WALAILAK JOURNAL

http://wjst.wu.ac.th Applied Mathematics

The Riccati Equation Mapping Method for Solving Nonlinear Partial
Differential Equationsin Mathematical Physics

Elsayed Mohamed Elsayed ZAYED" and Hoda | brahim Sayed AHMED

Department of Mathematics, Faculty of Science, Zagazig University, Zagazig, Egypt
("Corresponding author’s e-mail: e.m.e.zayed@hotmail.com)

Received: 18 January 2013, Revised: 29 April 2013, Accepted: 23 January 2014

Abstract

In this article, many new exact solutions of the (2+1)-dimensional nonlinear Boussinesq-
Kadomtsev-Petviashvili equation and the (1+1)-dimensional nonlinear heat conduction equation are
constructed using the Riccati equation mapping method. By means of this method, many new exact
solutions are successfully obtained. This method can be applied to many other nonlinear evolution
equations in mathematical physics.

Keywords: The Riccati equation mapping method, the (2+1)-dimensional nonlinear Boussinesq-
Kadomtsev-Petviashvili equation, the (1+1)-dimensional nonlinear heat conduction equation, exact
solutions.

I ntroduction

Nonlinear evolution equations are often used to describe the motion of isolated waves, localized in a
small part of space, in many fields, such as hydrodynamics, plasma physics, and nonlinear optics. The
investigation of exact solutions to nonlinear evolution equations plays an important role in the study of
nonlinear physical phenomena. With the development of computerized symbolic computation, much
work has been focused on the various extensions and applications of the well known algebraic methods to
construct the exact solutions of the nonlinear evolution equations [1-32].

The objective of this article is to apply the Riccati equation mapping method to find many new
exact solutions of the following nonlinear (2+1)-dimensional Boussinesq-Kadomtsev-Petviashvili
equations;

Up = Uyyy + Uyyy + 6(uUV), + 6(uw)y, (1)
Vy = Uy, (2)
Wy = Uy, 3)

as well as the following nonlinear (1+1)-dimensional heat conduction equation;
Uy — (uz)xx =pu-— quz (4)

where p and g are known constants.

Recently, Zheng [32] has discussed about the 2 models (1) - (4) using a different approach, namely,
the (G'/G )-expansion method, and found some exact solutions of these 2 models. Comparison between
the results in the present paper and these well-known results will be given later.
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The rest of this article is organized as follows: In section 2, the Riccati equation mapping method is
described. In section 3, this method is applied to solve the2 models (1) - (4). In section 4, some
conclusions are given.

Description of the Riccati equation mapping method

Consider a given nonlinear partial differential equation (PDE) with the independent variable X =
(t, x4, %3, ....., X,,) and the dependent variable u(X) in the following form;

H (u, Uy Uy Ui » U0 ) =0, 5)

where H is a general polynomial function of its arguments. In order to solve Eq. (5) by using the proposed
method , the following main steps are given;

Step 1 Using the general form of the wave transformation;

u=u(f), §=¢X), 6
where & is a real function of the independent variable X.

Step 2 Substituting (6) into (5) yields an ordinary differential equation (ODE) in ¢ of the form;
Qu,u'(&),u"(€), v e )=0, (7)
where Q is a general polynomial function of its arguments.

Step 3 Assuming that Eq. (7) has the formal solution;

M
WO =a+ Y {@gi@®+bd Vo + Q) ®

with ¢ satisfying the Riccati equation;

') =0+ %), €))

where o, ay, a;, and b; are constants to be determined later, while M is a positive integer, which is
called the balance number.

Step 4 Determining the positive integer M by balancing the highest order derivatives and the nonlinear
terms in Eq. (7).

Step 5 Substituting (8) along with Eq. (9) into Eq. (7) and collecting all the coefficients

0f¢n(<)(1/6 + ¢? (Z))m, (n=0, £1, £2, £3,...; m = 0,+1), then setting each coefficient to zero,
a set of algebraic equations is obtained for a,, a;, bjandé.

Step 6 Solving the system of algebraic equations in Step 5 using Maple or Mathematica software to find
the value of ay, a;, bjand &

Step 7 As Eq. (9) possesses the solutions;
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—V=ctanh(vV=0&), <0,
—V=0 coth(vV=0¢), 0<0,
_ JVotan(vo §), o >0,
= 10
a2 Vo cot(\Vo §), o >0, (19
—% , o=0,

substituting ag, a;, b; & and (10) into (8) to obtain the exact solutions of Eq. (5).

Applications

In this section, many exact solutions of the nonlinear (2 +1)-dimensional nonlinear Boussinesq-
Kadomtsev-Petviashvili Egs. (1) - (3) and the nonlinear (1 + 1)-dimensional heat conduction Eq. (4) are
determined using the Riccati equation mapping method described in section 2.

Example 1 The exact solutions of the nonlinear (2 + 1)-dimensional Boussinesg-Kadomtsev-
Petviashvili equations (1) - (3)
In order to construct the exact solutions of Egs. (1) - (3), suitable wave transformations are chosen;

u=u(§), v=v(), w=w(), {= fx+gy—ht an

where f, g and & are constants to be determined later. The transformation (11) is a special case of the
general form (6). Substituting (11) into Egs. (1) - (3) and integrating once, the ODEs;

6 1
(f°+g°)u"®) + T (f* + g () + 7 [6(c2f? + c39°) + fghl u(®) = cy, (12)
u(@) =20, (13)
wie) = 21 (1)
are obtained, where c¢; (i = 1 — 3) are constants of integration and ' = d%.
By balancing u"( &) with u2(£) in Eq. (12) , we get M = 2. On using (8) the formal solutions;
u(§) = ao + a1¢(§) + a29%(§) + biyo + $*(§) + bp(Hyo + $2(§), (15)

are obtained, where a,, a;, a,, b; and b, are constants to be determined. Substituting (15) along with

(9) into Eq. (12) and collecting all the coefficients of qbn Ao+ 2 ))m, then setting each coefficient
to zero, the following system of algebraic equations;

5
¢ (E) : 12f3a2b2 + 6fg4b2 + 6f4g b2 + 12g3a2b2 = 0,
4

¢ (E) : 12f3a2b1 + 12g3a1b2 + 12g3a2b1 + 2fg4b1 + 12f3a1b2 + 2f4g bl = 0,

¢3(§) :12f3a;b; + hfgb, + 12g3agh, + 11f*gob, + 120g3a,b, + 6¢,f%b, + 12f3ayb,
+ 120f3ayb, + 12g3a,b, + 11fg*ob, + 6¢59%b, = 0,

¢2(§) 1 6C,f2%by + 120 f3a,b, + 6c39%b, + 3f*gob, + hfgh, + 120g3a;b, + 120g3a,b,
+ 120'f3a2b1 + 3fg40'b1 + 12g3a0b1 + 12f3a0b1 = 0,

Walailak J Sci & Tech 2014; 11(7) 623



Riccati Equation Mapping Method for Solving Nonlinear PDE Elsayed ZAYED and Hoda AHMED

http://wjst.wu.ac.th

¢1(E) 1 60¢39%b, + 5fg*a?b, + 120f3a,b, + 60c,f?b, + ohfgb, + 120g3a,b, + 5f*ga?b,
+ 120 f3ayb, + 120g3ayb, = 0,

¢0(§) : f*go?b, + 120g3ayby + fg*a?b, + 60c39%b, + 120f3ayb, + 60¢,f%b, + chfgb, = 0,

¢ Vo + @2(0) : 69°b} + 6f3a3 + 6fg*a, + 6f*ga, + 6g%a% + 6f%b3 = 0,

¢z(€) \Y o+ ¢2(€) 12f3a1a2 + 12g3a1a2 + 12 ngle + 12f3b1b2 + 2fg4a1 + 2f4ga1 = 0,

¢ (E)Jo + p2(8):6f3a? + 6¢,f%a, + 8fg*oa, + 12g3asa, + hfga, + 65f3b2 + 6f3b?
+12f3aqa, + 6g3b% + 8f*goa, + 6¢39%a, + 60g3b2 + 6g3a? = 0,

1

¢ (o + Pp2(&):6¢,f%a, + 2f*goa, + 12093b, b, + 12g3aga, + 12f3aya, + 2f g*oa,

+ 6¢39%a, + hfga, + 120f3b,b, = 0,

d)o(f)w/a + ¢2(8):6g%at + 6¢,f2ay + 6c39%ay + hfgay + 6593b% + 6f3a2 + 2fg*c?a,
+2f*go?a, + c1fg + 60f3bt =0 (16)

are obtained. The following cases are used in solving the algebraic system (16) by use of Maple or
Mathematica;

Casel
—0fyg
ay = 3 , a; =0, a2=_fg; b1=0, b2=0' ¢ =0, f=f' 9g=9,
h =22 [3(cof + 3D + 2fgo(f* + g1 (17)

In this case, the exact solutions of Egs. (1) - (3) have the forms;

%ﬁg[l—Btanh(\/:Q], 6<0
_(;fg [1-3 coth’ (V=7 &)], 0 <0
u(§)=<%fg[1+3tan2(\/5 ], o>0 (18)
_(;f‘g [1+3cot2(Vo §)], >0
( _a3f2 [1—3tanh(x/—_a€)]+%2, 6<0
_(;fz [1 -3 coth?(vV=0 ¢)] +%, <0
v©) ==+ 3t O]+ 2, 050 (19)
_a3f2[1+3c0t2(\/35)]+%2, >0
L =0
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2
a3g [1- 3tanh(\/—a f)] +;—3, 0<0

2
‘;‘g [1 -3 coth* (V=5 &)] + ;—3 5 <0

2
w(©) = {1+ 3tan’ (V7 )] + ;—3 60 (20)
2
(;g [1+3cot?(Vo ;)]+‘}—3, o3>0
_gz C3
- o=0,
& f
where
2t
(e=fx+gy+ 3 [3(caf? +c39®) +20fg(f*+g°)], o#0
6t
i€=fx+gy+5(czf2+c3gz), c=0. (21)
Case?2
ao=_20fg» a, =0, a=—-fg, by=0, by;=0, ¢, =0, f=f, g=g
h =E[3(62f2 +c39%) — 2fga(f* + g*)]. (22)
In this case, the exact solutions of Egs. (1) - (3) have the forms;
( —ofg sechz(\/—af) , <0,
afgcschz(\/—af) , 0<0,
u() = ~ofgsec’(Vos) c>0, (23)
—ofg csc?(Vo€) >0,
—fg
e o=0,
—af? sechz(\/—af)+% , c<0,
af2csch?(\=a¥) +%2 , g<0 ,
c
v(§) =1 ~ofPsec’ (Vo) + >0, (24)
—of2csct(Va¥§) +%2 , >0,
_fz C2
-, c=0,
2 g
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—og? sech?(v/=a¢) +% , oc<0,
ag?csch?(\=a¥) +% , <0,
w(&) = | —og?sec?(\o¢§) +% , >0, (25)
—ag?csct(Va¥§) +(}—3 , g>0,
2
f‘z +% ) oc=0,

where

2
£=fx+gy+ é [3(caf % + c392) — 20fg(f* + gD, o % 0

6t
E=fx+gy+E(62f2+63gz). 0=0. (26)
Case3
—ofg —fg tfg
ap = 3 , a; =0, azsz b, =0, bzzT' ¢ =0, f=f, g=g9
-1
h = 5[6(621‘2 +c39%) + fgo(f* + g>)]. 27)

In this case, the exact solutions of Egs. (1) - (3) have the forms;

~709 3 — 3tanh?(V=5¢) + 3i tanh(V=5¢)sech(y=3¢)], o <0,
=292 - 3 coth?(V=0¢) + 3i coth(vV=0¢)csch(V=0¢)], o <0,
(@) = 4 % [2 + 3 tan*(Vo$) + 3 tan(Vo§)sec(Va§)], >0, (28)
=912 + 3 cot?(Vo§) + 3 cot (Vo§ Jesc(vai)], o >0,
% ’ =0,
0, o=0,
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2
G6f [2 — 3 tanh?(vV=0¢) + 3i tanh(V—0¢)sech(V=0¢)] + %2, <0,
2
(;f [2 — 3 coth?(V—=0¢) + 3i coth(vV=0&)csch(vV—a&)] + %2, g<0,
2
U6f [2 + 3tan?(Vo¢) + 3 tan(Va&)sec(voé)] + C—Z, >0,
HORR I Cg (29)
c [2 + 3 cot?(Vo€) + 3 cot(voé)esc(Va&)] + j, g>0,
—f? o
< 42 c=0
2 g’ ’
%’ =0,
2
79 [2 — 3 tanh?(vV=0¢) + 3i tanh(V—0¢)sech(V=0¢)] + jc—3, <0,
2
Zg [2 — 3 coth?(v/=0¢&) * 3i coth(V—0¢)csch(vV=a&)] + %, g<0,
a2
06‘9 [2 + 3tan?(Vo¢§) + 3 tan(Vo&é)sec(vo&)] + Cf—?’, >0,
w(§) =< —oa? c (30)
6‘9 [2 + 3 cot?(Voé) + 3 cot(Vo&)csc(Va&)] + 73, g>0,
-g%> ¢
g4z, s=0,
7’ g=0,
where
§=fx+gy+ é [6(caf? +c39®) +ofg(f* + 9>, o %0,
£ = fx+gy + 7o + g o=0. (3D
Case4
ag = —szg ,a, =0,a, =_ng ,b; =0,b, =ing ,c, =0,
-1
f=fg=9 h= 5[6(621‘2 +¢39%) — fgo(f* + g°)], (32)
In this case, the exact solutions of Egs. (1) - (3) have the forms;
Walailak J Sci & Tech 2014; 11(7) 627
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%fg [sech?(V=0¢) + i tanh(vV—a&)sech(vV=a¢&)], g<0,
%fg [csch?(vV=0¢&) * coth(vV=0¢&)csch(V—=a¢)], g<0,
%fg [sec?(Voé) + tan(Va€)sec(Voé)], <0, (33)
—azfg [sec?(Vo¢€) + cot(Va&)sec(Voé)], <0
_;;‘g, oc=0,
\ 0, =0,
_ngZ [sech?(vV=0¢) + i tanh(V=0¢)sech(V=0¢)] + ;72, 0<0,
—azfz [csch?(vV=0¢§) + coth(V=0&)csch(v/—a&)] + %2, 0<0,
© _ngZ [sec?(Voé) + tan(Va&)sec(\oé)] + ;72, 0<0, .
v =
_Zf [sec?(Vo¢é) + cot(Va&)sec(vaé)] + %, 0<0,
_fZ c
Ty 7=
& g=0
g
( _agz 2 : &
—— [sech (V=0¢) i tanh(vV=0¢&)sech(N=0a¢&)] + 70 <0
_gzgz [csch?(vV=0¢&) * coth(vV=0&)csch(V—a¢)] + ;—3, 0<0,
—og" [sec?(voé) + tan(Va&)sec(\a§)] + Y o <0,
w={ 2 / (35)
_Zg [sec?(Vo¢é) + cot(Va&)sec(voé)] + %, 0<0,
9 .a -
N 7=
%, g=0
where

£=fx+gy+ % [6(caf% + c39?) — of g(f* + gP)], 0 %0,

6t
§=fx+gy+ 3 (c2f* + c39%),

g=20.

(36)
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Example 2 The exact solutions of the nonlinear (1+1)-dimensional heat conduction equation
In order to find the exact solutions of Eq. (4), suitable wave transformations are chosen;

u=u(§) , & = kx — ht, (37)

where k and / are constants to be determined later. The transformation (37) is also a special case of the
general form (6). Substituting (37) into (4), the following ODE is obtained;

hu') + 282 [(w©) +u©Ou ]+ Pu®) - qui(© =0, (38)
Balancing u(&) u" (&) with u'(€) in Eq. (38), M = —1 is obtained. Using the transformation;

u(§) =v=(&), (39)

to reduce Eq. (38) to the following ODE:
o2 V') + 2k [3(v' D) = v(Ov O]+ pr3 () — g v2(© = 0, (40)

by balancing v(&)v"( §) with v2(&) v'(§) in Eq. (40), M = 1 is obtained. Consequently, (8) is used to
get the following formal solution;

v(§) = ag + a;9(§) + biJo + 92(E) , (41)

where a,, a; and b, are constants to be determined later. Substituting (41) along with (9) into (40) and

collecting all the coefficients of ¢™(&)(y/o + qbz(f))m, then setting each coefficient to zero, the
following system of algebraic equations is obtained;

¢’ (®) : —h b3+ 4k?a,b, — 3haZh, = 0,

¢ (©) : pb? — 4k2agh, + 3paZh, — 4haghya; = 0,

¢3(<‘;) : —ha2b, — 5cha?b, — 20hb} — 2qa,b, + 6paya, b, + 10k?ca.b, = 0,

¢2(<‘;) : 3padb, + 3opa?b, — 6chaya;b; — 2qayh, + 20pb3 — 6k*cayb, = 0,

¢)1(§) : —02hb? — 20qa, b, + 60paya, b, + 6k*c?a;b; — chab, — 26*ha?b, = 0,

¢0(<‘;) : —202haygh,a, + 3opaib, — 2k?ayb,0* + o?pb3 — 20qayh, = 0,

¢ ©OVo + 2@ : 2k2a? — ha? — 3hb?a, + 2k?b? = 0,

qbz(&)m : —4k?aga, — 2haya? — 2hayb? + pad + 3pa,b? =0,

¢ (Vo + ¢2(8): — qa? + 3payh? — hado + 8k ca? — qb? — 4hoa,b? — haZa, + 3paya? = 0,
¢1(§)m : —2hayaio + 3paja, + 3opa,b? — 4k*caya, — 2haybic — 2qaza; = 0,

¢0(<‘;) o+ ¢p2(&):pad — oqb? — qa3 + 6k*a?a? — ha3oa, — 2k?b?0? + 3opayb?
—o?hb?a; = 0. (42)
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The following cases are used in solving the algebraic system (42) by using Maple or Mathematica;

Casel
+qv—- +/—qo +pV-
Go=—, g =D¢ by=0, k== 9 — p=IZP¥Ye (43)
2p 2po 40 40
In this case, the exact solutions of Eq. (4) have the forms;
( 2p
, g<0,
q[1 + tanh(v=0 ¢)]
2p <0
) 0- )
q[1 + coth(V=0 &)]
u($) = 2p (44)
) g>0,
q[1 +itan(vo §)]
2p >0
) 0- )
L+ ico(Va §)]
0, g=0,
where
V-0 .
&= 1o (x\/a—pt), i=v-=1, oc#0. (45)
Case?2
tqv—o +qv—o +\/—qo tpV—o
L. B A T i L A (46)
2p 2po 2p 20 20
In this case, the exact solutions of Eq. (4) have the forms;
2p
, <0,
q[l+ tanh(\/—o' 5) tio sech(v—a f)]
2p
, o<0,
q[l+ coth(\/—o' f) tio cschh(\/—o' f)]
u($) = 2p >0 (47)
q[1 +itan(vo &) +iosec(Va §)]| ' '
2p >0
) O- )
q[1 ticot(Vo &) +io csc(Vo )]
0, g=0,
where
o
&= e (x\/a — pt), o #0. (48)

Remark All solutions of this article have been checked with the aid of Maple by putting them back into
the original Egs. (1) - (4).
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Conclusions

The Riccati equation mapping method has been successfully used in this paper to seek many new
exact solutions of the nonlinear (2+1)-dimensional Boussinesq-Kadomtsev-Petviashvili Egs. (1) - (3) and
the nonlinear (1+1)-dimensional heat conduction Eq. (4). On comparing the new results obtained in this
paper using the Riccati equation mapping method with the well-known results obtained in [32] using the
(G’/G)-expansion method, more new exact solutions are given using the first method than the second one.
Furthermore, it is shown that the proposed method in this article provides a very effective and powerful
mathematical tool for solving nonlinear evolution equations in mathematical physics.
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