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Abstract 

This paper is concerned with the analysis of blood flow through inclined catheterized arteries 
having a balloon (angioplasty) with time-variant overlapping stenosis. The nature of blood in small 
arteries are analyzed mathematically by considering it as a Carreau fluid. The analysis is carried out for 
an artery with a mild stenosis. The problem is formulated using a perturbation expansion in terms of a 
variant of the Weissenberg number to obtain explicit forms for the axial velocity, the stream function, the 
pressure gradient, the resistance impedance and the wall shear stress distribution. The results were studied 
for various values of the physical parameters, such as the Weissenberg number Wi, the power index n, the 
taper angle φ, the maximum height of stenosis δ*, the angle of inclination α, the maximum height of the 
balloon σ*, the axial displacement of the balloon 𝑧𝑑∗ , the flow rate F and the Froud number Fr. The results 
show that the transmission of axial velocity curves through a Newtonian fluid (Wi = 0, n = 1) is 
substantially lower than that through a Carreau fluid near the wall of the balloon, while the inverse occurs 
in the region between the balloon and stenosis. The stream lines have a clearly distinguished shifting 
towards the stenotic region and this shifting appears near the wall of the balloon, while they have almost 
disappeared near the stenotic wall. Furthermore the size of trapping bolus in the case of the Newtonian 
fluid (Wi = 0, n = 1) is smaller than that through the Carreau fluid. 
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Introduction 

The study of blood flow through a stenosed artery is very important because the cause and 
development of many cardiovascular diseases are related to the nature of blood movement and the 
mechanical behavior of the blood vessel walls. A stenosis is defined as a partial occlusion of the blood 
vessels due to the accumulation of cholesterol, fats and the abnormal growth of tissue. Cardiac 
catheterization (also called heart catheterization) is a diagnostic procedure which does a comprehensive 
examination to determine how the heart and its blood vessels function. One or more catheters can be 
inserted through a peripheral blood vessel in the arm (antecubital artery or vein) or leg (femoral artery or 
vein) with X-ray guidance. This procedure gathers information such as adequacy of blood supply through 
the coronary arteries, blood pressure, blood flow throughout chambers of the heart, collection of blood 
samples, and X-rays of the heart’s ventricles or arteries. The vascular system is injected by a dye to 
determine any blockages, narrowing, or abnormalities in the coronary arteries. By using X-rays, some 
visible signs appear which assess in determining the patient’s need and his readiness for surgery. 
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The recent important contributions in that topic are referenced in the literature [1-5]. Much of the 
research that has studied arteriosclerotic development indicate that the studies are mainly concerned with 
single symmetric and non-symmetric stenoses while the stenoses may develop in series (multiple 
stenoses) or may be of irregular shapes or overlapping or composite in nature. Some studies considered an 
overlapping stenosis in the blood vessel segment. Chakravarty and Mandal [6] noted that the problem 
becomes more acute in the presence of an overlapping stenosis in the artery instead of a mild one. The 
effect of vessel tapering is another important factor that was considered. Chakravarty and Mandal [7] 
formulated the problem on a tapered blood vessel segment having an overlapping stenosis. Ismail et al. 
[8] studied the power-law model of blood flow through an overlapping stenosed artery where an 
improved shape of the time-variant stenosis in the tapered arterial lumen is given and the vascular wall 
deformability is taken to be elastic (moving wall). Layek et al. [9] investigated the effects of an 
overlapping stenosis on flow characteristics considering the pressure variation in both the radial and axial 
directions of the arterial segment under consideration. Srivastava et al. [10] addressed the problem of 
blood flow through an overlapping stenosis assuming that the flowing blood is represented by a two-
layered macroscopic two-phase model. Varshney et al. [11] studied the effect of overlapping stenosis and 
externally applied magnetic field on the pulsatile blood flow in arteries where the blood is characterized 
by a Power-law model. Recently, Mekheimer et al. [12] studied the effect of induced magnetic field on 
blood flow through anisotropically tapered elastic arteries with overlapping of stenosis in an annulus. 
Morover, Hayat et al. [13] discussed the peristaltic flow of a second-order fluid in the presence of an 
induced magnetic field. 

In all the above mentioned studies, horizontal blood carrying vessels were considered. However, it is 
well-known that many ducts in physiological systems are not horizontal but have some inclination to the 
axis. The force of gravity arises due to the consideration of inclined arteries. Vajravelu et al. [14] studied 
peristaltic transport of a Herschel-Bulkley fluid in an inclined tube. Maruthi Prasad and 
Radhakrishnamcharya [15] have proposed steady blood flow through an inclined nonuniform tube with 
multiple stenoses. Nadeem and Akbar [16,17] discussed the peristaltic transport of Herschel-Bulkley fluid 
and Walter’s B fluid in a non-uniform inclined tube. Prasad et al. [18] studied the peristaltic transport of 
micropolar fluid in an inclined tube under the assumptions of long wavelength and low Reynolds number. 
Recently, Chakraborty et al. [19] studied the effects of slip condition (at the stenotic wall), hematocrit and 
inclination of the artery on the flow variables (wall shear stress, shear stress at the throat of the stenosis 
and resistance to the flow) for blood flow through an inclined vessel with an axially non-symmetric mild 
stenosis, taking into account that blood which is represented by a particle-fluid suspension. Most of these 
studies do not study the effect of the catheter that have a balloon (angioplasty) on blood flow through 
inclined artery with overlapped stenosis which occurs in many clinical applications. 

For the flows of non-Newtonian fluids there is not a single model that describes all of their 
properties as there is for the Newtonian fluid. The flows of such fluids can be analyzed with the help of a 
power-law model. However, now in addition to the viscosity, another parameter, namely the power-law 
index (or exponent) is used to characterize the flows of such fluids that can be analyzed with the help of a 
power-law model [20]. Ellahi et al. [21] discussed the peristalic flow of Carreau fluid in a rectangular 
duct through a porous medium. 

In this paper, our primary concern is the four parameter model that does not have a discontinuous 
first derivative is a Carreau model. The Carreau fluid reveals (shear-thinning) that the viscosity decreases 
with increasing shear rate, by reaching 10-3 or 10-4 for a zero-shear rate. This factor is often the most 
important property for engineering calculations [23]. 

With the above discussion in mind, the goal of this investigation is to study the effect of the catheter 
that have a balloon (angioplasty) on the flow of the Carreau fluid (as a blood model) through inclined 
arteries with time-variant overlapped stenosis. The problem is first modeled and then the non-dimensional 
governing equations in the case of mild stenosis with the corresponding boundary conditions are 
prescribed and solved analytically. The results for the resistance impedance, wall shear stress distribution, 
the axial velocity, the pressure gradient have been discussed for various values of the problem parameters. 
Also the contour plots for the stream function are discussed. Finally, the main findings of the results are 
summarized as concluding remarks. 
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Mathematical model 

Consider an incompressible Carreau fluid of viscosity µ  and density ρ  flowing through coaxial 
tubes such that the inner tube represents the catheter with a balloon (angioplasty) on its wall and assuming 
that the balloon model is axi-symmetric in nature while the outer tube has a finite length L  with 
overlapping stenosis and inclined at an angle α  to the horizontal. Let ( , , )r zθ  be the coordinates of a 
material point in the cylindrical polar coordinate system where the z - axis is taken along the axis of the 
artery while r , θ  are along the radial and circumferential directions respectively. Further, we assume 
that = 0r  is taken as the axis of symmetry of the coaxial tubes. The geometry of the arterial wall with 
time-variant overlapping stenosis and the balloon model are defined by the functions ( , )R z t  and ( )h z , 
respectively, as shown as in Figure 1, and can be written mathematically as [8,23]; 

 
2

2

cos 94 32( , ) = [( ) ( ){11 ( ) ( )
3o

o o o

R z t mz R z d z d z d
L L L

δ φ
+ − − − − + −  

3
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3 2

o
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The time-variant parameter ( )tΩ  is taken to be;  
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Figure 1 Schematic diagram of a catheterized overlapping stenosed artery. 
 
 
where oR  is the constant radius of the normal artery in the non-stenotic region, φ  is the angle of 

tapering, 
3
2

oL
 is the length of the overlapping stenosis, d  is the location of the stenosis, cosδ φ  is 

taken to be the critical height of the overlapping stenosis, m  = (tan )φ  represents the slope of the 
tapered vessel, ε  is a constant, ω  represents the angular frequency of the forced oscillation and t  is the 
time, σ  denotes the maximum height attained by the balloon at ( = 0.5)dz z + , k  oR  is the radius of 

the inner tube which keeps the balloon in position, << 1k  and dz  represents the axial displacement of 
the balloon. We can explore the possibility of different shapes of the artery viz, the converging tapering          
( < 0φ ), non-tapered artery ( = 0φ ) and the diverging tapering ( > 0φ ) [24]. 

The equations governing unsteady flow of an incompressible Carreau fluid are; 
  

= 0,r r zV V V
r r z

∂ ∂
+ +

∂ ∂
                (4) 

 
1( ) = ( ) ( ) cos( ),r z r rr rz

pV V V r g
t r z r r r z r

θθτρ τ τ ρ α∂ ∂ ∂ ∂ ∂ ∂
+ + − + + − −

∂ ∂ ∂ ∂ ∂ ∂
         (5) 

 
1( ) = ( ) ( ) sin( ),r z z rz zz

pV V V r g
t r z z r r z

ρ τ τ ρ α∂ ∂ ∂ ∂ ∂ ∂
+ + − + + +

∂ ∂ ∂ ∂ ∂ ∂
          (6) 

 
where p  is the fluid pressure, rV  and zV  are the velocity components in radial and axial directions 
respectively, g  is the acceleration due to gravity and α  is the angle of inclination. 
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The extra stress tensor for a Carreau fluid is defined by [22]; 
 

1
2 2= [ ( )(1 ( ) ) ] ,

n

ij o ijτ η η η γ γ
−

∞ ∞+ − + Γ                 (7) 
 
where ijτ , ,i j  = , ,r zθ  are the components of the extra stress tensor, η∞  is the infinite shear rate 

viscosity, oη  is the zero shear rate viscosity, Γ  is a time constant, n  is the dimensionless power law 

index and γ  is defined as; 
  

1 1= = ,
2 2ij ij

i j ijγ

γ γ γ∑∑ ∏


                  (8) 

 
where ∏  is the second invariant of the strain rate tensor ijγ . According to Bird et al. [25] and Tanner 

[26], we consider in the constitutive Eq. (7) the case for which η∞  = 0, and γΓ   <<  1 [15]. So we can 
write the components of extra stress tensor as;  
 

2 21= [1 ] .
2ij o ij

nτ η γ γ−
+ Γ                  (9) 

 
The boundary conditions are; 

 
= 0, = 0 = ( ) = ( , ).r zV V at r h z and r R z t           (10) 

 
We introduce the following non-dimensional variables; 
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where iW  is the Weissenberg number, eR  is the Reynolds number, E  = r

e

F
R

 is a dimensionless 

quantity, rF  is the Froud number and ou  is the velocity averaged over the section of the tube with a 

radius oR . 
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We non-dimensionalize Eqs. (4) - (9) by using Eq. (11) to find the appropriate equations describing 

the flow of a Carreau fluid in the case of a mild stenosis *( = << 1)
oR
δδ , subject to the additional 

condition ( (1))o

o

R o
L
  [27] after dropping the dashes as; 

= 0,p
r
∂
∂

               (12) 

  
2
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+ +
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The corresponding boundary conditions (dropping dashes) are;  
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Solution development 

We expand the dependent variables as follows;  
 

2 4
1= ( ),z zo i z iV V W V O W+ +  
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After some straight forward calculations the solutions of the axial velocity and the pressure gradient 
together with the corresponding boundary conditions will be in the forms; 
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The corresponding stream function (
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Using Eq. (18), we can find the expression for the wall shear stress in the form; 
 

2
3

= ( , )
( 1)= ( ( ) ) | .

2
iz z

rz r R z t
n WV V

r r
τ −∂ ∂

+
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           (22) 

 
Since the flow rate F is constant for all the sections of the tube, the pressure drop across the length 

of the overlapping stenosis is; 
 

* *

0 0
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The resistance to flow (resistance impedance) experienced by the flowing blood in the arterial 

segment under consideration using Eq. (24) may be defined as; 
 

= p
F

λ ∆
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where *=( 1) ( ) =

( , ) = ( , ) |
R m z t and h k

z t z tχ
+ Ω

Σ . 

 
Graphical results and discussion 

Computer codes are developed to evaluate the analytic results obtained for the axial velocity zV , the 

resistance impedance λ  and the wall shear stress distribution rzτ  in order to be able to discuss the 
results obtained in Eqs. (18), (23) and (25) quantitatively, we use the following experimental data [8]: 

*= 0.1, = 1, = 0.75, = 7.854 = 1.o eL d and Rε ω  

According to Bird et al. [25] and Tanner [26] the Carreau fluid parameters are = 0.398,0.496n  

and = 1.04,1.58Γ . The Weissenberg number physically means that the viscosity decreases as iW  
increases and it is directly proportional to the relaxation time with constant averaged velocity over the 
section of the tube and the radius of the tube. When ( = 1n  , = 0)iW  the fluid will become a 
Newtonian one. 

Figures 2a and 2b describe the distribution of the axial velocity zV  for different values of the 

Weissenberg number iW  and power low index n ; we prepared Figures 2a and 2b for various values of 

the parameters: t  = 0.5 , z  = 1.2 , *δ  = 0.1 , *σ  = 0.2 , φ  = 0 , F  = 0.7 , α  = 15o , rF  = 0.1 , 
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*
dz  = 1, odp

dz
 = 1.5 , k  = 0.01 , ( = 0.398n  , = 0,0.4,0.8iW ), ( = 0.5iW  , = 0.398,0.496,1n ). 

It is observed that the axial velocity increases by increasing the Weissenberg number iW  while it 

decreases by increasing the power low index n  in the region ( 0.09 0.43r≤ ≤ ) (near the wall of the 
balloon) and opposite behavior occurs in the region ( 0.43 0.9r≤ ≤ , the region between the balloon and 
stenosis). Also we can record that the axial velocity is approximately independent of iW  and n  in the 

region ( 0.9 1.07r≤ ≤ ) (near the wall of stenosis) for both Newtonian and non-Newtonian fluids. 
Hence we can say that the transmission of the axial velocity curves through a Newtonian fluid                   
( = 0, = 1iW n ) is substantially lower than that through a Carreau fluid in the region near the wall of the 
balloon while the inverse occurs in the region between the balloon and stenosis. 
 

 
Figure 2 Variation of velocity profiles zV  with r  for different values of the Weissenberg number iW  
and power low index n  (panels (a) and (b) respectively). 

 
 
Figures 3a and 3b show the variation of the axial velocity zV  with radial distance r  for different 

values of the taper angle φ  and the flow rate F. To see the effect of φ  and F  on the axial velocity, we 

prepared Figures 3a and 3b for various values of the parameters: t  = 0.5 , z  = 1.2 , *δ  = 0.1 , *σ  = 

0.2 , iW  = 0.1 , n  = 0.398 , α  = 15o , rF  = 0.1 , *
dz  = 1, odp

dz
 = 1.5 , k  = 0.01 , ( = 0.3F ,

= 0,0.05, 0.05φ − ), ( = 0φ , = 0.3,0.6,0.9F ). The effect of the vessel tapering together with the 
shape of stenosis on the blood flow characteristics seem to be equally important and hence deserve 
special attention. The tapering is a significant aspect of the mammalian arterial system, and it is interested 
in the flow through a tapered artery with stenosis. So we can see that the curves through the converging 
tapered artery = 0.05φ −  (< 0)  are higher than those in the non-tapered artery ( = 0)φ  and the 

diverging tapered artery = 0.05φ  (> 0)  in the region ( 0.09 0.78r≤ ≤ ) while the inverse occurs in 
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the region ( 0.78 1.07r≤ ≤ ). Furthermore it is indicated from these figures that the magnitude of the 
axial velocity increases by increasing the flow rate F . 
 

 
Figure 3 Variation of velocity profiles zV  with r  for different values of the taper angle φ  and flow rate 

F  (panels (a) and (b) respectively). 

 
Figure 4 Variation of velocity profiles zV  with r  for different values of the angle of inclination α  and 

Froud number rF  (panels (a) and (b) respectively). 
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The effects of the angle of inclination α  and Froud number rF  on the axial velocity zV  are 

displayed in Figures 4a and 4b. To discuss these effects we use the following data: t  = 0.5 , z  = 1.2 , 

*δ  = 0.1 , *σ  = 0.2 , iW  = 0.5 , n  = 0.398 , φ  = 0 , F  = 0.7 , *
dz  = 1, odp

dz
 = 1.5 , k  = 0.01

,       ( = 0.1rF  , = 0 ,45 ,90o o oα ), ( = 45oα  , = 0.08,0.1,0.15,0.2rF ). It is noted that the axial 
velocity increases by increasing the angle of inclination α  while it decreases by increasing the Froud 
number rF  in the region ( 0.09 0.43r≤ ≤ ) and the opposite behavior occurs in the region                     

( 0.43 0.9r≤ ≤ ); also the axial velocity is independent of α  and rF  in the region ( 0.9 1.07r≤ ≤ ). 
The magnitude of the axial velocity clearly increases by increasing the acceleration due to the gravity g  

near the wall of the balloon at small values of the Froud number rF  while by increasing the values of the 

Froud number rF  gradually, the effect of gravity on the axial velocity is very negligible. The magnitude 

of the axial velocity through the vertical tube ( = 90 )oα  is higher than those in the inclined tube 

( = 45 )oα  and the horizontal tube ( = 0 )oα  near the wall of the balloon while the inverse occurs in the 
region between the balloon and stenosis. 

The wall shear stress is important in understanding the development of arterial disease because of 
the strong correlation between the localization of arteriosclerosis (stenosis) and the arterial wall. The 
variation of the wall shear stress distribution rzτ  in the stenotic region (0.75 2.25)z≤ ≤  for different 

values of the maximum height of stenosis *δ and the maximum height of the balloon *σ  is shown in 
Figures 5a and 5b, for various values of the parameters: t  = 0.5 , α  = 45o , rF  = 0.1 , iW  = 0.1 , n  

= 0.398 , φ  = 0 , F  = 0.3 , *
dz  = 1, odp

dz
 = 1.5 , k  = 0.05 , ( * = 0.01σ  , * = 0.05,0.1,0.15δ ), 

( * = 0.01δ  , = 0.1,0.2,0.3rF ). It is observed that the wall shear stress distribution curves are linear 

for * = 0.0σ  , * = 0.0δ  (no stenosis or a ballon) and non-linear for * = 0.0σ ≠  , * 0.0δ ≠ , also from 
these figures rzτ  decreases by increasing the maximum height of stenosis *δ  and the maximum height 

of the balloon *σ . Hence, the magnitude of the wall shear stress distribution is higher in the case of no-
stenosis ( * = 0δ ) (uniform tube) than that for the stenosis. 

The variation of the wall shear stress distribution rzτ  in the stenotic region for different values of 

axial displacement of the balloon *
dz  and taper angle φ  is displayed in Figures 6a and 6b. By using the 

following data: t  = 0.5 , α  = 45o , rF  = 0.1 , iW  = 0.1 , = 0.398n , *δ  = 0.1 , F  = 0.3 , *σ  = 

0.2 , odp
dz

 = 1.5 , k  = 0.05 , ( = 0φ  , * = 0,0.2,0.4dz ), ( * = 1, = 0,0.05, 0.05dz φ − ), we can 

record that by increasing the axial displacement of the balloon *
dz , the curves have shifted towards the 

left and the magnitude of the wall shear stress distribution decreases, and this effect decays as we move 
away from the balloon. It is also observed that the curves through the diverging tapered artery = 0.05φ  
(> 0)  are higher than those in the non-tapered artery ( = 0)φ  and the converging tapered artery 

= 0.05φ −  (< 0) . 
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Figure 5 Variation of the wall shear stress distribusion rzτ  with z  for different values of maximum 

height of stenosis *δ  and maximum height of balloon *σ  (panels (a) and (b) respectively). 
 

 
Figure 6 Variation of the wall shear stress distribusion rzτ  with z  for different values of axial 

displasement of the balloon *
dz  and taper angle φ  (panels (a) and (b) respectively). 
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Figure 7 Variation of the wall shear stress distribusion rzτ  with z  for different values of angle of 

inclination α  and Froud number rF  (panels (a) and (b) respectively). 
 
 
Figures 7a and 7b illustrate the variation of the wall shear stress distribution rzτ  in the stenotic 

region for different values of the angle of inclination α  and Froud number rF , with the data: t  = 0.5 , 

φ  = 0 , *
dz  = 1, iW  = 0.3 , n  = 0.398 , *δ  = 0.1 , F  = 0.1 , *σ  = 0.2 , odp

dz
 = 1.5 , k  = 0.03 , 

( = 0.08rF  , = 0 ,45 ,90o o oα ), ( = 15oα  , = 0.08,0.1,0.15,0.2rF ). These figures show that the 
wall shear stress distribution decreases by increasing the angle of inclination α  while it increases by 
increasing the Froud number rF  in the region (1.05 1.93z≤ ≤ ) and the opposite behavior occurs in 

the regions ( 0.75 1.05z≤ ≤ ) and (1.93 2.25z≤ ≤ ). Also the curves through the horizontal tube 
( = 0 )oα  are higher than those in the inclined tube ( = 45 )oα  and the vertical one ( = 90 )oα  in the 

region (1.05 1.93z≤ ≤ ) and the inverse occurs in the regions ( 0.75 1.05z≤ ≤ ) and                            
(1.93 2.25z≤ ≤ ). 

The variation of the wall shear stress distribution rzτ  in the stenotic region for different values of 

the Weissenberg number iW  and power low index n  is displayed in Figures 8a and 8b by using the 

following data: t  = 0.5 , α  = 45o , rF  = 0.1 , φ  = 0 , *δ  = 0.1 , F  = 0.3 , *σ  = 0.2 , odp
dz

 = 

1.5 , k  = 0.01 , ( = 0.398n  , = 0,0.1,0.2iW ), ( = 0.3iW  , = 0.398,0.496,1n ). It is observed 

that wall shear stress distribution increases by increasing the Weissenberg number iW  while it decreases 
by increasing the power low index n  and the transmission of the wall shear stress curves through a 
Newtonian fluid ( = 0, = 1iW n ) is substantially higher than that through a Carreau fluid. 
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Figure 8 Variation of the wall shear stress distribusion rzτ  with z  for different values of the 

Weissenberg number iW  and power low index n  (panels (a) and (b) respectively). 
 
 

 
Figure 9 Variation of resistance impedance (resistance to flow) λ  with *δ  for different values of the 
maximum height of the balloon *σ  and taper angle φ  (panels (a) and (b) respectively). 

 
 
Figures 9a and 9b illustrate the variation of the resistance to flow λ  (resistance impedance) with 

the maximum height of stenosis *δ  for different values of the maximum height of the balloon *σ  and 
taper angle φ . To see the effects of *σ  and φ  on resistance impedance, we prepared these figures with 

the data: t  = 0.5 , α  = 15o , rF  = 0.1 , n  = 0.398 , F  = 0.1 , iW  = 0.1 , odp
dz

 = 1.5 , k  = 0.01 , 
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*L  = 3 , *
dz  = 1, ( = 0φ  , * = 0,0.1,0.2σ ), ( * = 0.3σ  , = 0,0.05, 0.05φ − ). It is observed that the 

resistance impedance increases by increasing *σ  and the magnitude of the resistance impedance is higher 
in the case of a catheter with a balloon ( * 0σ ≠ ) than that for the case of a uniform catheter                      
( * = 0σ ) also the λ  curves through the converging tapered artery = 0.05φ −  (< 0)  are higher than 
those in the non-tapered artery ( = 0)φ  and diverging tapered artery = 0.05φ  (> 0) . 

 
Figure 10 Variation of resistance impedance (resistance to flow) λ  with *δ  for different values of the 
angle of inclination α  and Froud number rF  (panels (a) and (b) respectively). 

 
 

 
Figure 11 Variation of resistance impedance (resistance to flow) λ  with *δ  for different values of the 
axial displasement of the balloon *

dz  and length of the artery *L  (panels (a) and (b) respectively). 
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The variations of the resistance to flow (resistance impedance) λ  with *δ  for different values of 
the angle of inclination α , Froud number rF , the axial displacement of the balloon *

dz  and the length 

of the artery *L  are displayed in Figures 10 and 11 for various values of the parameters: t  = 0.5 , φ  = 

0 , n  = 0.398 , F  = 0.7 , iW  = 0.1 , odp
dz

 = 1.5 , k  = 0.01 , * = 0.2σ , (α  = 0 , 45 ,90 )o o o , 

( rF  = 0.1,0.2,0.3,0.4,0.5) , *( = 0,0.2,0.4)dz  and *( = 3,9,15)L . It is observed that the 

resistance impedance decreases by increasing the angle of inclination α , for > 45oα  this variation 
takes a constant value and there is no effect of α  on the the resistance to flow λ . These results agree 
closely with those of Vajravelu et al. [14], Nadeem and Akbar [16] and Chakraborty et al. [19]. Also, the 

magnitude of resistance impedance λ  increases by increasing both *
dz  and *L , where a small variation 

in the length of the artery *L  on λ  is observed. The magnitude of resistance impedance increases by 
increasing the Froud number rF , i.e, it decreases as the acceleration due to gravity g  increases and as 

the values of the Froud number rF  increases gradually, the effect of gravity on resistance impedance λ  

is very small. Hence, the magnitude of resistance impedance through a horizontal tube ( = 0 )oα  is 

higher than those in the inclined tube ( = 45 )oα  and vertical one ( = 90 )oα  and there is no variation 

for ( > 45oα ). 

 
Figure 12 Variation of resistance impedance (resistance to flow) λ  with t  for different values of the 
Weissenberg number iW  and power low index n  (panels (a) and (b) respectively). 
 
 

It is clear that the resistance impedance profiles with the time t  have a periodic oscillation form and 
there are three cardiac cycles where the length of the cycle is equal to 1.6 approximately (see Figures 12a 
and 12b). In the first cycle, the magnitude of the resistance impedance starts decreasing to reach its 
minimum value then starts increasing to reach its maximum then repeats its form again to reach the 
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beginning point of the second cycle and so on. Also we can see that the magnitude of the resistance 
impedance take similar variations in the second and third cycles. Moreover, this oscillation decays as the 
time t  increases. We can record that the resistance impedance increases by increasing iW  and n . So, the 
transmission of the resistance impedance curves through a Carreau fluid is substantially higher than that 
through a Newtonian fluid ( = 0, = 1iW n ). 

Trapping represents an interesting phenomenon for the fluid flow, where the streamlines under 
certain conditions split to trap a bolus which moves as a whole with the fluid. The formation of an 
internally circulating bolus of the fluid by closed streamline is called trapping. The bolus defined as a 
volume of fluid bounded by closed streamlines. Figures 13 - 17 represent the graphical behavior for this 
phenomena. Figure 13 reveals that the size of trapping bolus decreases by increasing the axial 
displacement of the balloon *

dz  and the streamlines have clearly distinguished shifting toward the 

stenotic region (0.75 2.25)z≤ ≤  also at ( *
dz  = 1), the balloon keeps its position in the stenotic region. 

This shifting appears near the wall of the balloon, while it disappeared near the stenotic wall. 
We can record that the size of the trapped bolus increases clearly by increasing the maximum height 

of the balloon *σ (Figure 14). Figure 15 indicates that the size of the trapped bolus through the vertical 
tube ( = 90 )oα  is higher than that in the inclined tube ( = 45 )oα  and the horizontal one ( = 0 )oα . 

The effects of the Weissenberg number iW  and power low index n  on the trapping are displayed in 
Figures 16 and 17. It is observed that the trapping appears near the overlapping stenosis wall and the 
trapped bolus increases in size as the Weissenberg number iW  while it decreases in size by increasing the 
power low index n . Finally we can see the size of the bolus in the case of a Newtonian fluid                      
( = 0, = 1iW n ) is smaller than that for a Carreau fluid. 
 
 

 
Figure 13 Plot showing streamlines for different values of axial displasement of the balloon with ( a ) *

dz  

= 0, ( b ) *
dz  = 0.6 and ( c ) *

dz  = 1. 
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Figure 14 Streamlines for different values of the maximum height of the balloon with ( a ) *σ  = 0.3, ( b ) 
*σ  = 0.4 and ( c ) *σ  = 0.5. 

 
 

 
Figure 15 Streamlines for different values of the angle of inclination with ( a ) α  = 0o , ( b ) α  = 45o  
and ( c ) α  = 90o . 
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Figure 16 Streamlines for different values of the Weissenberg number with ( a ) iW  = 0, ( b ) iW  = 0.01 

and ( c ) iW  = 0.02. 
 
 

 
 

Figure 17 Plot showing streamlines for different values of the power low index with ( a ) n  = 0.398, ( b ) 
n  = 0.496 and ( c ) n  = 1. 
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Concluding remarks 

The effect of a catheter with a balloon (angioplasty) on the flow of a Carreau fluid (as a blood 
model) through inclined arteries with time-variant overlapped stenosis is studied. Graphical results are 
presented for the wall shear stress distributions and resistance to flow (resistance impedance), axial 
velocity and trapping. 

The main finding can be summarized as follows: 
1) The transmission of the axial velocity curves through a Newtonian fluid ( = 0, = 1iW n ) is 

substantially lower than that for a Carreau fluid in the region near to the wall of the balloon while the 
inverse occurs in the region between the balloon and stenosis. 

2) In the region near to the wall of the balloon the magnitude of axial velocity increase clearly by 
increasing the acceleration due to gravity and the curves through the vertical tube ( = 90 )oα  are higher 

than those in the inclined and horizontal tube ( = 0 )oα , while the inverse occurs in the region between 
the balloon and stenosis. 

3) The effect of the gravity on the axial velocity and the resistance impedance is negligibly small 
by increasing the values of the Froud number gradually. 

4) Under stenotic conditions, the curves of the axial velocity and resistance impedance through the 
converging tapered artery are higher than those in the non-tapered artery and the diverging tapered artery 
while those of the wall shear stress have an inverse behavior. 

5) The resistance impedance profiles with time have an oscillation form through tapered overlapped 
stenosis arteries and this oscillation decays with time. 

6) The streamlines have a clearly distinguished shifting toward the stenotic region and this shifting 
appears near the wall of the balloon, while it disappeared near the stenotic wall. 

7) The size of the trapped bolus through the vertical tube ( = 90 )oα  is higher than those in the 

inclined and the horizontal tube ( = 0 )oα . 

8) The size of the trapped bolus in the case of a Newtonian fluid ( = 0, = 1iW n ) is smaller than 
that through a Carreau fluid. 
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