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Abstract

LetD be an integral domain. For sequences ā = (a1, a2, . . . , an) and I = (i1, i2, . . . , in) inDn with
distinct ij , call ā a (Dn, I)-polynomial sequence if there exists f(x) ∈ D[x] such that f(ij) = aj (j =
1, . . . , n). Criteria for a sequence to be a (Dn, I)-polynomial sequence are established and explicit structures
of Dn/Pn,I where Pn,I is the set of all (Dn, I)-polynomial sequences are determined.
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Introduction

For a fixed n ∈ N, by a polynomial sequence (of length n), we mean a sequence ā := (a1, a2, ...., an)
in Zn for which there exists f(x) ∈ Z[x] such that f(i) = ai for all i = 1, 2, . . . , n; we refer to f(x) as a
polynomial which generates the sequence ā. Denote by Pn the set of all polynomial sequences. Cornelius,
Jr. and Schultz in [1] characterized Pn using Lagrange and (implicitly) Newton interpolation polynomials
and determined the structure of Zn/Pn.

The main objectives of this work are first to extend the characterization of Cornelius-Schultz from Z
to an integral domain D and second, to determine their corresponding structure.

Throughout, let I = (i1, i2, . . . , in) ∈ Dn with distinct ij and let

Pn,I = {a = (a1, . . . , an) ∈ Dn | there exists f(x) ∈ D[x] such that f(ij) = aj for all 1 ≤ j ≤ n} (1)

be the set of all (Dn, I)-polynomial sequences. It is easy to see that the set Pn,I is a group under addition
and if a ∈ Pn,I then ca ∈ Pn,I for any c ∈ D.

Characterization

For a fixed sequence I as above and a sequence ā := (a1, . . . , an) ∈ Dn, the Lagrange interpolation
polynomial, [2, page 33], which interpolates the points (ij , aj) (1 ≤ j ≤ n), is defined by

La,I(x) :=

n∑
j=1

aj

n∏
m=1,m̸=j

x− im
ij − im

∈ DQ[x] (DQ the quotient field of D) (2)

and satisfies

La,I(ij) = aj (1 ≤ j ≤ n). (3)
†Presented at the International Conference in Number Theory and Applications 2018: December 13th - 15th , 2018
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Theorem 1. Let I = (i1, i2, . . . , in) ∈ Dn with distinct ij . Then ā = (a1, . . . , an) ∈ Dn is a (Dn, I)-
polynomial sequence if and only if La,I(x) ∈ D[x]n, the set of all polynomials in D[x] of degree < n.
Furthermore, La,I(x) is the unique polynomial of degree < n in DQ[x] that generates a.

Proof. If ā ∈ Pn,I , then there is f(x) ∈ D[x] such that f(ij) = aj (1 ≤ j ≤ n). We next let a polynomial
p(x) := (x − i1) · · · (x − in) ∈ D[x], deg p(x) = n. Since p(x) is monic, by the division algorithm,
f(x) = q(x)p(x) + r(x), where q, r ∈ D[x] with deg r < n. Evaluating at the points ij (1 ≤ j ≤ n), we
see that r(x) generates the sequence ā which shows that both r(x) and La,I(x) are polynomials in DQ[x]
of degree < n which agree at n distinct points and so both must be identical. The remaining assertions are
trivial.

Taking I = (1, 2, . . . , n) in Theorem 1, we recover [1, Theorem 2.1].

Given a set of n points (ik, ak) (k = 1, . . . , n), with distinct ik and ak being in D, the Newton
interpolation polynomial corresponding to the points (ik, ak) (k = 1, . . . , n) is defined as

Na,I(x) = b0,I + b1,I(x− i1) + b2,I(x− i1)(x− i2) + · · ·+ bn−1,I(x− i1)(x− i2) · · · (x− in−1), (4)

where bk,I =

k∑
j=0

aj+1∏k+1
m=1,m̸=j+1(ij+1 − im)

(0 ≤ k ≤ n− 1).Note that theNewton interpolation poly-

nomial can be obtained by solving the system of equations

Na,I(ik) = ak (1 ≤ k ≤ n) (5)

which can be done inductively. The elements

1, pi1 := (x− i1), pi2 := (x− i1)(x− i2), . . . , pin−1 := (x− i1)(x− i2) · · · (x− in) (6)

are referred to as the corresponding Newton basis polynomials [2, page 39-40].

Theorem 2. With the above notations, we have

Na,I(x) = La,I(x). (7)

Proof. By Theorem 1, La,I(x) is the unique polynomial with coefficients in DQ of degree less than n
generating a. Since Na,I(ij) = aj = La,I(ij) for 1 ≤ j ≤ n and degNa,I < n, they are identical.

Corollary 3. Let ā ∈ Dn. Then ā ∈ Pn,I if and only if

bk,I =

k∑
j=0

aj+1∏k+1
m=1,m̸=j+1(ij+1 − im)

(k = 0, 1, . . . , n− 1) (8)

is an element in D.

Proof. The result follows immediately from Theorems 1 and 2.

Taking I = (1, 2, 3, . . . , n) in Theorems 1 and 2, we get the following corollary.
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Corollary 4. Let ā ∈ Zn.
A) ([1, Lemma 2.2]) If Na(x) = b0p0(x) + b1p1(x) + · · ·+ bn−1pn−1(x), bk =

∑k
j=0

(−1)k+j

j!(k−j)!aj+1

(k = 0, . . . , n− 1), then

Na(x) = La(x). (9)

B) ([1, Corollary 2.4]) A sequence ā is a polynomial sequence if and only if each number

bk =

k∑
j=0

(−1)k+jaj+1

j!(k − j)!
(k = 0, 1, . . . , n− 1) (10)

is an integer.

It is of interest to investigate the above results for small values of n. Thus we obtain the following
result.

Lemma 5. With the above notations, the following statements hold:

A) For any I = (i1) ∈ Z, we have P1,I = Z.
B) For any a = (a1, a2), I = (i1, i2) ∈ Z2 where i1 < i2, we have

a ∈ P2,I if and only if a1 ≡ a2 mod (i1 − i2).

In fact, if I = (1, 2), then P2 = Z2.
C) For any a = (a1, a2, a3), I = (i1, i2, i3) ∈ Z3 where i1 < i2 < i3, we have

a ∈ P3,I if and only if
(a3 − a2) +m(i2 − i3)

(i1 − i3)(i2 − i3)
and m =

a1 − a2
i1 − i2

are integers.

In fact, if I = (1, 2, 3), then P3 = {(a1, a2, a3) ∈ Z3 | a1 ≡ a3 mod 2}.

Proof. We prove the above results as follows:

A) For any a ∈ Z there exists f(x) = a such that f(i1) = a. Thus P1,I = Z.

B) Let a = (a1, a2) ∈ Z2. ByCorollary 3, a ∈ P2,I if and only if b0,I = a1 and b1,I = a1

i1−i2
+ a2

i2−i1
=

a1−a2

i1−i2
are integers. Hence, a ∈ P2,I if and only if a1 ≡ a2 mod (i1 − i2). If I = (1, 2), then i1 − i2 = 1,

and so P2 = Z2.
C) Let a = (a1, a2, a3) ∈ Z3. Then

b0,I = a1, (11)

b1,I =
a1

i1 − i2
+

a2
i2 − i1

=
a1 − a2
i1 − i2

, (12)

b2,I =
a1

(i1 − i2)(i1 − i3)
+

a2
(i2 − i1)(i2 − i3)

+
a3

(i3 − i1)(i3 − i2)
=

(a3 − a2) +m(i2 − i3)

(i1 − i3)(i2 − i3)
, (13)

where m =
a1 − a2
i1 − i2

. (14)

By Corollary 3, ā ∈ P3,I if and only ifm = a1−a2

i1−i2
∈ Z and (a3−a2)+m(i2−i3)

(i1−i3)(i2−i3)
are integers . If I = (1, 2, 3),

then m = a1−a2

1−2 = a2 − a1 is an integer. Hence,

(a3 − a2) +m(2− 3)

(1− 3)(2− 3)
=

(a3 − a2) + (a2 − a1)(−1)

2
=

a3 − a1
2

− a2 (15)
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is an integer if and only if 2|a3 − a1. Thus a ∈ Z3 is a polynomial sequence of length 3 if and only if a1
and a3 are of the same parity.

The next result shows how to turn a sequence into a (Dn, I)-polynomial sequence.

Theorem 6. Let I = (i1, i2, . . . , in) ∈ Dn with distinct ij , let ā = (a1, a2, . . . , an) ∈ Dn and let

M =

n−1∏
j=0

Mj , where Mj =

n∏
m=1,m̸=j+1

(ij+1 − im) (j = 0, 1, 2, . . . , n− 1). (16)

Then Mā = (Ma1,Ma2, . . . ,Man) ∈ Pn,I .

Moreover, if D is a unique factorization domain, then M ′ā = (M ′a1,M
′a2, . . . ,M

′an) ∈ Pn,I

whereM ′ = lcm{Mj}n−1
j=0 andM ′ is the minimal element inD for which this is true for every sequence of

length n. The element M ′ is the minimal in the sense that if Lā ∈ Pn,I for all n then M ′ | L.

Proof. Using the above notation, since

bk,I =

k∑
j=0

aj+1∏k+1
m̸=j+1,m=1(ij+1 − im)

=

k∑
j=0

aj+1

Mj/
∏n

m=k+2,m̸=j+1(ij+1 − im)
(0 ≤ k ≤ n− 1), (17)

we see that Mbk,I ∈ Z and so Mā is a (Dn, I)-polynomial sequence.

IfD is a unique factorization domain, then lettingM ′ = lcm{Mj}n−1
j=0 , it is easy to see thatM ′bk,I is

in D.

To see that M ′ is the minimal element with the stated property, consider the following sequences in
Table 1.

Table 1 Sequences and its corresponding coefficients in the Newton interpolation polynomial

Sequence a b0,I b1,I b2,I . . . bn−1,I

a1 = (1, 0, 0, . . . , 0) 1 1
i1−i2

1
(i1−i2)(i1−i3)

. . . 1
(i1−i2)(i1−i3)···(i1−in)

a2 = (0, 1, 0, . . . , 0) 0 1
i2−i1

1
(i2−i1)(i2−i3)

. . . 1
(i2−i1)(i2−i3)···(i2−in)

a3 = (0, 0, 1, . . . , 0) 0 0 1
(i3−i1)(i3−i2)

. . . 1
(i3−i1)(i3−i2)(i3−i4)···(i3−in)

...
...

...
...

...
...

an = (0, 0, 0, . . . , 1) 0 0 0 . . . 1
(in−i1)(in−i2)···(in−in−1)

For each ai (1 ≤ i ≤ n), we see thatMi−1ai ∈ Pn,I and for any elementL ∈ D such thatLai ∈ Pn,I ,
we have Mi−1|L (1 ≤ i ≤ n). Therefore, by the definition of M ′, we have M ′|L, showing that M ′ is the
minimal element such thatM ′a ∈ Pn,I .

Before proceeding, let us work out two examples.

Example 1. a) Let D = Z, a = (2, 8, 12) and I = (5, 6, 8). We see that

Na,I(x) = −4

3
x2 +

62

3
x− 68 /∈ Z[x]. (18)
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So a ̸∈ P3,I over Z. Since M0 = 3,M1 = 2 and M2 = 6, M ′ = 6. We deduce that M ′a = (12, 48, 72) is
a polynomial sequence generated by −8x2 + 24x− 408 with respect to I = (5, 6, 8) in Z.

b) Let c = (4− i, 5, 6 + 2i) ∈ Z[i]3 and I = (i, 3i, 2 + i) ∈ Z[i]3. We see that

Nc,I(x) =
−9 + 13i

8
x2 + (7 + 4i)x+

55− 51i

8
/∈ Z[i][x]. (19)

So c ̸∈ P3,I over Z[i]. Since M0 = −4i,M1 = −4(1 + i) and M2 = 4(1 − i),M ′ = 8, we get that
M ′c = (32−8i, 40, 48+16i) is a polynomial sequence generated by (−3+5i)x2+(24+8i)x+(37−27i)
with respect to I = (i, 3i, 2 + i) in Z[i].

If D = Z and I = (1, 2, . . . , n), then we have the following result which is [1, Theorem 2.5].

Corollary 7. If a = (a1, a2, . . . , an) ∈ Zn, then

(n− 1)!a = ((n− 1)!a1, (n− 1)!a2, . . . , (n− 1)!an) ∈ Pn,I . (20)

Moreover, (n− 1)! is the least positive integer for which this is true for every sequence of length n.

Proof. Take I = (1, 2, 3, . . . , n). Using the same notation as in Theorem 6, we compute

Mj =

n∏
m=1,m ̸=j+1

(j + 1−m) = (−1)n−j−1(j)!(n− j − 1)! (0 ≤ j ≤ n− 1). (21)

Since (n − 1)! = (j)!(n − j − 1)!
(
n−1
j

)
(0 ≤ j ≤ n − 1), the integer Mj is a divisor of (n − 1)! for all

0 ≤ j ≤ n− 1 and Mn−1 = (n− 1)!. Hence, M = lcm(M1,M2, . . . ,Mn) = (n− 1)!.

Structure

In this section, we show that Pn,I is a rank n subgroup of the free abelian group Dn. We first show
that for any I ∈ Dn, we have Pn,I

∼= D[x]n as a group where D[x]n is the set of polynomial in D[x] of
degree less than n.

Theorem 8. The group Pn,I is isomorphic to D[x]n.

Proof. Define v : D[x] −→ Dn by v(f(x)) = (f(i1), f(i2), . . . , f(in)). Let f1, f2 ∈ D[x]n. Then

v((f1 + f2)(x)) = ((f1 + f2)(i1), (f1 + f2)(i2), . . . , (f1 + f2)(in)) (22)
= (f1(i1) + f2(i1), f1(i2) + f2(i2), . . . , f1(in) + f2(in)) = v(f1(x)) + v(f2(x)). (23)

Thus v is an additive homomorphism. We next show that v restricted to D[x]n is an isomorphism from
D[x]n to Pn,I . Let a = (a1, a2, . . . , an) ∈ Pn,I . Then there exists f(x) ∈ D[x] such that f(x) generates
ā. Again as in Theorem 1, f(x) = q(x)p(x) + r(x) where p(x) = (x− i1) · · · (x− in), q, r ∈ D[x] with
r = 0 or deg r < n. Evaluating at the points ij (1 ≤ j ≤ n), we see that r(x) generates the sequence ā. So
v is onto.

Let f, g ∈ D[x]n. Suppose v(f(x)) = v(g(x)). Then f(ik) = g(ik) for all 1 ≤ k ≤ n. Since both
deg(f) and deg(g) are < n and the polynomials f, g agree at n distinct points, they are identical, i.e., v is
one-to-one. Therefore v is an isomorphism from D[x]n onto Pn,I .

Walailak J Sci & Tech 2019; 16(9) 629
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We next consider the structure of Zn/Pn,I . For I = (1, 2, . . . , n) ∈ Zn, it was shown in [1, Theo-
rem 3.2] that

Zn/Pn
∼= Z/2!Z⊕ Z/3!Z⊕ · · · ⊕ Z/(n− 1)!Z. (24)

We use the technique similar to that in [1] to generalize the above result toDn/Pn,I .

Theorem 9. For n ≥ 2, let I = (i1, i2, . . . , in) ∈ Dn. If

k−1∏
m=1

(ij − im)/

k−1∏
m=1

(ik − im) ∈ D (1 < k < j ≤ n), (25)

then

Dn/Pn,I
∼= D/(i2 − i1)D ⊕D/(i3 − i1)(i3 − i2)D ⊕ · · · ⊕D/(in − i1)(in − i2) · · · (in − in−1)D.

(26)

Proof. For j, k ∈ {1, 2, . . . , n}, let

ajk =


∏k−1

m=1(ij − im)/
∏k−1

m=1(ik − im) if j ≥ k > 1

1 if k = 1

0 if j < k,

(27)

so that

An = (ajk) =


1 0 0 0 . . . 0
1 1 0 0 . . . 0
1 i3−i1

i2−i1
1 0 . . . 0

...
...

...
...

. . .
...

1 in−i1
i2−i1

(in−i1)(in−i2)
(i3−i1)(i3−i2)

(in−i1)(in−i2)(in−i3)
(i4−i1)(i4−i2)(i4−i3)

. . . 1

 . (28)

Let eI(j − 1) be the jth column of An (j = 1, 2, . . . , n). Since detAn = 1 and

ajk =

k−1∏
m=1

(ij − im)/

k−1∏
m=1

(ik − im) ∈ D (1 < k < j), (29)

the matrixAn is a unimodular [3, Lemma 1.15]. In this case, we see that {eI(j−1), j = 1, 2, . . . , n} forms
a D-basis for Dn. Now let

Cn = (cjk) =


1 0 0 . . . 0
1 i2 − i1 0 . . . 0
1 i3 − i1 (i3 − i1)(i3 − i2) . . . 0
...

...
...

. . .
...

1 in − i1 (in − i1)(in − i2) . . . (in − i1) . . . (in − in−1)

 , (30)

cjk =


(ij − i1)(ij − i2) · · · (ij − ik−1) if 1 < k ≤ j

1 if k = 1

0 if j < k,

(31)

and let Dn be the diagonal matrix whose jth diagonal entries are

dj,I = (ij − i1)(ij − i2) · · · (ij − ij−1) (j = 1, 2, . . . , n). (32)
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It is easy to see that Cn = AnDn. Since {1, pi1(x), . . . , pin−1(x)} forms aD-basis forD[x]n, by Theorem
8, the map v : D[x]n −→ Pn,I is an isomorphism. So the image

{v(1), v(pi1(x)), . . . , v(pin−1
(x))}

forms a D-basis for Pn,I . From

v(pi0(x)) =


1
1
...
1

 , v(pi1(x)) =


0

i2 − i1
i3 − i1

...
in − i1

 , . . . , v(pin−1
(x)) =


0
0
0
...

(in − i1)(in − i2) . . . (in − in−1)

 ,

we see that v(pij−1(x)) is the jth column of Cn (j = 1, 2, . . . , n). Since Cn = AnDn, we have

(pij−1
(x)) = (ij − i1)(ij − i2) · · · (ij − ij−1)eI(j − 1) =

j−1∏
m=1

(ij − im)eI(j − 1) (j = 1, 2, . . . , n).

(33)

Thus,

Dn/Pn,I =

⟨
eI(0)

⟩
⊕
⟨
eI(1)

⟩
⊕
⟨
eI(2)

⟩
⊕ · · · ⊕

⟨
eI(n− 1)

⟩⟨
eI(0)

⟩
⊕
∏1

m=1(i2 − im)
⟨
eI(1)

⟩
⊕ · · · ⊕

∏n−1
m=1(in − im)

⟨
eI(n− 1)

⟩ (34)

=

⟨
eI(0)

⟩⟨
eI(0)

⟩ ⊕
⟨
eI(1)

⟩∏1
m=1(i2 − im)

⟨
eI(1)

⟩ ⊕ · · · ⊕
⟨
eI(n− 1)

⟩∏n−1
m=1(in − im)

⟨
eI(n− 1)

⟩ (35)

∼= D
/
(i2 − i1)D ⊕D

/ 2∏
m=1

(i3 − im)D ⊕ · · · ⊕D
/n−1∏
m=1

(in − im)D. (36)

By Theorem 9, for 1 ≤ j ≤ n, if ajk =
∏k−1

m=1(ij − im)/
∏k−1

m=1(ik − im) ∈ D (1 < k ≤ j),
choosing k = j − 1, we get

aj,j−1 =

j−2∏
m=1

(ij − im)/

j−2∏
m=1

(ij−1 − im) ∈ D (j = 0, 1, . . . , n− 1). (37)

Thus, dj,I =
∏j−1

m=1(ij−im) = aj,j−1 ·(ij−ij−1)·dj−1,I , i.e., dj−1,I is the factor of dj,I (j = 1, 2, . . . , n),
yielding

Corollary 10. With the set up above, Dn/Pn,I is a finite abelian group of the form

D/dn−1D ⊕ · · · ⊕D/d2D ⊕D/d1D

where d1 | d2 | · · · | dn−1.

If we take D = Z and I = (1, 2, . . . , n), we deduce the following result.

Corollary 11. [1, Corollary 3.3] If I = (1, 2, . . . , n) (n ≥ 3), then Zn/Pn is a finite abelian group with
Smith normal form

Z/(n− 1)!Z⊕ · · · ⊕ Z/3!Z⊕ Z/2!Z

and Smith invariant ((n− 1)!, . . . , 3!, 2!). Moreover, |Zn/Pn| =
∏n−1

i=1 i!.

Walailak J Sci & Tech 2019; 16(9) 631



Sequences Generated by Polynomials over Integral Domains Veasna KIM et al.

We pause to look at one simple example.

Example 2. Let D = Z[i] and I = (2 + i, 3 + 4i, 2 + 11i). Since

a3,2 =
i3 − i1
i2 − i1

=
(2 + 11i)− (2 + i)

(3 + 4i)− (2 + i)
= 3 + i ∈ Z[i], (38)

all the elements ajk of the matrix A3 are in Z[i]. By Theorem 9 we get

Z[i]3/P3,I
∼=

Z[i]
(1 + 3i)Z[i]

⊕ Z[i]
(10i)(−1 + 7i)Z[i]

=
Z[i]

(1 + 3i)Z[i]
⊕ Z[i]

(−70− 10i)Z[i]
. (39)

The quotient condition in Theorem 9 simplifies for some particular sets I as witnessed in the next
corollary.

Corollary 12. The following statments hold:

A) Let a, q be elements in D and n ≥ 2. If ik = aqk (1 ≤ k ≤ n), then

Dn/Pn,I
∼= D/aq(q − 1)D ⊕D/a2q1+2(q2 − 1)(q − 1)D ⊕ · · · ⊕D/an−1q1+2+3+···+(n−1)

n−1∏
i=1

(qi − 1)D.

(40)

B) For n ≥ 2, 1 ≤ k ≤ n− 1, if ik+1 − ik = c for some c ∈ D, then

Dn/Pn,I
∼= D/c ·D ⊕D/2!c2D ⊕D/3!c3D ⊕ · · · ⊕D/(n− 1)!cn−1D. (41)

Proof. A) Since ik = aqk, ik+1 − ik = aqk(q − 1) (1 ≤ k ≤ n − 1), we have ij − ik = aqj − aqk =
aqk(qj−k − 1) (j > k). By the proof of Theorem 9, we get

An = (ajk), ajk =


∏k−1

m=1(ij − im)∏k−1
m=1(ik − im)

=

∏k−1
m=1(q

j−m − 1)∏k−1
m=1(q

m − 1)
if j ≥ k > 1

1 if k = 1

0 if j < k.

(42)

For 1 ≤ k ≤ j ≤ n, since
∏k−1

m=1(q
j−m − 1)/

∏k−1
m=1(q

m − 1) is a q-binomial coefficient, it is inD and by
Theorem 9 we have

Dn/Pn,I
∼= D/aq(q − 1)D ⊕D/a2q3(q2 − 1)(q − 1)D ⊕ · · · ⊕D/an−1q

n(n−1)
2

n−1∏
i=1

(qi − 1)D. (43)

B) Since ik+1 − ik = c (1 ≤ k ≤ n− 1), we have

ij − ik = (ij − ij−1) + (ij−1 − ij−2) + · · ·+ (ik+1 − ik) = (j − k)c (j > k). (44)

By the proof of Theorem 9, we get

An = (ajk), ajk =


∏k−1

m=1(ij − im)/
∏k−1

m=1(ik − im) =
(
j−1
k−1

)
if j ≥ k > 1

1 if k = 1

0 if j < k.

(45)
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Thus, ajk ∈ D and by Theorem 9, it is easy to see that

Dn/Pn,I
∼= D/cD ⊕D

/
2!c2D ⊕ · · · ⊕D

/
(n− 1)!cn−1D. (46)

Taking D = Z, I = {1, 2, . . . , n} and c = 1 in Corollary 12 B), we recover [1, Theorem 3.2].
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