is 
stable if there are two records of different classes who both have higher similarity to each other than to 
their current matching model. 

Study16 (S16) Chen et al. [37] proposed and implement a parallel and scalable entity resolution 
algorithm, which can run on a big data analytics platform of Apache Spark. They adopt TF-IDS weights 
of tokens to improve the precision and efficiency of the algorithm. The proposed algorithm is scalable for 
processing large datasets. It consists of four phases: data loading and pre-processing, TF-IDF computing, 
Similarity measure, and evaluation of the algorithm. Different levels of parallelization are used to analyze 
the running time of the algorithm. Spark was running on the Yarn cluster of Cloudera. They developed 
four servers in the cluster; one of them is a driver node and the others are working nodes. The 
effectiveness of the algorithm is evaluated using a golden standard dataset. 

Study18 (S18) Mestre et al. [38] investigated the use of Spark to perform parallel entity matching 
using a variation of sortied neighborhood method (SNM) that uses a variety (adaptive) window size. They 
propose Spark Duplicate Count Strategy (SDCS ++), a spark approach for adaptive SNM that aims to 
enhance the performance of it. The evaluation of the approach shows an increase in the performance of 
parallel DCS regarding the entity matching execution time. They Proposed an approach that combines 
DCS ++ and its efficient parallelization using Spark, considering load balancing techniques. By using 
multiple spark iterations and customize data replication to allow resizing of the adaptive window. The 
approach also solves the data skew by applying an automatic data partitioning strategy that provides load 
balancing across all working nodes. They evaluate the S-DCS ++ and show that the first approach 
provides a better performance comparing the others by reducing the execution time. Evaluation is 
implemented using real data in a real cluster environment. They implemented three transformation steps 
to perform adaptive windowing entity matching. They improve load balancing by equally distribute the 
entities between workers. By doing this, each worker will perform a maximum number of window's 
slides.  

Study 19 (S19) Wang et al. [39] proposed a scalable duplicate detection workflow developed using 
apache Spark to address the problem of duplicates in Adverse Drug Reaction (ADR) report databases. 
These reports often come from a variety of sources. They proposed a method that uses a KNN (K-nearest 
neighborhood) classifier to identify labeled report pairs to reduce the high computational cost of KNN. 
They partitioned the labeled data into clusters for parallel computing. The duplicate detection workflow 
of ADR contains the following major components: (1) report Database: it stores reports collected by 
regulation and new reports are continuously added to it. (2) text-processing module: it contains text 
processing components that cleanup text data in the report using NLP to extract useful information from 
it. (3) Pair-wise distance computing module: it computes the pair-wise distance among the set of reports 
from the reports database. (4) training databases (Labeled datasets): the system contains two temporary 
databases, the first one has duplicate report pairs and the second one contains a sample of non-duplicate 
pairs. initial duplicate/non-duplicate is done manually by a domain expert. (5) classification module: 
report pairs are input to a classification module that computes the scores of each pair and generates a list 
of duplicate pairs using a threshold value. They used KNN classifier because its results are easy to 
explain by human intuition. They used an exact match for numeric and categorical fields. For string 
fields, they used Jaccard similarity as a text similarity measure. 

Study 20 (S20) Chen et al. [40] This paper investigates the use of Spark-SQL for efficient parallel 
entity resolution and explores the persistence capabilities of spark to see its effect on performance. 
Therefore, they optimized the baseline workflow by applying different persistence options then they 
evaluated the efficiency and speed. They implemented a baseline workflow with Spark-SQL considering 
suitable and scalable algorithms. They concluded that the runtime of the baseline Spark-SQL entity 
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resolution is optimized up to three times when employing the best persistence options. In addition, they 
also implement the same entity resolution process using spark-RDD-based to compare it with Spark-SQL-
based. They found that spark-SQL has achieved an average of 2.2 times the efficiency of Spark-RDD-
based entity resolution. Spark-SQL-based entity resolution process begins with loading input data into 
Spark dataset with a balanced distribution to all available nodes. The pre-processing step is performed to 
clean and standardize the input data then the blocking is performed. The blocking step includes blocking 
key generation and join sub-steps. They used a standard blocking method for blocking. They used a 
double Metaphone algorithm to transform attributes values where letters that share a similar 
pronunciation are transformed to the same representation to handle common typo mistakes. Next, the 
similarity on each attribute is calculated for candidate pairs and then aggregated into a total similarity 
score. The chosen algorithm of calculating similarity score is chosen according to attribute properties    
(i.e. Jaro-Winkler distance is suitable for string attributes). A threshold value is used to judge whether a 
pair is matched or not, Then the matching result is saved, and the confusion matrix is calculated with the 
help of an external ground truth file. No load-balancing strategy is performed to avoid data skew and no 
pruning techniques are used to exclude unnecessary comparisons. 
 

Category 3: Papers adopted Flink  
Two studies adopted this technique in selected studies. In S2, Nentwig et al. [41] proposed a 

distributed holistic approach that links many data sources based on the clustering of similar entities. A 
cluster linked data approach had been proposed to cluster entities from multiple data sources. Entities that 
represented the same real-world entities were placed in one cluster. The approach depended on owl: same 
as links and can deal with entities of different semantic. Apache Flink had been used to support parallel 
execution of complex tasks of big datasets as similarity computations. Blocking techniques were 
implemented to reduce unnecessary comparisons. The approach began by reading the input entities into a 
graph-processing library of Flink (Gelly Graph) (G) with vertices (V) and edges (E). The second step was 
applying a set of transformations to generate entity clusters (C). The approach had three phases, the first 
one was the initial clustering, the second one was the cluster decomposition, and the third and the last one 
was the cluster merge. The first phase started with preprocessing where similarity was computed for a 
given input edge based on vertex property values. Then, initial clustering was created where a cluster ID 
was assigned to each vertex. The second phase was a cluster decomposition. It consisted of many sub-
phases: the first one was the type-based grouping. It aimed to split clusters into sub-components 
depending on the semantic type. The second sub-phase was similarity-based refinement where clusters 
were decomposed again by removing non-similar entities from their clusters. The last sub-phase was the 
creation of a unified cluster representation for each cluster based on the contained entities. The last phase 
was cluster merge where highly similar clusters were combined into larger ones. To avoid the complexity 
of comparing all clusters, a standard blocking strategy had been applied.   

Study 17 (S17) Saeedi et al. in [42] proposed a scalable and distributed entity resolution framework 
for big data called FAMER(FAst Multi-source Entity Resolution system) developed used Apache Flink 
and a new extension for graph analytics called Gradoop. FAMER can match entities from multi-sources. 
It includes multiple clustering of a schema to group matching entities. It also includes new approaches 
tailored to multi-source entity resolution. In addition, they perform a detailed comparative evaluation of 
eight clustering schemas using different, real, and synthetically generated datasets. 

FAMER has 2 main parts, which are the similarity graph generator and entity clustering. Similarity 
graph generator has three steps (blocking, pair-wise comparison, and matching classifier) which can be 
customized according to configuration input. In the blocking step, only entities that reside in the same 
block will be compared. A blocking key may cause skewed blocking size, which can result in significant 
runtime problems in distributed implementation. To achieve load balancing, FAMER supports the 
blocking-split method proposed where large blocks are separated again to be processed in several 
processing nodes. After blocking, all entities of the same block are pairwise compared. Currently, 
FAMER will support both supervised and unsupervised matching classification models. The output of the 
previous step is a set of matching entity pairs linked together with similarity values and stored in a 
similarity graph where entities are represented as vertices and the calculated similarity is represented as 
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edges. They integrated entities from different sources and assumed that entities in the same source are 
free of duplicates. FAMER currently includes eight clustering techniques that are implemented and 
evaluated. 
 

Category 4: Papers adopted other approaches  
This Category contains studies that adopt other approaches rather than MapReduce, Spark, or Flink. 

Many approaches have been used such as R and Spark. R is a language for statistical computing. It has a 
complete package for record linkage. In S9, Feigenbaum et al. [43] proposed a standard census matching 
technique for constructing linked samples that could be replicated across a variety of cases. The proposed 
technique applied a machine learning classification and text comparison in record linkage for historical 
data. The technique adopted a supervised learning approach. The approach began with some aspects of 
data preparation as choosing variables that will be used to compare records then, matching 2 censuses 
databases, and extracting a sample of possible matching records. The next step is building a training 
dataset that will be used to tune the proposed matching algorithm. The proposed approach displays how 
many records needed to be manually coded as matched or non-matched before tuning the algorithm. In 
this study, a comparison between classification models as random forest, support vector machine, and 
probit model had been accomplished. The last one achieved the best performance. The proposed method 
used well-known tools like R and Stata. 
 
 
Table 3 Abbreviations Table.         

                                                                                                                                                                                                                                                            

Record linkage phases 
Properties of dataset Parallel processing 

approaches for Big Data Type Size 

Data Exploration (DE) Structured (S) 
Simi-Structured (SS) 
Unstructured (US) 
 
 
 
 
 

Big Data (BD) 
Very Large- Scale 
Dataset (VLSD) 
Small Data (SD) 
 
 
 
 
 

MapReduce (MR) 
Spark-based (Spk) 
Flink (FLK) 
Others (Stata, R, Python,…) 
Pruning Techniques (PT) 
 
 
  
 
 

Data Preparation (DP) 
Blocking Techniques (BLKT) 
Similarity Methods (SM) 

• Character Distance Similarity-Based (CDS) 
• Token Distance Similarity-Based (TDSB) 
• Phonetic Distance Similarity-Based (PDS) 
• Numeric Distance Similarity-Based (NDS) 
• Hybrid Approach (HA) 

Record linkage Approach (RLA) 
• Probabilistic (P) 
• Graph-Based (G) 
• Machine Learning (ML) 
• Distance-Based approaches (D) 
• Rule-Based (RB) 
• Hybrid Approach (HA) 

Quality Matrix (QM)    
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Results of the comparative Study on the selected papers. 

In Table 3, we summarize and abbreviate the phases, properties, and techniques of the three 
dimensions that formulate the comparative study discussed in section 2. The first one is the proposed 

record linkage phases, the second one is the dataset’s properties (i.e. its type and size), and the third 
and last one is the used record linkage approach for Big Data discussed in section 3. 

For size limitation, we create abbreviations of the components of three dimensions that formulate 
the comparative study. Table 4 presents the results of the comparative study according to the three 
proposed dimensions, which can be summarized as follows: 
 
 
Table 4 Comparative Analysis. 
 

SN 
Record linkage phases Dataset (DS) 

Parallel processing approaches 
for Big Data 

1.DE 2.DP 3.BLKT 4.SM 5.RLA 6.QM Type Size MR SPK FLK Others PT 
S1 √ √ √ (CDS): 

Dice Distance 
HA: 
(P) 
(D) 

√ 
(Execution Time) 

(S) 
 

VLSD X √ X X X 

S2 X √ √ (CDS) (G) √ (SS) BD X X √ X X 
S3 X X X NA (G) NA (S) 

(SS) 
BD √ X X X X 

S4 X X √ (CDS):  
Cosine similarity 

(G) NA (SS) BD √ X X X X 

S5 X √ X (CDS) (D) √ (S) BD √ X X X X 
S6 X X √ (CDS) (D) √ (SS) BD √ X X X X 
S7 X √ √ HA: 

(PDS), 
(CDS) 

(ML) √ (S) BD √ X X X X 

S8 X √ X (CDS) (RB) √ (SS) BD √ X X X X 

S9 √ √ √ (CDS) HA: 
(ML) 
(RB) 

√ (SS) VLSD X X X √  
(using 
R) 

X 

S10 X X √ NA (G) √ (SS) VLSD √ X X X √ 
S11 X √ √ HA: 

(CDS), 
(TDS), 
(PDS) 

(RB) √ (SS) BD √ X X X √ 

S12 X √ √ (CDS) (G) √ (S) 
(SS) 

NA X √ X X √ 

S13 X √ √ (CDS) (D) NA (S) 
(SS) 

BD √ X X X √ 

S14 X X √ (CDS) (G) √ (S) 
(SS) 

SD X √ X X √ 

S15 X √ X (CDS) (D) √ (SS) SD X √ X X √ 

S16 X √ X (CDS) (D) √ (SS) SD X √ X X X 
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S17 X X √ (CDS) (G) √ (SS) VLSD X X √ X X 

S18 X X √ (CDS) (D) √ (S) VLSD X √ X X √ 

S19 X √ X (CDS) HA: 
(ML) 
(D) 

√ (S) VLSD X √ X X √ 

S20 X √ √ (CDS) (D) √ (S) 
(SS) 

VLSD X √ X X X 

S21 X X √ (CDS) (ML) √ 
(Execution Time) 

(S) 
(SS) 

VLSD √ X X X X 

 
 

1. In record linkage phases section. 
• Despite the importance of data explorations, it is almost a non-existing phase in the studies 

covered in this paper. It is only performed in only (10 % of the studies). Data exploration is very 
important in bringing important aspects of the datasets being examined such as outliers, and null values to 
take actions regarding them. Actions may include filling null values with the values of similar attributes, 
taking the average value of similar attributes or in some cases discard the whole record. Not paying 
attention to this aspect may result in mismatching some records or decreasing the accuracy of Record 
Linkage classifiers. 

• Although Data preparation is highly affecting the accuracy of the results of record linkage 
classifiers, it is found only found in 62 % of the covered studies. Data preparation aims to manipulate the 
data to be ready for examination by Record Linkage algorithms because taking the data as it is will not 
guarantee to have accurate results of record linkage classifiers. Data preparation includes normalization, 
transformation, and standardization of the data. As an example, the male value of gender attribute may be 
stored as 'M' in one dataset and ‘1’ in another dataset. If we do not transform one value to the other, we 
will not be able to match them. 

• The blocking techniques are used in 67 % of the studies despite its importance in reducing the 
dimensional search space and hence affect the performance of record linkage approaches by decreasing 
the runtime. 

• The similarity measures are not available (NA) in two studies. 
• As depicted in Figure 3, there are many record linkage approaches used. Graph-based 

approaches are used in 33 % of the studies. Distance-based approaches are used in 33 % of the studies. 
Rule-based approaches are used in 10 % of the studies. Hybrid approaches are used in 14 % of the 
studies. Finally, Machine-learning approaches are used in 10 % of the studies. 

 

 
 
Figure 3 Record linkage approaches applied in the selected studies. 
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• Quality measures are used in 86 % of the studies, and not available in 14 % of them. Maybe the 
reasons for that are due to the unavailability of big golden datasets to test the record linkage approaches. 
Additionally, it is infeasible to have human experts dedicated to reviewing the accuracy of the results as it 
a very exhausting task and time-consuming. A summary of the results of record linkage phases is depicted 
in Figure 4. 
 

 
Figure 4 Summary of results of the record linkage phases in the selected studies. 
 
 

2. In the dataset section. 
• About (48 % of the studies) conduct their experiments on semi-structured datasets. The rest are 

structured datasets (28 % of the studies) and 5 studies (24 % of the studies) integrate structured and semi-
structured sources as depicted in Figure 5. 

• About (43 %) of the Record Linkage approaches are tested on real clusters using Big Datasets, 
whereas, the rest is examined using a Very Large-Scale Dataset (38 %), small datasets (14 %), and NA (5 
%). Record linkage approaches for Big Data are never explored using un-structured dataset in the covered 
studies. 

 
Figure 5 Summary of the dataset types in the selected studies. 
 
 

3. In parallel processing approaches for Big Data section. 
• Most of the studies process big data in parallel using MapReduce (48 %). Because of the 

limitations of MapReduce, new approaches have been adopted as Spark, Flink, and R. About 38% of the 
studies implement record linkage in parallel employing Spark, and 10% of them utilizing Flink, and only 
one study (4 %) adopted R. Figure 6 summarizes the parallel processing approaches for Big Data that are 
implemented in the selected studies. 
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• Despite the importance of pruning techniques in reducing the number of unnecessary 
comparisons to gain, and therefore gaining a more effective Record linkage results. It is only applied in 
eight studies (38 %). 
 
 

 
Figure 6 Summary of the used parallel processing approaches in the selected studies. 
 
 
Conclusion and future work 

In this paper, we present a comparative study of the available literature about record linkage for Big 
Data. The comparative study has three dimensions; the first one is the six phases of record linkage 
process; the second one is the used dataset characteristics; the third and the last one is the parallel 
processing approaches of Big Data. From the comparative study, we conclude, first: data exploration is 
almost a non-existing phase although its importance of exploring dataset being examined. Second, 
techniques that handle data preparation and standardization are not exclusively discussed in the literature 
although they can directly affect the results’ quality because of the concept of garbage in garbage out. 
Third, handling unstructured data is never explored in the selected studies. Fourth, about half of the 
analyzed literature in the comparative study adopts MapReduce to handle the parallel processing of Big 
Data despite its limitations, therefore, there is a clear need for more researches adopted Apache Spark and 
Flink approaches for detecting and resolving duplicates in Big Data. Using Spark or Flink instead of 
MapReduce is more efficient as they guarantee high performance, low latency, and high processing speed 
compared to MapReduce due to their in-memory clustering computation and stream processing, therefore, 
Spark is the most appropriate solution in case of the need for real-time record linkage. The comparative 
study includes many recent researches that address the record linkage for Big Data using Apache Spark 
but still, more work is needed as it is still brand new. In addition, Apache Flink has rarely applied to solve 
the problem of record linkage for Big Data. Fifth, Pruning techniques are used in less than 40 % of the 
selected studies despite their effect on reducing the search space therefore, more attention should be 
directed to pruning techniques especially with Big Data as it will have a very great effect on the 
performance as blocking is not the only way to reduce the number of comparisons. As future work, we 
will adopt in-memory processing techniques using Spark to handle the record linkage problem for the 
semi-structured big dataset. We will also exploit the dimensions of the comparative study, especially the 
first and last one by taking it as a framework to our proposed record linkage approach for big data and 
apply all the steps discussed in the first dimension. 
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