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Abstract 

In this paper, we consider a variety of random parameters of genetic algorithms based on some 
benchmark functions and traveling salesman problem (TSP). We have analyzed parameters of the genetic 
algorithm such as population size, crossover probability and mutation probability. The experiments have 
shown that we cannot propose a uniform model for the parameters of a genetic algorithm. However 
increasing of population size can reduce genetic algorithm iterations but crossover probability and also 
mutation probability strongly depend on benchmark functions. 
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Introduction 

The optimization problem is finding an alternative with the most cost effective or highest achievable 
performance under the given constraints, by maximizing desired factors and minimizing undesired ones 
[1]. The goal of all optimization procedures is to obtain the best results possible (again, in some defined 
sense) subject to restrictions or constraints that are imposed. The first step in modern optimization is to 
obtain a mathematical description of the process or the system to be optimized. A mathematical model of 
the process or system is then formed on the basis of this description. Depending on the application, the 
model complexity can range from very simple to extremely complex. 

During the past years many methods have been proposed for tackling the problem of global 
optimization. These methods can be divided in 2 main categories namely deterministic and stochastic [2]. 
Methods belonging to the first category are more difficult to implement and they depend on priory 
information about the objective function. On the other hand, stochastic methods are implemented more 
easily and they do not require priory information about the objective function [2]. Among the stochastic 
methods for global optimization we refer to Random Line Search [3], Adaptive Random Search [4], 
Competitive Evolution [5], Controlled Random Search [6], Simulated Annealing [7-10], Genetic 
Algorithms [11,12], Differential Evolution [13,14], Tabu Search [15] etc. 

Genetic algorithms were developed by Holland at the University of Michigan in the early 1970’s 
[16]. Genetic algorithms are probabilistic, robust and heuristic search algorithms premised on the 
evolutionary ideas of natural selection and genetic [17]. Genetic algorithms are applied in numerous 
application areas mainly for optimization. The most common example that can be cited is the traveling 
salesman problem, in which the best shortest route has to be determined by optimizing the path. 

GA handles a population of possible solutions. Each solution is represented through a chromosome, 
which is just an abstract representation. The genetic algorithm is applied by evaluating the fitness of all of 
the individuals in the population. Once the fitness function is evaluated, a new population is created by 
performing operations such as crossover, fitness-proportionate reproduction, and mutation on the 

http://www.businessdictionary.com/definition/cost.html
http://www.businessdictionary.com/definition/effective.html
http://www.businessdictionary.com/definition/achievable.html
http://www.businessdictionary.com/definition/performance.html
http://www.businessdictionary.com/definition/constraint.html
http://www.businessdictionary.com/definition/factor.html
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individuals. Every time the iteration is performed, the old population is rejected and the iteration 
continues using the new population. This process leads to the evolution of better populations than the 
previous populations [18]. 

In this paper we examine 3 different functions in order to test specific parameters of GAs. So, we 
want to analyze the effect of the variation of random parameters on application problems for instance the 
traveling salesman problem and to evaluate the general computational behavior of GAs. This paper is 
organized as follows. Section II gives the outline of the genetic algorithm and traveling salesman 
problem. In section III and IV we describe the genetic algorithm for different functions and traveling 
salesman problem. Experimental results are present in section IV. 
 
Genetic algorithm overview 

Genetic algorithms are a family of computational models inspired by evolution. Genetic algorithms 
belong to the larger class of evolutionary algorithms (EA), which generate solutions to optimization 
problems using techniques inspired by natural evolution, such as inheritance, mutation, selection, and 
crossover. These algorithms encode a potential solution to a specific problem on a simple chromosome-
like data structure and apply recombination operators to these structures so as to preserve critical 
information. Genetic algorithms are often viewed as function optimizers, although the range of problems 
to which genetic algorithms have been applied is quite broad. In a genetic algorithm, a population of 
strings (called chromosomes or the genotype of the genome), which encode candidate solutions (called 
individuals, creatures, or phenotypes) to an optimization problem, evolves toward better solutions. 
Traditionally, solutions are represented in binary as strings of 0 and 1 s, but other encodings are also 
possible. The evolution usually starts from a population of randomly generated individuals and happens in 
generations. In each generation, the fitness of every individual in the population is evaluated, multiple 
individuals are stochastically selected from the current population (based on their fitness), and modified 
(recombined and possibly randomly mutated) to form a new population. The new population is then used 
in the next iteration of the algorithm. Commonly, the algorithm terminates when either a maximum 
number of generations have been produced, or a satisfactory fitness level has been reached for the 
population. 

Selection: During each successive generation, a proportion of the existing population is selected to 
breed a new generation. Individual solutions are selected through a fitness-based process, where fitter 
solutions (as measured by a fitness function) are typically more likely to be selected. The purpose of 
selection is to emphasize fitter individuals in the population. There are several types of selection methods 
used in genetic algorithms, including: 

• Rank-based fitness assignment 
• Roulette wheel selection 
• Stochastic universal sampling 
• Local selection 
• Truncation selection 
• Tournament selection 
 
Crossover: The next step is to perform crossover. This operator selects genes from parent 

chromosomes and creates a new offspring. The simplest way of doing this is to randomly choose some 
crossover point and copy everything before this point from the first parent and then copy everything after 
the crossover point from the other parent [19]. The crossover operator is applied to the mating pool with 
the hope that it creates a better offspring [20]. The various crossover techniques are single-point, two-
point, multi-point and uniform crossover. 

Mutation: After crossover, the strings are subjected to mutation. Mutation prevents the algorithm 
becoming trapped in a local minimum. Mutation plays the role of recovering the lost genetic material as 
well as for randomly disturbing genetic information [20]. 
 

http://en.wikipedia.org/wiki/Evolutionary_algorithm
http://en.wikipedia.org/wiki/Heredity
http://en.wikipedia.org/wiki/Mutation_(genetic_algorithm)
http://en.wikipedia.org/wiki/Selection_(genetic_algorithm)
http://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)
http://en.wikipedia.org/wiki/Population
http://en.wikipedia.org/wiki/Chromosome_(genetic_algorithm)
http://en.wikipedia.org/wiki/Genotype
http://en.wikipedia.org/wiki/Genome
http://en.wikipedia.org/wiki/Candidate_solution
http://en.wikipedia.org/wiki/Phenotype
http://en.wikipedia.org/wiki/Stochastics
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Selection_(genetic_algorithm)
http://en.wikipedia.org/wiki/Fitness_(biology)
http://en.wikipedia.org/wiki/Fitness_function
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Elitism: The first best chromosome or the few best chromosomes are copied to the new population. 
The rest is done in a classical way. Such individuals can be lost if they are not selected to reproduce or if 
crossover or mutation destroys them. This significantly improves the GA’s performance [20]. The 
structure of the GA is shown in Figure 1. 

 
 

 
 
Figure 1  Structure of a traditional genetic algorithm. 
 
 
Traveling salesman problem overview 

The traveling salesman problem (TSP) is a well-known problem in combinatorial optimization. The 
aim of TSP is to find a tour of a given number of cities, visiting each city exactly once and returning to 
the starting city where the length of this tour is minimized. Each possible tour is a permutation of 1, 2, 3, . 
. . n, where n is the number of cities, so therefore the number of tours is n!. The search path in the TSP 
problem can grow exponentially with the city number N, so it is a NP-complete problem, and to 
accurately determine the optimal solution is impossible [21]. There are several practical uses for this 
problem, such as vehicle routing (with the additional constraints of vehicle’s route, such as the vehicles’ 
capacity) and drilling problems [22]. Therefore, the mathematical model for TSP is as follows: 
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𝑚𝑖𝑛∑𝑑𝑖𝑗 𝑥𝑖𝑗          
𝑠. 𝑡.       ∑ 𝑥𝑖𝑗 = 1     𝑖 = 1,2, . . . ,𝑛𝑛

𝑗=1                  
∑ 𝑥𝑖𝑗𝑛
𝑖=1 = 1       𝑗 = 1,2, . . . ,𝑛                        

∑ 𝑥𝑖𝑗𝑖,𝑗∈𝑠 ≤ |𝑠| − 1  2 ≤ |𝑠| ≤ 𝑛 − 2       𝑠 ∈ {1,2, . . .  𝑛} 

𝑥𝑖𝑗 = �1    𝑖𝑓 𝑟𝑜𝑢𝑡𝑒(𝑖, 𝑗) 𝑖𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 .
0            𝑜𝑡ℎ𝑒𝑡𝑤𝑖𝑠𝑒                      

�                  (1) 
 

The TSP has received considerable attention over the last 2 decades and various approaches are 
proposed to solve the problem, such as branch-and-bound, cutting planes, 2-opt , simulated annealing, 
neural network, and tabu search [23]. Some of these methods are exact algorithms, while the others are 
near-optimal or approximate algorithms. The exact algorithms include the integer linear programming 
approaches with additional linear constraints to eliminate infeasible subtours [23]. On the other hand, 
network models yield appropriate methods that are flexible enough to include the precedence constraints 
[23]. More recently, genetic algorithm (GA) approaches have been successfully implemented to the TSP 
[24]. At present, there are many web sites discussing the traveling salesman problem, and have the 
benchmark in the standard TSPLIB format [25], such as eil51, st70, where the number behind the name 
represents the number of cities to be studied. 
 
 
Table 1 Test functions. 
 

Name Function Search space Optimal 

Ackley 𝑓(𝑥, 𝑦) = 20 + 𝑒 − 20 exp (−0.2√(1/2(𝑥^2
+ 𝑦^2))) − exp (1/2(𝑐𝑜𝑠2𝜋𝑥
+ 𝑐𝑜𝑠2𝜋𝑦) 

 

(-32,32) 22.2397 

Schaffer 
𝑓(𝑥, 𝑦) = 0.5 +

(𝑠𝑖𝑛�𝑥2 + 𝑦2)2   − 0.5
(1 + 0.01(𝑥2 + 𝑦2)2)2 

 

 

(-100,100) 0.9957 

Rastrigin 𝑓(𝑥, 𝑦) = 20 + (𝑥2 + 𝑦2) − 10𝑐𝑜𝑠2𝜋(𝑥 + 𝑦) 
 

(-5.12,5.12) 80.7065 

 
 
Table 2 Result of different crossover probability. 
 

Pc% 10 20 30 40 50 60 70 80 90 

Schaffer 441.5 372.3 422.7 657.6 558.4 625.2 622.4 712.1 835.1 

Ackley 1418.4 1513.8 1576.3 1493.1 1607 1580.7 1632.7 1625.1 1713.3 

Rastrigin 1534.8 1464.5 1443.2 1503.4 1583.6 1524 1377.9 1515.9 1500.6 

 
 
Experimenting with simulation parameters 

In this section, we use several functions in order to test specific parameters of the GAs and, then 
consider the effect the parameters have over TSP and evaluate the general computational behavior of 
GAs. These functions selected from several articles are listed in Table 1. It’s noted that the functions are 
to be maximized. We have analyzed parameters of genetic algorithm such as population size, crossover 
probability and mutation probability. 
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Function test 
In the evaluation, the length of the chromosomes is set to chrom=14; the number of generations is 

Max-gen = 2000 and the type of crossover is two-point crossover. In the experiment, we ran the GA 100 
times and calculated the mean generation of the 100 run. The results of the experiments are given in 
Tables 2 - 4. 

Crossover: The basic parameter in the crossover technique is the crossover probability (Pc). The 
crossover probability is a parameter to describe how often crossover will be performed [19]. The 
crossover in our experiment is applied with nine probability values 𝑃𝑐 ∈ [0.1,0.9] with a step of 0.1, and 
its application or non-application is defined by a random number generator. When it is not applied, the 
offspring is considered as an exact copy of one of the parents with equal probability [19]. Figure 2 shows 
the average number of generations taken by the GA with different crossover probability. 

Mutation: After a crossover is performed, mutation takes place. This is to prevent all solution 
populations falling into a local optimum of solving problem or local convergence [19]. Mutation is 
viewed as a background operator to maintain genetic diversity in the population. The mutation in our 
experiments is applied with 6 probability values (0.001, 0.01, 0.02, 0.03, 0.04, 0.05 and 0.06) and its 
application or non-application is defined by a random number generator. Figure 3 shows the average 
number of generations taken by the GA with different mutation probability. 

Population size: For each and every problem, the population size will depend on the complexity of 
the problem. The population size affects both the overall performance and the efficiency of GAs [19]. The 
larger the population is, the easier it is to explore the search space. But it has been established that the 
time required by a GA to converge is O (nlogn) function evaluations where n is the population size [19]. 
The population size in our experiments is with 10 values 𝑃𝑜𝑝_𝑠𝑖𝑧𝑒 ∈ [20,120] with step 20. Figure 4 
shows the average number of generations taken by the GA with different population size. 
 
 

Table 3 Result of different crossover probability. 
 

Pc% 10 20 30 40 50 60 70 80 90 

Schaffer 441.5 372.3 422.7 657.6 558.4 625.2 622.4 712.1 835.1 

Ackley 1418.4 1513.8 1576.3 1493.1 1607 1580.7 1632.7 1625.1 1713.3 

Rastrigin 1534.8 1464.5 1443.2 1503.4 1583.6 1524 1377.9 1515.9 1500.6 

 
 
Table 4 Result of different mutation probability. 
 
Pm% 0.001 0.01 0.02 0.03 0.04 0.05 0.06 

Schaffer 1075.5 810.03 832.3 831.9 565.3 625.2 698.2 

Ackley 1996.7 1914.8 1806 1813.5 1726.7 1698.8 1576.7 

Rastrigin 1986.6 1809.8 1811.8 1695.7 1562.1 1624.3 1412.2 
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                                  (a) (b) (c)  

 

Figure 2  Mean of the generation of 3 test functions with different crossover probability. (a) Schaffer (b) 
Ackley and (c) Rastrigin. 
 
 

 
(a) 

 
(b)                                                                                                                                                                                                                                                                                                       (c) 

Figure 3  Mean of the generation of 3 test functions with different mutation probability. (a) Schaffer (b) 
Ackley and (c) Rastrigin. 
 

 

 
(a)  

(b)  
(c)

Figure 4  Mean of the generation of 3 test functions with different population size. (a) Schaffer (b) Ackley 
and (c) Rastrigin. 
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(a)  

(b) 
 

(c) 
 
Figure 5  Mean of the generation of TSP with different probability (a) Population size (b) Mutation (c) 
Crossover. 
 
 

Traveling salesman problem 
The algorithm parameters of GA are that the number of generations is max-gen = 2000, the type of 

crossover is order-crossover and the type of mutation is 2-opt mutation. We used the TSP problem as a 
test with eil51, which has 51 cities. The optimal solution to this problem is known to be 426 m. In the 
experiment, we run the GA 100 times and calculate mean of generation of the 100 run. Figure 5 shows 
the average number of generation taken by the GA with different population size, crossover probability 
and mutation probability. 
 
Conclusions 

In this study, the effect of variation of random parameters on the performance of the GA was 
compared. We used 3 different functions and a combinatorial optimization problem in this case the 
traveling salesman problem (TSP) in order to test specific parameters of GAs. The results show that the 
variation of random parameters of the genetic algorithm depends on the objective function and we cannot 
propose a constant pattern for random parameters of GA. Our results show that increasing, crossover rate 
leads to poor results for test functions but with increasing population size the value improves our results 
and also we could not find any robust rules with a variation of mutation rate. By attention to the results 
achieved from the variation of random parameters on TSP, we can say that the presence of even a small 
crossover rate improves our results. A large population requires more evaluations per generation, and 
consequently increases the computational time. 
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