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Abstract

In 1954, Perron constructed simple continued fractions of e1/k and e2/k where k is a positive integer.
These are called Hurwitz continued fractions. Using the method given in Perron’s book, we determine
explicit shapes of simple continued fractions of ke1/k, 1ke

1/k and 2e.
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Introduction

A simple continued fraction is an expression of form

a0 +
1

a1 +
1

a2+
1

. . .

:= [a0, a1, a2, . . .], (1)

where a0 ∈ Z, ai ∈ N (i ≥ 1). The ai’s are called the partial quotients, the value [a0, a1, . . . , an] := pn/qn
is called the nth convergent, and the tail [an, an+1, . . .] is called the nth complete quotient of the continued
fraction (1). Let

φ0(0), φ0(1), φ0(2), . . .

φ1(0), φ1(1), φ1(2), . . .

...
φk−1(0), φk−1(1), φk−1(2), . . . (2)

be k arithmetic sequences. The continued fraction

[a0, . . . , ak−1, φ0(0), φ1(0), . . . , φk−1(0), φ0(1), φ1(1), . . . , φk−1(1), φ0(2), φ1(2), . . . , φk−1(2), . . .]
(3)

is referred to as a Hurwitz continued fraction. We denote the continued fraction (3) for short by the symbol[
a0, . . . , ak−1, φ0(λ), φ1(λ), . . . , φk−1(λ)

]∞
λ=0

. (4)

There have already appeared several papers dealing with continued fraction expansions of e, e1/k and e2/k
for positive odd integer k, e.g. [1–3]. Here we determine the explicit forms of the continued fractions of
2e, ke1/k and 1

ke
1/k, which to our knowledge have never appeared before.
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Preliminaries

We shall make use of the following known facts about simple continued fractions whose proofs can
be found in [4, Sections 28-29].

Lemma 1. Let ξ0, η0 be two irrational numbers such that

η0 =
aξ0 + b

cξ0 + d
(cξ0 + d > 0, ad− bc = n > 0) (5)

where a, b, c, d ∈ Z. Let Aν , Bν be the numerator and denominator of the νth convergent of

ξ0 = [a0, a1, a2, ...]. (6)

For a suitable fixed index ν0, if

Bν0−1(cξ0 + d) ≥ 1 and aν0 ≥ 2n+ |c|, (7)

then the fraction aAv0−1+bBv0−1

cAv0−1+dBv0−1
has a positive denominator and its value is equal to a convergent of η0.

Lemma 2. Let ξ0, η0 be two irrational numbers satisfying

η0 =
aξ0 + b

cξ0 + d
(cξ0 + d > 0, ad− bc = n > 0), (8)

where a, b, c, d ∈ Z. Let the simple continued fraction of ξ0 be

ξ0 = [a0, a1, a2, . . .]. (9)

If there are increasing indices ν0, ν1, ν2, . . . such that

Bν0−1(cξ0 + d) ≥ 1, aν0
≥ 2n+ |c|, and aνi

≥ 2n (i = 1, 2, 3, . . .), (10)

then the simple continued fractions for ξ0 and η0 correspond in sections as

ξ0 = [a0, a1, . . . , aν0−1|aν0
, aν0+1, . . . , aν1−1|aν1

, aν1+1, . . . , aν2−1| . . .], (11)
η0 = [d0, d1, . . . , dµ0−1|dµ0 , dµ0+1, . . . , dµ1−1|dµ1 , dµ1+1, . . . , dµ2−1| . . .], (12)

in such a way that µi ≡ νi (mod 2) and

a[a0, a1, . . . , aν0−1] + b

c[a0, a1, . . . , aν0−1] + d
= [d0, d1, . . . , dµ0−1], (13)

ri[aνi
, aνi+1, . . . , aνi+1−1]− ti

si
= [dµi , dµi+1, . . . , dµi+1−1], (14)

where ri, si, ti ∈ Z are defined recursively by

r0 = gcd(aAv0−1 + bBv0−1, cAv0−1 + dBv0−1), (15)

s0 =
n

r0
, t0 = s0

Dµ0−2

Dµ0−1
− r0

cAν0−2 + dBν0−2

cAν0−1 + dBν0−1
; (16)

in general, ri+1 = gcd(riAνi+1−νi−1,νi
− tiBνi+1−νi−1,νi

, siBνi+1−νi−1,νi
),

si+1 =
n

ri+1
, ti+1 = si+1

Dµi+1−µi−2,µi

Dµi+1−µi−1,µi

− ri+1
Bνi+1−νi−2,νi

Bνi+1−νi−1,νi

, (17)

where Aν/Bν , Cν/Dν are the νth convergents of ξ0 := [a0, a1, . . .], η0 := [d0, d1, . . .], respectively, and
Aν,νi

/Bν,νi
, Cν,µi

/Dν,µi
denote the νth convergents of ξνi

:= [aνi
, aνi+1, . . .], ηµi

:= [dµi
, dµi+1, . . .],

respectively.
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Lemma 3. Under the hypothesis of Lemma 2, both sections

|aνi , aνi+1, . . . , aνi+1−1| and |aνj , aνj+1, . . . , aνj+1−1| (18)

differ only in the starting element, which are congruent modulo n. If ri = rj , si = sj , ti = tj , then
the two corresponding sections

|dµi
, dµi+1, . . . , dµi+1−1| and |dµj

, dµj+1, . . . , dµj+1−1| (19)

differ only in the starting element, with

dµi = dµj + r2i
aνi

− aνj

n
. (20)

Moreover, we have

ri+1 = rj+1, si+1 = sj+1, ti+1 = tj+1. (21)

Theorem 4. (Hurwitz) Let ξ0, η0 be two irrational numbers such that

η0 =
aξ0 + b

cξ0 + d
(cξ0 + d > 0, ad− bc = n > 0) (22)

where a, b, c, d ∈ Z, and if the simple continued fraction for ξ0 is a Hurwitz continued faction, then the
simple continued fraction for η0 is also a Hurwitz continued faction, and the order of arithmetic sequence
for η0 is equal to that of ξ0, except the order 0 that appear in a continued fraction many fail in the other.

Results and discussion

The simple continued fraction of 2e

Theorem 5. We have

2e = [5, 2, 3, 2 + 2λ, 3, 1, 2 + 2λ, 1, 3]
∞
λ=0. (23)

Proof. From [4, Section 31], we have

ξ0 =
e− 1

e+ 1
= [0, 2, 6, 10, 14, 18, . . .] = [0, 2, 6, 8λ+ 10, 8λ+ 14]∞λ=0, (24)

From

η0 := 2e =
2ξ0 + 2

−ξ0 + 1
, (25)

we have a = 2, b = 2, c = −1, d = 1. Thus, n = ad− bc = 2(1)− 2(−1) = 4 > 0, and

cξ0 + d = −ξ0 + 1 = −e− 1

e+ 1
+ 1 =

−e− 1

e+ 1
+

2

e+ 1
+ 1 =

2

e+ 1
> 0. (26)

The 0th, 1st and 2nd convergents of [0, 2, 6, 10, 14, . . .] are, respectively,

A0

B0
= [0] =

0

1
,

A1

B1
= [0, 2] =

1

2
,

A2

B2
= [0, 2, 6] =

6

13
. (27)

Walailak J Sci & Tech 2019; 16(9) 617



The ConƟnued FracƟons of Certain ExponenƟals Pratchayaporn DOEMLIM et al.

We subdivide the continued fraction of ξ0 into sections in the following way

ξ0 = [0, 2, 6|10|14|18|...] = [0, a1, a2|a3|a4|a5|...] = [0, a1, a2|aν0
|aν1

|aν2
|...]. (28)

Thus,

Bν0−1(cξ0 + d) = B2(cξ0 + d) =
26

e+ 1
≥ 1, aν0 = 10 ≥ 9 = 2(4) + 1 = 2n+ |c| (29)

aνi
≥ 14 ≥ 8 = 2(4) = 2n (i = 1, 2, 3, . . .). (30)

From Lemma 2, we obtain

a[a0, a1, a2] + b

c[a0, a1, a2] + d
=

2[0, 2, 6] + 2

−[0, 2, 6] + 1
= [5, 2, 3]. (31)

Since it has an odd number of terms, the 1st section of η0 is 5, 2, 3 and we find that the 1st and the 2nd
convergents of [5, 2, 3], are, respectively,

C1

D1
= [5, 2] =

11

2
,

C2

D2
= [5, 2, 3] =

38

7
. (32)

Thus,

r0 = gcd(aAν0−1 + bBν0−1, cAν0−1 + dBν0−1) = gcd(38, 7) = 1, s0 =
n

r0
=

4

1
= 4. (33)

For t0, we get

t0 = s0
Dµ0−2

Dµ0−1
− r0

cAν0−2 + dBν0−2

cAν0−1 + dBν0−1
= 4

(2
7

)
− 1

( −1(1) + 1(2)

−1(6) + 1(13)

)
= 1. (34)

We proceed to the 2nd section ([10] = [aν0
]). We have

r0[aν0 ]− t0
s0

=
1[10]− 1

4
= [2, 3, 1] (35)

which has an odd number of terms, and the second section of η0 is 2, 3, 1. Then we get

Aν1−ν0−2,ν0 = A4−3−2,ν0 = A−1,ν0 = 1, Bν1−ν0−2,ν0 = B4−3−2,ν0 = B−1,ν0 = 0, (36)
Aν1−ν0−1,ν0

Bν1−ν0−1,ν0

=
A4−3−1,ν0

B4−3−1,ν0

=
A0,ν0

B0,ν0

= [10] =
10

1
(37)

Cµ1−µ0−2,µ0

Dµ1−µ0−2,µ0

=
C6−3−2,µ0

D6−3−2,µ0

=
C1,µ0

D1,µ0

= [2, 3] =
7

3
(38)

Cµ1−µ0−1,µ0

Dµ1−µ0−1,µ0

=
C6−3−1,µ0

D6−3−1,µ0

=
C2,µ0

D2,µ0

= [2, 3, 1] =
9

4
. (39)

Furthermore,

r1 = gcd(r0Aν1−ν0−1,ν0 − t0Bν1−ν0−1,ν0 , s0Bν1−ν0−1,ν0) = 1, s1 =
n

r1
=

4

1
= 4. (40)

For t1, we obtain

t1 = s1
Dµ1−µ0−2,µ0

Dµ1−µ0−1,µ0

− r1
Bν1−ν0−2,ν0

Bν1−ν0−1,ν0

= 4
(3
4

)
− 1

(0
1

)
= 3. (41)
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We proceed to the 3rd section of η0 ([14]) = [aν1 ]). We compute

r1[aν1 ]− t1
s1

=
1[14]− 3

4
= [2, 1, 3], (42)

which has an odd number of terms and the third section of η0 is 2, 1, 3. Thus,

Aν2−ν1−2,ν1
= A5−4−2,ν1

= A−1,ν1
= 1, Bν2−ν1−2,ν1

= B5−4−2,ν1
= B−1,ν1

= 0, (43)
Aν2−ν1−1,ν1

Bν2−ν1−1,ν1

=
A5−4−1,ν1

B5−4−1,ν1

=
A0,ν1

B0,ν1

= [14] =
14

1
(44)

Cµ2−µ1−2,µ1

Dµ2−µ1−2,µ1

=
C9−6−2,µ1

D9−6−2,µ1

=
C1,µ1

D1,µ1

= [2, 1] =
3

1
(45)

Cµ2−µ1−1,µ1

Dµ2−µ1−1,µ1

=
C9−6−1,µ1

D9−6−1,µ1

=
C2,µ1

D2,µ1

= [2, 1, 3] =
11

4
(46)

yielding

r2 = gcd(r1Aν2−ν1−1,ν1
− t1Bν2−ν1−1,ν1

, s1Bν2−ν1−1,ν1
) = gcd(11, 4) = 1, s2 =

n

r2
=

4

1
= 4. (47)

For t2, we have

t2 = s2
Dµ2−µ1−2,µ1

Dµ2−µ1−1,µ1

− r2
Bν2−ν1−2,ν1

Bν2−ν1−1,ν1

= s2
D1,µ1

D2,µ1

− r2
B−1,ν1

B0,ν1

= 4
(1
4

)
− 1

(0
1

)
= 1. (48)

We proceed to the 4th section of η0 ([18]) = [aν2
]) by computing

r2[aν2
]− t2
s2

=
1[18]− 1

4
= 4 +

1

3 + 1
1

= [4, 3, 1] (49)

which has an odd number of terms, and the 4th section of η0 is 4, 3, 1. Then we get

Aν3−ν2−2,ν2
= A6−5−2,ν2

= A−1,ν2
= 1, Bν3−ν2−2,ν2

= B6−5−2,ν2
= B−1,ν2

= 0, (50)
Aν3−ν2−1,ν2

Bν3−ν2−1,ν2

=
A6−5−1,ν2

B6−5−1,ν2

=
A0,ν2

B0,ν2

= [18] =
18

1
(51)

Cµ3−µ2−2,µ2

Dµ3−µ2−2,µ2

=
C12−9−2,µ2

D12−9−2,µ2

=
C1,µ2

D1,µ2

= [4, 3] =
13

3
(52)

Cµ3−µ2−1,µ2

Dµ3−µ2−1,µ2

=
C12−9−1,µ2

D12−9−1,µ2

=
C2,µ2

D2,µ2

= [4, 3, 1] =
17

4
(53)

yielding

r3 = gcd(r2Aν3−ν2−1,ν2 − t2Bν3−ν2−1,ν2 , s2Bν3−ν2−1,ν2) = gcd(17, 4) = 1, s3 =
n

r3
=

4

1
= 4. (54)

For t3, we have

t3 = s3
Dµ3−µ2−2,µ2

Dµ3−µ2−1,µ2

− r3
Bν3−ν2−2,ν2

Bν3−ν2−1,ν2

= 4
(3
4

)
− 1

(0
1

)
= 3, (55)

and so

r3[aν3 ]− t3
s3

=
1[22]− 3

4
= [4, 1, 3]. (56)
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Since t0 = t2, s0 = s2, r0 = r2 and t1 = t3, s1 = s3, r1 = r3 , by Lemma 3, we get ti = tj , si =
sj , ri = rj for j = i+ 2. Therefore,

η0 = [5, 2, 3, 2, 3, 1, 2, 1, 3, 4, 3, 1, 4, 1, 3, . . .] = [5, 2, 3, χ0(λ), 3, 1, χ1(λ), 1, 3]
∞
λ=0, (57)

i.e., from

ξ0 = [0, 2, 6, 10, 14, 18, ...] = [0, 2, 6, 8λ+ 10, 8λ+ 14]∞λ=0 = [0, 2, 6, ψ0(λ), ψ1(λ)]
∞
λ=0 , (58)

we have found that

2e = [5, 2, 3, χ0(λ), 3, 1, χ1(λ), 1, 3]
∞
λ=0 , (59)

where

χ0(λ) = dµ0 + r20
ψ0(λ)− ψ0(0)

n
= 2 +

8λ+ 10− 10

4
= 2 + 2λ (60)

χ1(λ) = dµ1 + r21
ψ1(λ)− ψ1(0)

n
= 2 +

8λ+ 14− 14

4
= 2 + 2λ. (61)

The simple continued fraction of ke1/k

Theorem 6. For k ∈ N, we have

ke1/k = [k + 1, 2k − 1, 2 + 2λ, 1, 2k − 1]∞λ=0. (62)

Proof. From [4, Section 31], we have

ξ0 =
e1/k − 1

e1/k + 1
= [0, 2k, 6k, 10k, 14k, . . .] = [0, 2k, (4λ+ 6)k]∞λ=0. (63)

Putting

η0 = ke1/k =
kξ0 + k

−ξ0 + 1
, (64)

we get a = k, b = k, c = −1, d = 1. Thus, n = ad− bc = k − (−k) = 2k, and

cξ0 + d = −ξ0 + 1 =
−e1/k + 1

e1/k + 1
+ 1 =

−e1/k − 1

e1/k + 1
+

2

e1/k + 1
+ 1 =

2

e1/k + 1
> 0. (65)

The 0th and 1st convergents of [0, 2k, 6k, 10k, 14k, . . .] are, respectively,

A0

B0
= [0] =

0

1
,

A1

B1
= [0, 2k] =

1

2k
. (66)

We subdivide the continued fraction of ξ0 into sections in the following way

ξ0 = [0, 2k|6k|10k|14k|...] = [a0, a1|a2|a3|a4|...] = [a0, a1|aν0
|aν1

|aν2
|...], (67)

to get

Bν0−1(cξ0 + d) = B1(cξ0 + d) =
4k

e1/k + 1
≥ 1, aν0 = 6k ≥ 4k + 1 = 2(2k) + 1 = 2n+ |c| (68)

aνi
≥ 10k ≥ 4k = 2(2k) = 2n, (i = 1, 2, 3, . . .). (69)
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From Lemma 2, we obtain
a[a0, a1] + b

c[a0, a1] + d
=

k[0, 2k] + k

−1[0, 2k] + 1
= k + 1 +

1

2k − 1
= [k + 1, 2k − 1]. (70)

Since it has an even number of elements, the 1st section of η0 is k + 1, 2k − 1, and we obtain

C0

D0
= [k + 1] =

k + 1

1
,

C1

D1
= [k + 1, 2k − 1] =

2k2 + k

2k − 1
. (71)

Thus,

r0 = gcd(aA1 + bB1, cA1 + dB1) = gcd(2k2 + k, 2k − 1) = 1, s0 =
n

r0
=

2k

1
= 2k. (72)

For t0, we have

t0 = s0
Dµ0−2

Dµ0−1
− r0

cAν0−2 + dBν0−2

cAν0−1 + dBν0−1
=

2k − 1

−1 + 2k
= 1. (73)

We proceed to the 2nd section ([6k]), and find
r0[aν0

]− t0
s0

=
[6k]− 1

2k
= 2 +

1

1 + 1
2k−1

= [2, 1, 2k − 1] (74)

which has an odd number of terms, and the second section of η0 is 2, 1, 2k− 1. Proceeding further, we have

Aν1−ν0−2,ν0
= A3−2−2,ν0

= A−1,ν0
= 1, Bν1−ν0−2,ν0

= B3−2−2,ν0
= B−1,ν0

= 0, (75)
Aν1−ν0−1,ν0

Bν1−ν0−1,ν0

=
A3−2−1,ν0

B3−2−1,ν0

=
A0,ν0

B0,ν0

= [6k] =
6k

1
(76)

Cµ1−µ0−2,µ0

Dµ1−µ0−2,µ0

=
C5−2−2,µ0

D5−2−2,µ0

=
C1,µ0

D1,µ0

= [2, 1] =
3

1
(77)

Cµ1−µ0−1,µ0

Dµ1−µ0−1,µ0

=
C5−2−1,µ0

D5−2−1,µ0

=
C2,µ0

D2,µ0

= [2, 1, 2k − 1] =
6k − 1

2k
(78)

yielding

r1 = gcd(r0Aν1−ν0−1,ν0
− t0Bν1−ν0−1,ν0

, s0Bν1−ν0−1,ν0
) = gcd(6k − 1, 2k2) = 1, (79)

s1 =
n

r1
=

2k

1
= 2k, (80)

and so

t1 = s1
Dµ1−µ0−2,µ0

Dµ1−µ0−1,µ0

− r1
Bν1−ν0−2,ν0

Bν1−ν0−1,ν0

= 2k
( 1

2k

)
− 1

(0
1

)
= 1 (81)

r1[aν1
]− t1
s1

= 4 +
1

1 + 1
2k−1

= [4, 1, 2k − 1]. (82)

Since t0 = t1, s0 = s1, r0 = r1, by Lemma 3, we get ti = tj , si = sj , ri = rj for all i, j, and then

η0 = [k + 1, 2k − 1, 2, 1, 2k − 1, 4, 1, 2k − 1, . . .] = [k + 1, 2k − 1, χ0(λ), 1, 2k − 1]∞λ=0, (83)

i.e., from

ξ0 = [0, 2k, 6k, 10k, 14k, . . .] = [0, 2k, (4λ+ 6)k]∞λ=0 = [0, 2k, ψ0(λ)]
∞
λ=0, (84)

we get

χ0(λ) = dµ0 + r20
ψ0(λ)− ψ0(0)

n
= 2 +

(4λ+ 6)k − 6k

2k
= 2 + 2λ. (85)
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The simple continued fraction of 1
ke

1/k

Theorem 7. For k ∈ N, we have

1

k
e1/k = [0, k − 1, 2k, 1, 2 + 2λ, 2k − 1, 1]∞λ=0. (86)

Proof. From [4, Section 31], we have

ξ0 =
e1/k − 1

e1/k + 1
= [0, 2k, 6k, 10k, 14k, . . .] = [0, 2k, (4λ+ 6)k]∞λ=0, (87)

we get e1/k = ξ0+1
−ξ0+1 . Putting

η0 =
1

k
e1/k =

ξ0 + 1

−kξ0 + k
, (88)

we have

a = 1, b = 1, c = −k, d = k, n = ad− bc = k − (−k) = 2k > 0, (89)

and

cξ0 + d = −kξ0 + k = −k e
1/k − 1

e1/k + 1
+ k = k

−e1/k − 1

e1/k + 1
+

2k

e1/k + 1
+ k =

2k

e1/k + 1
> 0. (90)

The 0th and the 1st convergents of [0, 2k, 6k, 10k, 14k, . . .], are, respectively,

A0

B0
= [0] =

0

1
,

A1

B1
= [0, 2k] =

1

2k
. (91)

We subdivide the continued fraction of ξ0 into sections in the following way

ξ0 = [0, 2k|6k|10k|14k|...] = [a0, a1|a2|a3|a4| . . .] = [a0, a1|aν0
|aν1

|aν2
| . . .] (92)

to get

Bν0−1(cξ0 + d) = B1(cξ0 + d) =
4k2

e1/k + 1
≥ 1, aν0

= 6k ≥ 5k = 2(2k) + k = 2n+ |c| (93)

aνi ≥ 10k ≥ 4k = 2(2k) = 2n (i = 1, 2, 3, . . .). (94)

From Lemma 2, we obtain

a[a0, a1] + b

c[a0, a1] + d
=

[0, 2k] + 1

−k[0, 2k] + k
=

1

k − 1 + 1
2k+ 1

1

= [0, k − 1, 2k, 1]. (95)

Since it has an even number of terms, the 1st section of η0 is 0, k− 1, 2k, 1, and we find the 2nd and the 3rd
convergents as

C2

D2
= [0, k − 1, 2k] =

2k

2k2 − 2k + 1
,

C3

D3
= [0, k − 1, 2k, 1] =

2k + 1

2k2 − k
. (96)

Then we get

r0 = gcd(aAν0−1 + bBν0−1, cAν0−1 + dBν0−1) = 1, s0 =
n

r0
=

2k

1
= 2k. (97)
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For t0, we have

t0 = s0
Dµ0−2

Dµ0−1
− r0

cAν0−2 + dBν0−2

cAν0−1 + dBν0−1
=

4k3 − 4k2 + k

2k2 − k
= 2k − 1. (98)

We proceed to the 2nd section of η0 to get

r0[aν0
]− t0
s0

=
[6k]− 2k + 1

2k
= 2 +

1

2k − 1 + 1
1

= [2, 2k − 1, 1] (99)

which has an odd number of terms, and the second section of η0 is 2, 2k−1, 1. Proceeding as in the previous
theorem, we have

Aν1−ν0−2,ν0
= A3−2−2,2 = A−1,ν0

= 1, Bν1−ν0−2,ν0
= B3−2−2,2 = B−1,ν0

= 0, (100)
Aν1−ν0−1,ν0

Bν1−ν0−1,ν0

=
A3−2−1,ν0

B3−2−1,ν0

=
A0,ν0

B0,ν0

= [6k] =
6k

1
(101)

Cµ1−µ0−2,µ0

Dµ1−µ0−2,µ0

=
C7−4−2,µ0

D7−4−2,µ0

=
C1,µ0

D1,µ0

= [2, 2k − 1] =
4k − 1

2k − 1
(102)

Cµ1−µ0−1,µ0

Dµ1−µ0−1,µ0

=
C7−4−1,µ0

D7−4−1,µ0

=
C2,µ0

D2,µ0

= [2, 2k − 1, 1] =
4k + 1

2k
. (103)

Furthermore,

r1 = gcd(r0Aν1−ν0−1,ν0
− t0Bν1−ν0−1,ν0

, s0Bν1−ν0−1,ν0
) = gcd(4k + 1, 2k) = 1, (104)

s1 =
n

r1
=

2k

1
= 2k. (105)

Hence,

t1 = s1
Dµ1−µ0−2,µ0

Dµ1−µ0−1,µ0

− r1
Bν1−ν0−2,ν0

Bν1−ν0−1,ν0

= 2k
(2k − 1

2k

)
− 1

(0
1

)
= 2k − 1, (106)

and
r1[aν1

]− t1
s1

= 4 +
1

2k − 1 + 1
1

= [4, 2k − 1, 1]. (107)

Since t0 = t1, s0 = s1, r0 = r1, by Lemma 3, we get ti = tj , si = sj , ri = rj for all i, j, and so

η0 = [0, k − 1, 2k, 1, 2, 2k − 1, 1, 4, 2k − 1, 1, ...] = [0, k − 1, 2k, 1, χ0(λ), 2k − 1, 1]∞λ=0, (108)

i.e., from

ξ0 = [0, 2k, 6k, 10k, 14k, . . .] = [0, 2k, (4λ+ 6)k]∞λ=0 = [0, 2k, ψ0(λ)]
∞
λ=0, (109)

we obtain

χ0(λ) = dµ0
+ r20

ψ0(λ)− ψ0(0)

n
= 2 +

(4λ+ 6)k − 6k

2k
= 2 + 2λ . (110)
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