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Abstract 

Here, an extended, (G'/G)-expansion method with a computerized symbolic computation is used for 
constructing the exact travelling wave solutions for isothermal magnetostatic atmospheres equations. 
These equations depend on arbitrary functions that must be specified with choices of the different choice 
of the different arbitrary functions. The proposed method has been successfully used to obtain some exact 
travelling wave solutions for the Liouville and sinh-Poisson equations. The obtained travelling wave 
solutions are expressed by hyperbolic, triangular and exponential function. The solutions obtained via the 
propose method have many potential applications in physics. 

Keywords: Isothermal magnetostatic atmospheres equations, extended (G'/G)-expansion method, 
Liouville and sinh-Poisson equations, Liouville equation, travelling wave solutions 
 
 
Introduction 

Nonlinear evolution equations in mathematical physics play a major role in various fields, such as 
fluid mechanics, plasma physics, optical fibers, solid state physics, chemical kinematics, chemical 
physics, and geochemistry. Nonlinear wave phenomena of dispersion, dissipation, diffusion, reaction, and 
convection are very important in nonlinear wave equations. 

The investigation of the exact solutions of nonlinear evolution equations play an important role in 
the study of nonlinear physical phenomena, and has gradually become a most important and significant 
area. In the past several decades, many effective methods for obtaining the exact solutions of NLEEs have 
been presented [1-26]. 

The equations of magnetostatic equilibrium have been used extensively to model the solar magnetic 
structure [27-31]. An investigation of a family of isothermal magnetostatic atmospheres with one 
ignorable coordinate corresponding to a uniform gravitational field in a plane geometry was carried out. 
The force balance consisted of the JB force B as the magnetic field induction, and J as the electric current 
density, the gravitational force, and gas pressure gradient force. However, in many models, the 
temperature distribution is specified a priori, and direct reference to the energy equations is eliminated. In 
solar physics, the equations of magnetostatic have been used to model diverse phenomena, such as the 
slow evolution stage of solar flares, or the magnetostatic support of prominences [32,33]. The nonlinear 
equilibrium problem has been solved in several cases [34-36]. 

The rest of this paper is arranged as follows. In section 2, we describe the extended (G'/G)-
expansion method. In section 3, to illustrate the method, we consider the equations of magnetohydrostatic 
equilibrium for plasma in a gravitational field and obtain abundant exact solutions, which include the 
hyperbolic, triangular, and exponential function. Finally, a conclusion and discussion are given in section 
4. 
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Methodology 

Here, we give a brief description of the extended 
( )
( )

G
G

ξ
ξ
′

- expansion method [8-12]. For a given 

nonlinear equation, say in 2 independent variables x and t, 
 

( , , , , ,..........) 0,t x tt xxu u u u uφ =                                                      (1) 
 
where ( , )u u x t=  is an unknown function, φ  is a polynomial in ( , )u u x t=  and its various partial 
derivatives, in which the highest order derivatives and nonlinear term are involved, combining the 
independent variables x and t into one variable ,ξ = −x ct suppose that; 
 

( , ) ( ), ,u x t u x ctξ ξ= = −                                                          (2) 
 
Eq. (1) becomes; 

 
2( , , , , ,......) 0ψ ′ ′ ′′ ′′− =u cu u c u u                                                    (3) 

 

The solution of Eq. (3) can be expressed by a polynomial in (
( )
( )

G
G

ξ
ξ
′

); 

 
( )( ) ( ) ,
( )

M
j

j
j M

Gu a
G

ξξ
ξ=−

′
= ∑                                                                (4) 

 
where ( )G G ξ= satisfies; 
 

2 2( ) ( ) ( ) ( ) ( ) ( ( )) ,G G AG BG G C Gξ ξ ξ ξ ξ ξ′′ ′ ′= + +                                (5) 
 
which can be rewritten as; 
 

2( ) ( ) ( )( ) (1 )( ) ( ) ,
( ) ( ) ( )

d G G GC B A
d G G G

ξ ξ ξ
ξ ξ ξ ξ

′ ′ ′
= − − + +                                          (6) 

where A, B, C are real parameters to be determined later,
2

2

( ) ( )
, , 0

i

dG d G
G G a

d d

ξ ξ

ξ ξ
′ ′′= = ≠ ; the unwritten 

part in (4) is also a polynomial in ( )
G

G

′
, but where the degree of which is generally equal to or less than 

M − 1, the positive integer M can be determined by balancing the highest order derivative terms with the 
nonlinear term appearing in Eq. (3). 

It is worth noting that the solutions of Eq. (5) for ( )
G

G

′
 can be written in the form of hyperbolic, 

triangular and exponential function solutions as given below. 
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The first type: when 0B ≠  and 2
1 4 4 0,B A AC∆ = + − > then; 

1 1

1 1

2 2
1 1 2

2 2
1 2

exp exp( )( )
( ) 2(1 ) 2(1 )

exp exp

B c cG B
G C C

c c

ξ ξ

ξ ξ

ξ
ξ

∆ ∆
−

∆ ∆

∆′ +
= +

− −
−

                                   (7) 

 
The second type: when 0B ≠  and 2

1 4 4 0,B A AC∆ = + − < then; 
 

1 1

1 1

1 2
1

1 2

2 2

2 2

cos( ) sin( )( )( )
( ) 2(1 ) 2(1 )

sin( ) cos( )

i c cBG B
G C C

i c c

ξ ξξ
ξ

ξ ξ

−∆ −∆

−∆ −∆

− −−∆′
= +

− −
+ −

                            (8) 

 
The third type: when 0B =  and 2 ( 1) 0,A C∆ = − > then; 

 

2 1 2 2 2

1 2 2 2

cos( ) sin( )( )( )
( ) 2(1 ) sin( ) cos( )

c cG
G C c c

ξ ξξ
ξ ξ ξ

∆ ∆ + ∆′
=

− ∆ − ∆
                                        (9) 

 
The fourth type: when 0B =  and 2 ( 1) 0,A C∆ = − < then; 

 

2 1 2 2 2

1 2 2 2

cosh( ) sinh( )( )( )
( ) 2(1 ) sinh( ) cosh( )

i c cG
G C i c c

ξ ξξ
ξ ξ ξ

−∆ −∆ − −∆′
=

− −∆ − −∆
                               (10) 

 

Inserting Eq. (4) into Eq. (3) and using Eq. (5), collecting all terms with the same order 
( )

( )
( )

G

G

ξ

ξ

′
 

together, the left hand side of Eq. (3) is converted into another polynomial in 
( )

( )
( )

G

G

ξ

ξ

′
. Equating each 

coefficient of this polynomial to zero yields a set of algebraic equations for ,ia λ  and µ . With the 

knowledge of the coefficients ia  and general solution of Eq. (5), we have more travelling wave solutions 
of the nonlinear evolution Eq. (1). 
 
Formulating the problem 

The relevant magnetohydrostatic equations consist of the equilibrium equation [29]; 
 

0ρ φ∧ − ∇ −∇ =J B P                                                       (11) 
 
which is coupled with Maxwell's equations; 
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,
µ

∆ ∧
=

BJ                                                                    (12) 

 
. 0,∇ =B                                                                     (13) 

 
where , ,P ρ µ andφ  are the gas pressure, the mass density, the magnetic permeability, and the 
gravitational potential, respectively. It is assumed that the temperature is uniform in space, and that the 
plasma is an ideal gas with an equation of state 0 0,p R Tρ= where 0R is the gas constant, and 0T  is the 
temperature. Then, the magnetic field B can be written as; 
 

( , , )x x x x
u uB ue B e B
z y
∂ −∂

= ∇ + =
∂ ∂

                                                 (14) 

 
The form of (14) for B ensures that . 0∇ =B , and there is no mono pole or defect structure. Eq. 

(11) requires the pressure and density to be of the form; 
 

( , ) ( ) exp( / ), ( , ) (1/ ) ( ) exp( / )P y z P u z h y z gh P u z hρ= − = −                    (15) 
 
where 0 0 /h R T g= , is the scale height and z measure. With substituting (12) - (15) into Eq. (11), we 
obtain; 
 

2 /( ) 0z hu f u e −∇ + =                                                                     (16) 
 

( ) dPf u
du

µ=                                                                                  (17) 

 
Then, Eq. (17) gives; 

 

0
1( ) ( )P u P f u du
µ

= + ∫                                                                  (18) 

 
Inserting Eq. (18) into (15), we have; 

 
/

0
1( , ) ( ( ) ) ,z hP y z P f u du e
µ

−= + ∫                                                     (19) 

 
/

0
1 1( , ) ( ( ) ) z hy z P f u du e

gh
ρ

µ
−= + ∫                                                   (20) 

 
where 0P  is constant. Making the transformation; 
 

( / ) ( / )
1 2

z l iy lx ix e e− −+ =                                                              (21) 



New Exact Solutions for Isothermal Magnetostatic Atmospheres Equations Mohamed Tawfik ATTIA et al. 
http://wjst.wu.ac.th 

Walailak J Sci & Tech 2015; 12(10) 
 

965 

Then Eq. (16) reduces; 
 

2 2
2 ((2/ ) ( / ))

2 2
1 2

( ) 0l l h zu u l f u e
x x

−∂ ∂
+ + =

∂ ∂
                                                (22) 

 
These equations have been given in [27,29]. 
 

Applications of the extended 

( )

( )

ξ

ξ

′G
G -expansion method 

We employ the extended 
( )

( )

ξ

ξ

′G
G

-expansion method for solving specific forms of the function 

( )f u [29]. 
 
Liouville equation 
Let us first consider the Liouville equation, which is a special case of Eq. (22); 

 
2 2 2 0xx ttu u l e φα −+ − =                                                              (23) 

 
In order to apply the proposed method, we use the wave transformation ( ),u x ktξ ξ = −

transform Eq. (23) as; 
 

2 2 2 2(1 )k l e φφ α −′′+ =                                                              (24) 
 

Making the transformation; 
 

2e φν −=                                                                             (25) 
 

Then, Eq. (24) reduces; 
 

2 2 2 2 2 3(1 ) (1 ) 2 0k k lνν ν α ν′′ ′+ − + + =                                                 (26) 
 

In view of the technique of solution, we introduce the anstaz; 
 

( )( ) ( ) ,
( )

N
i

i
i N

Ga
G

ξν ξ
ξ=−

′
= ∑                                                               (27) 

 
where ia are constants to be determined later. Our main goal is to solve Eq. (26) by the means illustrated 

above. Considering the homogeneous balance between ( ) ( )ν ξ ν ξ′′ and 3( )ν ξ  in Eq. (26), we have N = 
2, and we suppose that the solution of Eq. (26) can be expressed by; 
 

1 2 2
0 1 1 2 2

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ,
( ) ( ) ( ) ( )

G G G Ga a a a a
G G G G

ξ ξ ξ ξν ξ
ξ ξ ξ ξ

− −
− −

′ ′ ′ ′
= + + +                           (28) 



New Exact Solutions for Isothermal Magnetostatic Atmospheres Equations Mohamed Tawfik ATTIA et al. 
http://wjst.wu.ac.th 

Walailak J Sci & Tech 2015; 12(10) 
 
966 

where 0 1 1 2, , ,a a a a−  and 2a− are constants to be determined later. Substituting Eq. (28) with Eq. (5) into 

Eq. (26), and collecting the coefficients of 
( )

( )

G

G

ξ

ξ

′
, we obtain a set of algebraic equations for 

0 1 1 2 2, , , , , ,a a a a a k λ− − , and µ . Solving this system with the aid of Maple Package, we obtain the two 
sets of solutions as; 
 

Case 1: 
2 2 2 2

2 1 1 02 2 2 2

( 1 ) ( 1 )0, , , , , ,B k C k C A k C k Ca a l l k k a a
l l

α α
α α− −

− + − + − + − +
= = = = = = = −

2 2 2 2

2 2 2

2 2 1 ) ,k C C C k C ka
l α

− − + + + +
= −                                           (29) 

 
where , , ,A B C l and k are arbitrary constants. 
 

Case 2: 
2 2 2

2 1 1 02 2 2 2

(1 ) ( 1 )0, , , , , ,BA k A k C k Ca a l l k k a a
l l

α α
α α−

+ − + − +
= = = = = = − = −  

2

2 2 2

(1 ) ,A ka
l α−

− +
=                                                                       (30) 

 
where , , ,A B C l and k are arbitrary constants. 

Substituting those cases in Eq. (28) provides the following solutions of Eq. (23). These solutions 
are; 
 

2 2 2 2

1 2 2 2 2

( 1 ) ( 1 ) ( )( ) [ ] [ ]( )
( )

A k C k C B k C k C G
l l G

ξν ξ
α α ξ

′− + − + − + − +
= − +

 

2 2 2 2
2

2 2

2 2 1 ) ( )[ ]( ) ,
( )

k C C C k C k G
l G

ξ
α ξ

′− − + + + +
−                                                          (31) 

 
 

2 2 2 2
1 2

2 2 2 2 2 2 2

( 1 ) (1 ) ( ) (1 ) ( )( ) [ ] [ ]( ) [ ]( ) ,
( ) ( )

A k C k C BA k G A k G
l l G l G

ξ ξν ξ
α α ξ α ξ

− −′ ′− + − + + − +
= − + − +   (32) 

 
1( ) ( ),
2

φ ξ ν ξ= −                                                                      (33) 

x ktξ = −  
 

With knowing Eqs. (7) - (10) and Eqs. (31), (32), we obtain the following exponential function 
solutions, hyperbolic function solutions, and triangular function solutions of Eq. (23); 
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Family -1: when 0B ≠  and 2
1 4 4 0,B A AC∆ = + − > then; 

 

1 1

1 1

1 1

1 1

2 2 2 2

1 2 2 2 2

2 2
1 1 2

2 2
1 2

2 2 2 2 2 2
1 21 2

2 2

2 2
1 2

( 1 ) ( 1 )( ) [ ] [ ]

exp exp[ ]
2(1 ) 2(1 )

exp exp

exp exp2 2 1 )[ [ ][ ]
2(1 ) 2(1 )

exp exp

a
A k C k C B k C k C

l l

B c cB
C C

c c

B c ck C C C k C k B
l C C

c c

ξ ξ

ξ ξ

ξ ξ

ξ ξ

ν ξ
α α

α

∆ ∆
−

∆ ∆

∆ ∆
−

∆ ∆

− + − + − + − +
= − +

∆ +
+

− −
−

∆ +− − + + + +
+ − +

− −
−

   (34) 

Family -2: when 0B ≠  and 2
1 4 4 0,B A AC∆ = + − < then; 

 

1 1

1 1

1 1

2 2 2 2

1 2 2 2 2

1 2
1

1 2

2 2 2 2 1 2
1

2 2

2 2

2 2

2 2

( 1 ) ( 1 )( ) [ ] [ ]

cos( ) sin( )
[ ]
2(1 ) 2(1 )

sin( ) cos( )

cos( ) sin( )2 2 1 )[ [ ][
2(1 ) 2(1 )

b
A k C k C B k C k C

l l

i c cBB
C C

i c c

i c cBk C C C k C k B
l C C

i

ν ξ
α α

ξ ξ

ξ ξ

ξ ξ

α

−∆ −∆

−∆ −∆

−∆ −∆

− + − + − + − +
= − +

− −−∆
+

− −
+ −

− −−∆− − + + + +
+ − +

− −
1 1

2

1 2
2 2

] (35)
sin( ) cos( )c cξ ξ

−∆ −∆
+ −

  
Family -3: when 0B =  and 2 ( 1) 0,A C∆ = − > then; 

 
2 2 2 2 2 2

1 2 2 2 2

2 1 2 2 2 2

1 2 2 2

( 1 ) 2 2 1 )( ) [ ] [ [ ]

cos( ) sin( )
[ ]
2(1 ) sin( ) cos( )

c
A k C k C k C C C k C k

l l
c c

C c c

ν ξ
α α
ξ ξ
ξ ξ

− + − + − − + + + +
= − + + −

∆ ∆ + ∆
− ∆ − ∆

                  (36) 
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Family -4: when 0B =  and 2 ( 1) 0,A C∆ = − < then; 
 

2 2 2 2 2 2

1 2 2 2 2

2 1 2 2 2 2

1 2 2 2

( 1 ) 2 2 1 )( ) [ ] [ [ ]

cosh( ) sinh( )
[ ]
2(1 ) sinh( ) cosh( )

d
A k C k C k C C C k C k

l l
i c c

C i c c

ν ξ
α α

ξ ξ
ξ ξ

− + − + − − + + + +
= − + + −

−∆ −∆ − −∆
− −∆ − −∆

                (37) 

In the same manner, case (2) provides the following exponential function solutions, hyperbolic 
function solutions, and triangular function solutions of Eq. (23); 

 
Family -1: when 0B ≠  and 2

1 4 4 0,B A AC∆ = + − > then; 
 

1 1

1 1

1 1

1 1

2 2 2

2 2 2 2 2

2 2
1 11 2

2 2
1 2

2 2 2
1 21 2

2 2

2 2
1 2

( 1 ) (1 )( ) [ ] [ ]

exp exp[ ]
2(1 ) 2(1 )

exp exp

exp exp(1 )[ ][ ]
2(1 ) 2(1 )

exp exp

a
A k C k C BA k

l l

B c cB
C C

c c

B c cA k B
l C C

c c

ξ ξ

ξ ξ

ξ ξ

ξ ξ

ν ξ
α α

α

∆ ∆
−

−

∆ ∆

∆ ∆
−

−

∆ ∆

− + − + +
= − + −

∆ +
+

− −
−

∆ +− +
+ +

− −
−

                                             (38) 

Family -2: when 0B ≠  and 2
1 4 4 0,B A AC∆ = + − < then; 

 

1 1

1 1

1 1

1

2 2 2

2 2 2 2 2

1 2
1 1

1 2

2 1 2
1

2 2

1 2

2 2

2 2

2 2

2

( 1 ) (1 )( ) [ ] [ ]

cos( ) sin( )
[ ]
2(1 ) 2(1 )

sin( ) cos( )

cos( ) sin( )(1 )[ ][
2(1 ) 2(1 )

sin( ) cos

b
A k C k C BA k

l l

i c cBB
C C

i c c

i c cBA k B
l C C

i c c

ν ξ
α α

ξ ξ

ξ ξ

ξ ξ

α
ξ

−

−∆ −∆

−∆ −∆

−∆ −∆

−∆

− + − + +
= − + −

− −−∆
+

− −
+ −

− −−∆− +
+ +

− −
+ 1

2

2

]
( )ξ

−

−∆
−

       (39) 
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Family -3: when 0B =  and 2 ( 1) 0,A C∆ = − > then; 
 

2 2 2
2 1 2 2 2 2

2 2 2 2 2
1 2 2 2

cos( ) sin( )( 1 ) (1 )( ) [ ] [ ][ ] (40)
2(1 ) sin( ) cos( )c

c cA k C k C A k
l l C c c

ξ ξ
ν ξ

α α ξ ξ
−∆ ∆ + ∆− + − + − +

= − +
− ∆ − ∆

 
Family -4: when 0B =  and 2 ( 1) 0,A C∆ = − < then; 
 

2 2 2

2 2 2 2 2

2 1 2 2 2 2

1 2 2 2

( 1 ) (1 )( ) [ ] [ ]

cosh( ) sinh( )
[ ] (41)
2(1 ) sinh( ) cosh( )

d
A k C k C A k

l l
i c c

C i c c

ν ξ
α α

ξ ξ
ξ ξ

−

− + − + − +
= − +

−∆ −∆ − −∆
− −∆ − −∆

 
The sinh-Poisson equation 
Secondly, we consider the sinh-Poisson equation, which plays an important role in soliton modeling 

with BPS Bound. Also, this equation is a special case of Eq. (22); 
 

2 sinh( )xx ttu u β φ+ =                                                            (42) 
 
To apply the extended, (G'/G)-expansion method, we use the wave transformation 

( ),u x ktξ ξ = − transform Eq. (42) as; 
 

2 2(1 ) sinh( )k φ β φ′′+ =                                                           (43) 
 

We next use the transformation; 
 

e φν =                                                                             (44) 
 

Then, Eq. (43) reduces; 
 

2 2 2 2 32(1 ) 2(1 ) ( ) 0k kνν ν β ν ν′′ ′+ − + − − =                                               (45) 
 

We introduce the anstaz; 
 

( )( ) ( ) ,
( )

N
i

i
i N

Ga
G

ξν ξ
ξ=−

′
= ∑                                                              (46) 

 
where ia  is a constant to be determined later. Considering the homogeneous balance between 

( ) ( )ν ξ ν ξ′′ and 3( )ν ξ  in Eq. (45), we have N = 2, and we suppose that the solution of Eq. (45) can be 
expressed by; 
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1 2 2
0 1 1 2 2

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ,
( ) ( ) ( ) ( )

G G G Ga a a a a
G G G G

ξ ξ ξ ξν ξ
ξ ξ ξ ξ

− −
− −

′ ′ ′ ′
= + + +                          (47) 

 
where 0 1 1 2, , ,a a a a−  and 2a−  are constants to be determined later. Substituting Eq. (47) with Eq. (5) into 

Eq. (45), and collecting the coefficients of 
( )

( )

G

G

ξ

ξ

′
, we obtain a set of algebraic equations for 

0 1 1 2 2, , , , , ,a a a a a k λ− − , and µ . Solving this system with the aid of Maple Package, we obtain the two 
sets of solutions as; 

      
Case 1: 
 

2 2

1 2 0 1 22 2 2

2 2

2

4 40, , , ,
4 4 4 4 4 4

4 4
4 4

B AB Aa a a a a
AC B A AC B A AC B A

AC B Ak
AC B A

β

− −= = = = =
− − − − − −

− − −
= ±

− −

      (48) 

 
Case 2: 
 

2 2

1 2 0 1 22 2 2

2 2

2

4 ( 1) 4( 1)0, , , ,
4 4 4 4 4 4

4 4
4 4

B B C Ca a a a a
AC B A AC B A AC B A

AC B Ak
AC B A

β

− −

− −
= = = = =

− − − − − −

− − −
= ±

− −

     (49) 

                                                                  
with the aid of above 2 cases in Eq. (47), we have the following solutions of Eq. (42) as follows; 
 

2 2
1 2

2 2 2 2

4 ( ) 4 ( )( ) [ ] [ ]( ) [ ]( ) ,
4 4 4 4 ( ) 4 4 ( )

B AB G A G
AC B A AC B A G AC B A G

ξ ξν ξ
ξ ξ

− −′ ′
= + +

− − − − − −
  

               (50) 
 

2 2
2

2 2 2 2

4 ( 1) ( ) 4( 1) ( )( ) [ ] [ ]( ) [ ]( ) ,
4 4 4 4 ( ) 4 4 ( )

B B C G C G
AC B A AC B A G AC B A G

ξ ξν ξ
ξ ξ
′ ′− −

= + +
− − − − − −

   

    (51) 
 

( ) ln( ( )),φ ξ ν ξ=                                                         (52) 
 

2 2

2

4 4[ ]
4 4

AC B Ax t
AC B A

βξ − − −
= − ±

− −
                                        (53) 

 
With using Eqs. (7) - (10) and Eqs. (50), (51), we obtain the following exponential function 

solutions, hyperbolic function solutions, and triangular function solutions of Eq. (42); 
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Family -1: when 0B ≠  and 2
1 4 4 0,B A AC∆ = + − > then; 

1 1

1 1

1 1

1 1

2

1 2 2

2 2
1 11 2

2 2
1 2

2 2 2
1 21 2

2

2 2
1 2

4( ) [ ] [ ]
4 4 4 4

exp exp[ ]
2(1 ) 2(1 )

exp exp

exp exp4[ ][ ]
4 4 2(1 ) 2(1 )

exp exp

a
B AB

AC B A AC B A

B c cB
C C

c c

B c cA B
AC B A C C

c c

ξ ξ

ξ ξ

ξ ξ

ξ ξ

ν ξ

∆ ∆
−

−

∆ ∆

∆ ∆
−

−

∆ ∆

= +
− − − −

∆ +
+

− −
−

∆ +
+ +

− − − −
−

                              (53) 

2 2

2

4 4[ ]
4 4

AC B Ax t
AC B A

βξ − − −
= − ±

− −
                                                       (54) 

 
Family -2: when 0B ≠  and 2

1 4 4 0,B A AC∆ = + − < then; 
 

1 1

1 1

1 1

1 1

2

2 2 2

1 2
1 1

1 2

2 1 2
1

2

1 2

2 2

2 2

2 2

2 2

4( ) [ ] [ ]
4 4 4 4

cos( ) sin( )
[ ]
2(1 ) 2(1 )

sin( ) cos( )

cos( ) sin( )4[ ][ ]
4 4 2(1 ) 2(1 )

sin( ) cos( )

b
B AB

AC B A AC B A

i c cBB
C C

i c c

i c cBA B
AC B A C C

i c c

ν ξ

ξ ξ

ξ ξ

ξ ξ

ξ ξ

−

−∆ −∆

−∆ −∆

−∆ −∆

−∆ −∆

= +
− − − −

− −−∆
+

− −
+ −

− −−∆
+ +

− − − −
+ −

2−

           (55) 

2 2

2

4 4[ ]
4 4

AC B Ax t
AC B A

βξ − − −
= − ±

− −
                                                     (56) 

 
Family -3: when 0B =  and 2 ( 1) 0,A C∆ = − > then; 

 
2

2 1 2 2 2 2
1 2

1 2 2 2

cos( ) sin( )4( ) [ ][ ]
4 4 2(1 ) sin( ) cos( )c

c cA
AC B A C c c

ξ ξ
ν ξ

ξ ξ
−∆ ∆ + ∆

=
− − − ∆ − ∆                         (57) 
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2 24 4[ ]
4 4

AC Ax t
AC A

βξ − −
= − ±

−
                                                   (58) 

 
Family -4: when 0B =  and 2 ( 1) 0,A C∆ = − < then; 
 

2
2 1 2 2 2 2

1 2
1 2 2 2

cosh( ) sinh( )4( ) [ ][ ]
4 4 2(1 ) sinh( ) cosh( )c

i c cA
AC B A C i c c

ξ ξ
ν ξ

ξ ξ
−−∆ −∆ − −∆

=
− − − −∆ − −∆              (59) 

2 24 4[ ]
4 4

AC Ax t
AC A

βξ − −
= − ±

−
                                                  (60) 

 
With similarly, through a combination of Case (2), and Eqs. (7) - (10) and (49), we can construct 

exact solutions to Eq. (42), which are omitted here for simplicity. 
 
Conclusions 

In this paper, a new analytical technique, namely,
( )

( )

ξ

ξ

′G
G

-expansion method, with a computerized 

symbolic computation using Maple, to establish new exact travelling wave solutions for isothermal 
magnetostatic atmosphere equations arising in physics. The proposed method has been successfully used 
to obtain some exact travelling wave solutions for the Liouville and sinh-Poisson equations. 

As a result, many exact travelling wave solutions have been obtained, which include the hyperbolic, 
triangular, and exponential function. Finally, it is worthwhile to mention that the proposed method is 
reliable, effective, and gives more solutions. The applied method will be used in further works to 
establish more, entirely new, exact travelling wave solutions, for other kinds of nonlinear evolution 
equations arising in physics. 
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