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Abstract 

This paper consists of proposal of two new constructions of balanced Boolean function achieving a 
new lower bound of nonlinearity along with high algebraic degree and optimal or highest algebraic 
immunity. This construction has been made by using representation of Boolean function with primitive 
elements. Galois Field, 𝐹2𝑛 used in this representation has been constructed by using powers of primitive 
element such that greatest common divisor of power and 2𝑛 − 1 is 1. The constructed balanced 𝑛 − 
variable Boolean functions achieve higher nonlinearity, algebraic degree of 𝑛 − 1, and algebraic 
immunity of  𝑛+1

2
 for odd 𝑛, 𝑛

2
 for even 𝑛. The nonlinearity of Boolean function obtained in the proposed 

constructions is better as compared to existing Boolean functions available in the literature without 
adversely affecting other properties such as balancedness, algebraic degree and algebraic immunity. 

Keywords: Boolean function, Nonlinearity, Cyclotomic coset, Algebraic degree, Algebraic immunity 
 
 
Introduction 

Boolean functions have been widely used for generation of LFSR based stream ciphers, 
cryptographic transformations of S-boxes, pseudorandom generators, etc. [1,2]. Various constructions of 
Boolean function with cryptographic properties, related preliminaries and their applications have been 
given in [1-37]. Boolean functions should be designed such that these are resistant to well-known 
cryptographic attacks, such as fast correlation attack, linear approximation attack, algebraic attack, 
Berlekamp Massey attack, Ronjom Hellseth attack, etc [2-4]. Nonlinearity is one of important 
cryptographic criteria for construction of Boolean function for higher values of 𝑛. It ensures good 
resistance against linear approximation attack and fast correlation attack. Generally, the Boolean function 
with lower nonlinearity has lower values of algebraic immunity and algebraic degree. High value of 
algebraic immunity is required to resist algebraic attack whereas high value of algebraic degree is 
required to provide good linear complexity [1]. Therefore, higher value of nonlinearity becomes very 
important cryptographic criterion for Boolean function to provide resistance against algebraic attack, 
linear approximation attack and fast correlation attack. It is also important to have high linear complexity. 
The Boolean functions with highest value of nonlinearity are called as bent functions. Yet, bent functions 
are not balanced. The Boolean functions are required to be balanced for keeping the pseudorandomness of 
generated sequence. From the above discussion, it is clear that constructing Boolean functions with higher 
nonlinearity, balancedness, higher algebraic degree and optimal or high algebraic immunity is highly 
desirable. However, there is trade-off among these cryptographic properties of Boolean function [1]. 
Therefore, it is a difficult task to construct a Boolean function with good values of these properties. In this 
paper, we have proposed two constructions of balanced Boolean function with a new lower bound of 
nonlinearity, high value of algebraic degree and optimal or highest achievable algebraic immunity. The 
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constructed balanced Boolean functions have achieved greater value of nonlinearity with high algebraic 
degree of 𝑛 − 1 and optimal or highest algebraic immunity of �𝑛

2
�. The proposed work demonstrates that it 

is possible to construct Boolean functions with good trade-off of cryptographic properties and these 
Boolean functions achieve the greater value of nonlinearity as compared to previous papers without 
compromising on other properties. To the best of our knowledge, it has not been shown previously in the 
literature. 

In [5], the standard algebraic attack on stream ciphers has been proposed. Then, the concept of 
algebraic immunity was introduced in [6]. The algebraic immunity of a Boolean function should be high 
to resist the standard algebraic attack. Similarly, fast algebraic attack was also investigated in 
[11,14,15,23,24]. The Boolean functions proposed in various constructions in [15,25-32] have optimal 
algebraic immunity. Nevertheless, the nonlinearities of these Boolean functions are not much higher in 
order to resist the related attacks. A family of  balanced Boolean functions with high nonlinearity, optimal 
algebraic immunity, optimal algebraic degree, and good resistance to fast algebraic attack has been 
proposed in [8], where support set defined using primitive element, 𝛼 of F2n and support set = {𝑥 ∈
F2𝑛|𝑓(𝑥) = 1}. A family of balanced Boolean functions for even 𝑛 has been proposed in [33]. These 
Boolean functions possess high nonlinearity and optimal algebraic immunity. A class of 2𝑘-variable 
balanced Boolean functions with optimal algebraic immunity by using Dobbertin’s iterative construction 
has been suggested in [34]. These Boolean functions have high nonlinearity and optimal algebraic degree. 
However, the functions in [33,34] are not resistant to fast algebraic attacks [35,36]. Three classes of 
balanced Boolean functions with optimal algebraic immunity has been proposed in [22]. The Boolean 
functions also possess high nonlinearity and optimal algebraic degree. In [18], three constructions of 
balanced Boolean functions with relevant cryptographic properties have been proposed. Boolean 
functions in [18] contain the functions in [8] as a subclass. Authors in [16] also presented a family of 
balanced Boolean functions. These functions are with optimal algebraic immunity in an even 𝑛. They also 
possess good resistance to fast algebraic attacks and have higher nonlinearity that is comparable with that 
of the functions in [8]. 

In [13], a framework for assessing the immunity against algebraic attacks using univariate 
representation of Boolean functions has been provided. It has been carried out by defining a matrix 
representation of annihilators. In [13], two families of Boolean functions with optimal algebraic immunity 
have also been proposed. In [18], authors have used the matrix representation defined in [13] and 
proposed three constructions of balanced Boolean functions with optimal algebraic immunity using two 
disjoint subsets {(𝑊0\𝑌0)⋃𝐼0} and {(𝑊0\𝑌0)⋃𝐼0}. Support set of family of Boolean functions in [18] is 
also defined by using primitive element, 𝛼 of F2n. 

In this paper, it has been verified on SAGE that finite field F2n can also be formed by using powers 
of primitive elements. By using powers of primitive elements, we have proposed two constructions of 
balanced Boolean functions. The power of primitive element is taken to be co-prime with respect to 
2𝑛 − 1. It has been given in [20] that all the elements of F2n can be obtained by considering the powers of 
first primitive element 𝛼𝑎 such that greatest common divisor of 𝑎 and 2𝑛 − 1 is 1, i.e 𝑔𝑐𝑑(𝑎, 2𝑛 − 1) =
1. Therefore, 𝛼𝑎 can be considered as generator of non-zero elements of F2n. These constructions are also 
defined by using two disjoint subsets. The lower bound of nonlinearity of proposed Boolean functions for 
𝑛 = 17, 19 are better as compared to that of [8,16,18,22,37]. The nonlinearity of Boolean functions for 
𝑛 = 8, 10, 11, 13, 14, 15, 16, 17, 19 in Construction 1 and Construction 2 is greater than that of Boolean 
functions of previous papers [8,16,18,37]. These families of balanced Boolean functions have higher 
nonlinearity, optimal algebraic immunity, and algebraic degree of 𝑛 − 1. 

In Section 2 of this paper, preliminaries related to Boolean function are defined. In Section 3, two 
constructions of a family of Boolean functions are presented. The nonlinearity of Boolean function is 
calculated in Section 4. In Section 5, algebraic degree and algebraic immunity of Boolean function are 
obtained. Section 6 consists of conclusion and future work. 
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Preliminaries 

The list of various symbols used in this paper has been provided in Table 1. 
 
 
Table 1 List of symbols. 
 

Symbol Description 
𝐅𝟐 Galois Field of Order 2 
𝜶 primitive element of finite field F2n 

𝐅𝟐𝒏 𝑛-dimensional vector space over Galois Field of order 2 

𝐅𝟐𝐧 Finite field of Order 2𝑛 

𝐅𝟐𝐧
∗  Multiplicative group of non-zero elements of F2n 

𝒇(𝒙) or 𝒇 Boolean function 
𝑩𝒏 Set of all 𝑛-variable Boolean function 

𝒘𝒕(𝒇) Hamming weight of Boolean function 𝑓 
𝑾𝒇(𝜸) Walsh-transform of Boolean function 𝑓 
𝒏𝒍(𝒇) nonlinearity of 𝑓 
𝑨𝑵(𝒇) Annihilator of 𝑓 
𝒔𝒖𝒑𝒑(𝒇) 𝑥 ∈ F2𝑛 such that 𝑓(𝑥) = 1 

𝒅𝑯(𝒇,𝒈) Hamming distance between Boolean functions 𝑓 and 𝑔 

𝒛𝒆𝒓𝒐𝒔(𝒇) 𝑥 ∈ F2𝑛 | 𝑓 (𝑥)  =  0 

𝒅𝒆𝒈 (𝒇) Algebraic degree of 𝑓 

𝑻𝒓(𝒙) Absolute trace of 𝑥 in finite field 

𝝍(𝒑𝜿) Multiplicative character of F2n
∗  

𝑮(𝝍, µ) Gaussian sum in finite field 

CS Cyclotomic coset 

𝛍(𝒙) Canonical additive character of F2n 

𝛕(𝒏) Set of all coset leaders 𝑚𝑜𝑑2𝑛 − 1 
 
 

The 𝑛 −variable Boolean function is denoted as 𝑓(𝑥1,𝑥2, … , 𝑥𝑛). Boolean function can be 
represented by its truth table. The last column of its truth table consists of a binary string of its output 
values. Length of its binary string is equal to 2𝑛and all of its output values are the following [18]: 
 
𝑓 = [𝑓(0, 0, … , 0), 𝑓(1, 0, … , 0), … , 𝑓(1, 1, … , 1)]                                                                                     (1) 
 

If output values of Boolean function have equal number of zeros and ones, then the Boolean 
function is called as balanced. Let 𝐵𝑛 be the set of all 𝑛 −variable Boolean function from F2𝑛 to F2. Let 
support set, 𝑠𝑢𝑝𝑝(𝑓) define 𝑥 ∈ F2𝑛 such that 𝑓(𝑥) = 1, where F2𝑛 represents 𝑛 − dimensional vector 
space over Galois Field of order 2, F2. It is also hamming weight of 𝑓(𝑥1,𝑥2, … , 𝑥𝑛). Similarly, 
𝑧𝑒𝑟𝑜𝑠(𝑓) = {𝑥 ∈ F2𝑛 | 𝑓 (𝑥)  =  0} defines zeros of 𝑓. In other words, Boolean function can also be 
termed as balanced if hamming weight of 𝑓(𝑥1,𝑥2, … , 𝑥𝑛) is 2𝑛−1 [18]. Let 𝑤𝑡(𝑓) denotes the hamming 
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weight of Boolean function 𝑓. Let hamming distance of two functions 𝑓 and 𝑔 is represented by 𝑑𝐻(𝑓,𝑔). 
A univariate polynomial representation of a Boolean function 𝑓 from F2𝑛 to F2 is given by; 

 
𝑓(𝑥) = ∑ 𝑓𝑖𝑥𝑖2𝑛−1

𝑖=0                                                                                                                                        (2)  
                      
where 𝑓0, 𝑓2𝑛−1are elements of F2 and 𝑓𝑖 ∈ F2𝑛 & 𝑓2𝑖 = (𝑓𝑖)2, for 1 ≤ 𝑖 ≤ 2𝑛 − 2. Let 𝑤𝑡2(𝑖) be the 
hamming weight of binary representation of 𝑖, then largest integer 𝑘 = {𝑤𝑡2(𝑖)|𝑓𝑖 ≠ 0} is algebraic 
degree, 𝑑𝑒𝑔 (𝑓)of 𝑓. If algebraic degree is at most 1, then it is an affine function. The set of possible 
affine functions is represented by 𝐴𝑛. Let F2n be a finite field of order 2nand 𝛼 be its primitive element, 
then 𝑓(𝑥) = �𝑓(0), 𝑓(1), 𝑓(𝛼), … … , 𝑓(𝛼2𝑛−2)� defines Boolean function 𝑓. 

The nonlinearity of 𝑓 is defined as minimum hamming distance of 𝑓 from 𝑔 ∈ 𝐴𝑛. The nonlinearity 
of 𝑓 can be defined in terms of Walsh transform [13]. The Walsh-transform of Boolean function 𝑓(𝑥) is 
given as: 

 
𝑊𝑓(𝛾) = ∑ (−1)𝑓(𝑥)+𝛾.𝑥

𝑥Є𝐹2
𝑛                                                                                                                        (3) 

 
where 𝑥 = (𝑥1, … . . , 𝑥𝑛) and 𝛾 = (𝛾1, … , 𝛾𝑛) both be affiliated to vector space F2n. The product 𝛾.x is an 
inner product, which is represented in [13] as: 
 
𝛾. 𝑥 = 𝛾1𝑥1 + ⋯+ 𝛾𝑛𝑥𝑛                                                                                                                              (4) 
  

If 𝑊𝑓(0) = 0, then 𝑓 is said to be balanced. In terms of Walsh transform, the nonlinearity of 
Boolean function 𝑓 is given as: 

 
𝑛𝑙(𝑓) = 2𝑛−1 − 1

2
max𝛾ЄF2n�𝑊𝑓(𝛾)�                                                                                                            (5)  

 
Consider 𝛼 ∈ 𝐹 = Fqn and 𝐾 = Fq, trace Tr𝐹 𝐾⁄ (𝛼) of 𝛼 over 𝐾 is defined as  Tr𝐹 𝐾⁄ (𝛼) = 𝛼 +

𝛼𝑞 + … … . . +𝛼𝑞𝑛−1. If  𝐾 is the prime subfield of 𝐹, then Tr𝐹 𝐾⁄ (𝛼) is called the absolute trace of 𝛼 and 
is denoted as Tr𝐹(𝛼).     

Annihilator of 𝑓 is a Boolean function 𝑔 ∈ 𝐵𝑛 such that 𝑓 ∗ 𝑔 = 0 and it is denoted by 𝐴𝑁(𝑓). The 
minimum algebraic degree of all annihilators of 𝑓 or 𝑓 + 1 is called as Algebraic immunity. For a fast 
algebraic attack on 𝑓, if there are 𝑔 ∈ 𝐵𝑛 & 0 ≠ {ℎ ∈ 𝐵𝑛} with 𝑑𝑒𝑔(𝑔) ≤ 𝑑1 < 𝑑𝑒𝑔(ℎ) ≤ 𝑑2 < 𝑛, such 
that 𝑓𝑔 = ℎ, then there is a (𝑑1,𝑑2) pair for 𝑓. 

A cyclotomic coset CS is described as CS= {𝑠, 2 · 𝑠, 22 · 𝑠, … . .,   2𝑒−1 · 𝑠} where 1 ≤ 𝑠 ≤ 2𝑛 − 2 
and 𝑒 is smallest non-negative integer such that 𝑠 ≡ 2𝑒 · 𝑠(𝑚𝑜𝑑2𝑛 − 1) [13,18]. Coset leader is the 
smallest integer in CS and τ(𝑛) denotes set of all coset leaders 𝑚𝑜𝑑2𝑛 − 1. 

Some definitions have been taken from [13] and [18] in the following discussion. The product of 
minimal polynomials denoted as 𝑅𝑏(𝑥) is given by: 
 
𝑅𝑏(𝑥) = ∏ 𝑚2𝑛−1−𝑠𝑠Єτ(𝑛),𝑤𝑡(𝑠)=𝑏 (𝑥)                                                                                                         (6) 
 
where 𝑚2𝑛−1−𝑠(𝑥) represents the minimal polynomial of 2𝑛 − 1 − 𝑠 element of F2n. As given in [20], (6) 
can be converted as; 
 
𝑅𝑏(𝑥) = ∏ (𝑥 + 𝛼𝑗)wt(j)=n−b                                                                                                                       (7) 
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for 1 ≤ 𝑏 ≤ 𝑛 − 1 and 𝑅𝑛(𝑥) = 𝑅0(𝑥) = 𝑥 + 1. Let 𝑅𝑑1,𝑑2(𝑥) = ∏ 𝑅𝑑(𝑥)𝑑2
𝑑=𝑑1  for 0 ≤ 𝑑1 ≤ 𝑑2 ≤ 𝑛. 

Also, let 𝑹𝑏1+1,𝑏2  be a 𝐵1 × 𝐵2 matrix and 𝐵1 = ∑ �𝑛𝑠�
𝑏1
𝑠=0 , 𝐵2= ∑ �𝑛𝑠�

𝑏2
𝑠=0  and rth row of matrix consist of 

the coefficient of polynomial 𝑅𝑏1+1,𝑏2(𝑥) as given by; 
 

𝑅𝑏1+1,𝑏2(𝑥) = 1 + 𝑟1𝑥 + 𝑟2𝑥2+. . . +𝑟𝐸−1𝑥𝐸−1 + 𝑥𝐸                                                                                  (8) 
 
where E = ∑ �𝑛𝑠�

𝑏2
𝑠=𝑏1+1  and matrix 𝑹𝑏1+1,𝑏2is defined by: 

 

⎝

⎜
⎛
𝑟0
0

𝑟1
𝑟0 ⋯ 𝑟𝐸       0 …         0

𝑟𝐸−1   𝑟𝐸  … … .        0
⋮ ⋮ … ⋮ …

0 0
0 0 ⋯ ⋮ ⋮   …               0

0 ⋮  …                𝑟𝐸⎠

⎟
⎞

                                                                                                        (9) 

 
The matrix 𝑹𝑏1+1,𝑏2  for 1 ≤ 𝑏1 < 𝑏2 ≤ 𝑛 − 1 is defined as: 
 
𝑹𝑏1+1,𝑏2 = �𝝋0,𝝋1, … ,𝝋𝐵2−1�                                                                                                                  (10) 
  
where vector 𝝋𝑠 represents 𝑠th column of 𝑹𝑏1+1,𝑏2for 0 ≤ 𝑠 ≤ 𝐵2 − 1and 𝑗th component of 𝝋𝑠 
represented by 𝝋𝑠

𝑗 for 0 ≤ 𝑠 ≤ 𝐵1.  
Let  Ɲ0(𝝋𝑠) = 𝑙1 for  𝝋𝑠

𝑗 = 0 and 𝝋𝑠
𝑙1  = 1, whenever a positive integer 𝑙1occurs for 0 ≤ 𝑗 < 𝑙1(if 𝑙1 

exists). Similarly we can also define Ɲ0(𝝋𝑠) = 𝑙2 for 𝝋𝑠
𝐵1−1−𝑗 = 0 and 𝝋𝑠

𝐵1−1−𝑙2  = 1, whenever a positive 
integer 𝑙2 occurs for 0 ≤ 𝑗 < 𝑙2. Let us consider a specific case Ɲ0(𝝋𝑠) = 0 if 𝝋𝑠

0 = 1 and Ɲ0(𝝋𝑠) = 0 if 
𝝋𝑠
𝐵1−1 = 1 [7]. Now, for 0 ≤ 𝑗 ≤ 𝐵1 − 1, two set 𝐻𝑗  and 𝐻𝑗 are expressed as: 

 
𝐻𝑗 = �𝑠|Ɲ0(𝝋𝑠) = j, 0 ≤ s ≤ 2n−1 − 2�                                                                                                 (11) 
 
𝐻𝑗 = �𝑠|Ɲ0(𝝋𝑠)  = j, 2n−1 − 1 ≤ s ≤ 2n − 2�                                                                                        (12)  
  
For 0 ≤ 𝑗 ≤ 𝐵1 − 1, let 𝐼0 and 𝐼0 be two subsets such as; 
 
𝐼0 = {𝑗|𝐻𝑗 ≠ ∅, 0 ≤ 𝑗 < 𝐵1}                                                                                                                    (13) 
 
𝐼0 = �𝑗|𝐻𝑗 ≠ ∅, 0 ≤ 𝑗 < 𝐵1�                                                                                                                     (14) 
 
and 𝐽1 be a subset of 𝐼0. For each j ∈ 𝐽1, consider one integer 𝑖𝑗 from the set 𝐻𝑗  and define the set; 
 
𝐾0 = {𝑖𝑗|𝑗 ∈ 𝐽1}                                                                                                                                        (15) 
 
Construction of Boolean functions 

In this section, two constructions of 𝑛 −variable Boolean function 𝑓 has been proposed by using 
powers of primitive elements of F2n. The power of primitive element is taken to be co-prime with respect 
to 2𝑛 − 1. It has been given in [20] that all the elements of F2n can be obtained by considering the powers 
of first primitive element 𝛼𝑎 such that greatest common divisor of 𝑎 and 2𝑛 − 1 is 1, i.e 𝑔𝑐𝑑(𝑎, 2𝑛 −
1) = 1. Therefore, 𝛼𝑎 can be considered as generator of non-zero elements of F2n. For the constructions, 
following sets P0, Q0 has been used: 
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𝑃0 = {𝑠|0 ≤ 𝑠 ≤ 𝐵1 − 1}                                                                                                                         (16) 
 
𝑄0 = {𝐵1 − 1 − 𝑗|𝑗 ∈  𝐽1}                                                                                                                         (17) 
 

Using these sets, we propose two constructions of balanced Boolean functions and these two 
constructions are defined as: 
 
Construction 1 Consider 𝑓 ∈ 𝐵𝑛 for odd 𝑛 such that; 
 
𝑠𝑢𝑝𝑝(𝑓) = {𝛼𝑠𝑛|𝑠 ∈ (𝑃0 ⃥ 𝑄0) ∪ 𝐾0}                                                                                                       (18) 
 
Construction 2: Consider 𝑓 ∈ 𝐵𝑛 for even 𝑛 such that; 
 
𝑠𝑢𝑝𝑝(𝑓) = {𝛼𝑠𝑛|𝑠 ∈ (𝑃0 ⃥ 𝑄0) ∪ 𝐾0}                                                                                                       (19) 
 
where 𝑃0, 𝑄0 and 𝐾0 are given by Eqs. (16), (17) and (15), respectively. These Boolean functions in 
Construction 1 and Construction 2 are balanced because 𝑠𝑢𝑝𝑝(𝑓) has 2𝑛−1 elements. 
 
Note: Construction 1 and Construction 2 are the special case of Construction 1 and Construction 3 of [18] 
for which primitive element is taken to be 𝛼𝑛 of F2n. 
 

For Construction 1, 𝑠𝑢𝑝𝑝(𝑓) = {𝛼𝑠𝑛|𝑠 ∈ (𝑃0  ⃥ 𝑄0) ∪ 𝐾0}, then the Boolean function 𝑓 will have 
different truth table as compared to Boolean function 𝑓 of Construction 1 of [18]. Similarly, for Boolean 
function 𝑓 of Construction 2, the truth table will be different of Boolean function 𝑓 of Construction 3 of 
[18]. 

It has been checked by using SAGE program that the set 𝐹 = {0, 1, 𝛼𝑛, 𝛼2𝑛, … ., 𝛼(2𝑛−2)𝑛} for 
𝑛 = 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19 is a Galois field of 2n elements, F2n for the following 
primitive polynomials 𝑝𝑛(𝑥) as given in Table 2. 
 
 
Table 2 Primitive polynomials used for 𝑛 = 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19. 
 

               𝒏                                        𝒑𝒏(𝒙)   
                                           5                                       𝑥5 + 𝑥2 + 1 
                                                7                                        𝑥7 + 𝑥 + 1 
                                                8                               𝑥8 + 𝑥6 + 𝑥5 + 𝑥 + 1 
                                          9                                       𝑥9 + 𝑥4 + 1 
                                               10                                    𝑥10 + 𝑥3 + 1 
                                               11                                    𝑥11 + 𝑥2 + 1 
                                               13                            𝑥13 + 𝑥4 + 𝑥3 + 𝑥 + 1 
                                               14                           𝑥14 + 𝑥12 + 𝑥11 + 𝑥 + 1 
                                               15                                     𝑥15 + 𝑥 + 1 
                                               16                            𝑥16 + 𝑥5 + 𝑥3 + 𝑥2 + 1 
                                               17                                     𝑥17 + 𝑥3 + 1 
                                               19                             𝑥19 + 𝑥6 + 𝑥5 + 𝑥 + 1     
                                

Consider the following example for 𝑛 = 4. It will explain the set 𝐹. 
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Example 1 Consider a Galois Field F24 generated by 𝑝4(𝑥) = 𝑥4 + 𝑥 + 1. The powers of 𝜎 = 𝛼4 are 
𝜎0 = 1,  𝜎1 = 𝛼4,  𝜎2 = 𝑝8,  𝜎3 = 𝛼12,  𝜎4 = 𝛼16 =  𝛼,𝜎5 = 𝛼 =  𝛼5,𝜎6 = 𝛼24 =  𝛼9,𝜎7 = 𝛼28 =  𝛼13, 
𝜎8 = 𝛼32 =  𝛼2,𝜎9 = 𝛼36 =  𝛼6,𝜎10 = 𝛼40 =  𝛼10,𝜎11 = 𝛼44 =  𝛼14,𝜎12 = 𝛼48 =  𝛼3,𝜎13 = 𝛼52

=  𝛼7,𝜎14 = 𝛼56 =  𝛼11, 𝜎15 = 𝛼60 =  1. 
Since powers of 𝜎 = 𝛼4 generate all the nonzero elements of F2n, 𝜎 = 𝛼4 becomes a primitive element of 
F24. 
       
We use the following lemma to provide relationship between  𝑟1 and 𝑟𝐸−1 coefficients of (8). 
 
Lemma 1 [18]  𝑟1 + 𝑟𝐸−1 = 1. 
Proof. The proof is available in [18]. 
 

This lemma shows that (𝑟1, 𝑟𝐸−1) = (0, 1) 𝑜𝑟 (1, 0), thereby existing one integer 𝐿1 such that 𝑟𝑠 = 0 
for all 1 ≤ 𝑠 ≤ 𝐿1 and 𝑟𝐿1+1 = 1, if 𝑟1 = 0. Otherwise, one integer 𝐿2 exist such that 𝑟𝐸−𝑠 = 0  for all 
1 ≤ 𝑠 ≤ 𝐿2 and 𝑟𝐸−𝐿2−1 = 1. The set 𝐽 is defined in [18] as: 
 
𝐽 = {1, 2, … , 𝐿1},  if 𝑟1 = 0; 
𝐽 = {1, 2, … , 𝐿2}, if 𝑟𝐸−1 = 0.                                                                                                                    (20)   
 

Therefore, from Lemma 1, we can say that set 𝐽 is nonempty. Let K be a subset of 𝐽 and now define 
set W, Y and Z for 𝑟𝐸−1 = 0 as; 
 
𝑊 =  {0, 1, 2, … . , 2𝑛−1 − 1},  𝑌 = {2𝑛 − 2 − 𝑠  ⃓𝑠 ∈ K },  𝑍 = {2𝑛−1 − 1 − 𝑠 ⃓ 𝑠 ∈ K}.                        (21) 
 
With the help of above analysis, we can represent a family of constructed Boolean function with support 
set as; 
 
𝑠𝑢𝑝𝑝(𝑓) = {𝛼𝑠𝑛|𝑠 ∈ (𝑊  ⃥ 𝑍) ∪ 𝑌}                                                                                                                   (22) 
 
For 𝑟𝐸−1 = 0, we take 𝑊 = 𝑃0, 𝑍 = 𝑄0 and 𝑌 = 𝐾0; thus, this family of Boolean functions belongs to 
Construction 1 and Construction 2 for odd and even 𝑛. Therefore, we can say that this family of Boolean 
functions are balanced. In the similar way, we can define sets for 𝑟1 = 0, and get a new family of Boolean 
functions. The proposed approach for constructions of Boolean function is described as a flowchart in 
Figure 1. 
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Figure 1 Flowchart showing various steps in the construction of Boolean function. 
 
 
Nonlinearity of Boolean function 𝒇 

 This section consists of derivation of lower bound of nonlinearity of Boolean functions in 
Construction 1 and Construction 2. We have used the method developed in the paper [18]. In this method, 
we have used trace function for finding Walsh transform. Then, we have derived the lower bound of 
nonlinearity of Boolean function by using (5). To calculate the Walsh transform, following lemma of [16] 
from calculus theory has been used. 
 
Lemma 2 [13] For  0 < 𝑧 < 𝜋

2
, 1
sin (𝑧)

<  1
𝑧

+  𝑧
4
 . 

 
Theorem 1 The nonlinearity of Boolean functions in Construction 1 and Construction 2 is given by; 

Then, define constructions of Boolean function 𝑓 using sets 𝑃0,𝑄0 and 𝐾0 and Galois 
Field, F2n formed by set 𝐹 as given below: 
Construction 1: Consider 𝑓 ∈ 𝐵𝑛 for odd 𝑛 such that 𝑠𝑢𝑝𝑝(𝑓) = {𝛼𝑠𝑛|𝑠 ∈ (𝑃0  ⃥ 𝑄0) ∪ 𝐾0} 
Construction 2: Consider 𝑓 ∈ 𝐵𝑛 for even 𝑛 such that 𝑠𝑢𝑝𝑝(𝑓) = {𝛼𝑠𝑛|𝑠 ∈ (𝑃0  ⃥ 𝑄0) ∪ 𝐾0}                                                                           
where 𝑃0, 𝑄0 and 𝐾0 are given by Eqs. (16), (17) and (15). 

Find the nonlinearity of 𝑓. For making derivation of nonlinearity, firstly, calculate Walsh 
transform of 𝑓 by using the formula of trace function of finite field.  Further, it requires 
Gaussian sum, multiplicative character of F2n

∗  and canonical additive character of F2n. 

By making the derivation, get the nonlinearity. 

Find the lower bound of nonlinearity of 𝑓 by putting |𝐾0| = 0 in equation of nonlinearity. 

Then, calculate the value of |𝐾0| for 𝑛 =5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19. Put these 
values of |𝐾0| in equation of nonlinearity and get the nonlinearity of 𝑓 for different values of 𝑛. 

Get the algebraic degree of 𝑓 by using Theorems.  

Find the algebraic immunity of 𝑓 using Theorems.  

Find the values of 𝑛 such that 𝑔𝑐𝑑(𝑛, 2𝑛 − 1) = 1. 

Form the set 𝐹 = {0, 1, 𝛼𝑛, 𝛼2𝑛, … ., 𝛼(2𝑛−2)𝑛}. This is Galois field. F2n. 

Use the basics of minimal polynomials and cyclotomic cosets for making formation of sets 𝑃0,𝑄0 and 𝐾0. 
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𝑛𝑙(𝑓) > 2𝑛−1 − 2
𝑛
2+1

2𝑛−1
�(2𝑛−1)

2𝜋
𝑙𝑛2 + 𝑛𝜋22𝑛−4

4(2𝑛−1)
+ (2𝑛−1−1)

𝑛
� 1
3√3

+ (3𝑛−2)
6√2

� − (𝑛+2)
2√2𝑛

�  − 2|𝐾0| − 1  
 
Proof. According to (5), for finding the nonlinearity of a Boolean function, we have to find the Walsh 
transform of Boolean function. Since, 𝑊𝑓(0) = 0 for balanced Boolean function, therefore, it is enough 
to find Walsh transform for 𝛾 ∈ F2n

∗  where F2n
∗  is the multiplicative group of non zero elements of F2n. 

For 𝑟𝐸−1 = 0, Walsh-transform of Boolean functions 𝑓 satisfies; 
 
𝑊𝑓(𝛾) = −2∑ (−1)𝑇𝑟(𝛾𝛼𝑠𝑛)

𝑠∈(𝑊  ⃥ 𝑌)∪ 𝑍                                                                                                      (23)  
   
And then for Boolean function 𝑓; 
 
�𝑊𝑓(𝛾)� ≤ 2�∑ (−1)𝑇𝑟(𝛾𝛼𝑠𝑛)2𝑛−1−1

𝑠=0 � + 4|𝐾0|                                                      (24)  
 
        For solving above equation, we will use Gaussian sums, which are one of the important types of 

exponential sums of finite fields [20]. Let 𝜀 = 𝑒
2𝜋√−1
2𝑛−1  and 𝛾 = 𝛼𝑡. Let multiplicative character of F2n

∗  be 
given by 𝜓(𝛼𝜅) = 𝜀𝜅 with 0 ≤ 𝜅 ≤ 2𝑛 − 2, canonical additive character of F2n is given by µ(𝑥) =
(−1)𝑇𝑟(𝑥). The Gaussian sum 𝐺(𝜓, µ) is defined as; 
 

 𝐺(𝜓, µ) = ∑ 𝜓(𝛼𝑠𝑛)µ(𝛼𝑠𝑛)2𝑛−2
𝑠=0                                                                                                                       (25) 

 
and;   
 
µ(𝛼𝑠𝑛) = (−1)𝑇𝑟(𝛼𝑠𝑛)  = 1

2𝑛−1
∑ 𝐺(𝜓�𝜅 , µ)2𝑛−2
𝜅=0 𝜓𝑘(𝛼𝑠𝑛)                                                                             (26) 

 
for 0 ≤ 𝑠 ≤ 2𝑛 − 2 and bar in above equation denotes complex conjugation.    
By (24) and (25), Walsh transform is represented by the following expression; 
 
�𝑊𝑓(𝛾)� ≤ 2

2𝑛−1
�∑ 𝐺(𝜓�𝜅 , µ)2𝑛−2

𝜅=0 ∑ 𝜓𝜅2𝑛−1−1
𝑠=0 (𝛼𝑡+𝑠𝑛)� + 4|𝐾0|                                                                       (27) 

 
and; 
 

∑ 𝜓𝜅2𝑛−1−1
𝑠=0 (𝛼𝑡+𝑠𝑛) = 𝜀𝑡𝜅 �1−𝜀

𝑘𝑛2𝑛−1

1−𝜀𝑘𝑛
�.                                                                                                    (28) 

 
Putting this expression in (10); 
                                       

�𝑊𝑓(𝛾)� ≤ 2
2𝑛−1

�∑ 𝐺(𝜓�𝜅 , µ)𝜀𝜅𝑡 �1−𝜀
𝜅𝑛2𝑛−1

1−𝜀𝑘𝑛
�2𝑛−2

𝜅=1 � + 4|𝐾0| + 2𝑛

2𝑛−1
                                                              (29) 

 
 As given in [18], 𝐺(𝜓�0, µ) = −1, �𝐺(𝜓�𝑘, µ)� = 2

n
2  for all 1 ≤ 𝑘 ≤ 2𝑛 − 2 and; 

 

�1−𝜀
𝜅𝑛2𝑛−1

1−𝜀𝑘𝑛
� = �𝜀

−𝜅𝑛2𝑛−2−𝜀𝜅𝑛2
𝑛−2

𝜀−𝑘𝑛/2−𝜀𝑘𝑛/2 � = �
sin𝜅𝑛𝜋2

𝑛−1
2𝑛−1

sin 𝜅𝑛𝜋
2𝑛−1

�                                                                                                    (30) 

 
By putting above values in (29), Walsh-transform is given by; 
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�𝑊𝑓(𝛾)� ≤ 2
𝑛
2+1

2𝑛−1
�∑ �

sin𝜅𝑛𝜋2
𝑛−1

2𝑛−1
sin 𝜅𝑛𝜋

2𝑛−1
�2𝑛−2

𝜅=1 � + 4|𝐾0| + 2𝑛

2𝑛−1
  

                ≤ 2
𝑛
2+2

2𝑛−1
∑ �

sin𝜅𝑛𝜋2
𝑛−1

2𝑛−1
sin 𝜅𝑛𝜋

2𝑛−1
�2𝑛−1−1

𝜅=1 + 4|𝐾0| + 2𝑛

2𝑛−1
  

�𝑊𝑓(𝛾)� ≤ 2
𝑛
2+2

2𝑛−1
�∑ 1

sin(2𝜅−1)𝑛𝜋
2𝑛−1

2𝑛−2
𝜅=1 + ∑ 1

2 cos 𝜅𝑛𝜋2𝑛−1

2𝑛−2−1
𝜅=1 � + 4|𝐾0| + 2𝑛

2𝑛−1
.                                                (31) 

 
By using Lemma 2, we have; 
 
∑ 1

sin(2𝜅−1)𝑛𝜋
2𝑛−1

2𝑛−2
𝜅=1 ≤ ∑ 2𝑛−1

(2𝑘−1)𝑛𝜋
+ 1

4
∑ (2𝑘−1)𝑛𝜋

2𝑛−1
2𝑛−2
𝜅=1

2𝑛−2
𝜅=1   

                           < (2𝑛−1)
𝑛𝜋

∑ 1
(2𝑘−1)

+ 𝑛𝜋
4(2𝑛−1)

∑ (2𝑘 − 1)                             2𝑛−2
𝜅=1

2𝑛−2
𝜅=1   

                              < (2𝑛−1)
𝑛𝜋

�∑ � 1
(2𝑘−1)

+ 1
2𝑘
− 1

2𝑘
�2𝑛−2

𝜅=1 � + 𝑛𝜋
2(2𝑛−1)

∑ 𝑘2𝑛−2
𝜅=1 − 𝑛𝜋2𝑛−2

4(2𝑛−1)
  

                              < (2𝑛−1)
𝑛𝜋

�∑ � 1
(2𝑘−1)

+ 1
2𝑘
� − 1

2
∑ 1

𝑘
2𝑛−2
𝜅=1

2𝑛−2
𝜅=1 � + 𝑛𝜋

2(2𝑛−1)
2𝑛−2�2𝑛−2+1�

2
 − 𝑛𝜋2𝑛−2

4(2𝑛−1)
  

 
                              < (2𝑛−1)

𝑛𝜋
�∑ 1

𝑘
− 1

2 ∫
𝑑𝑘
𝑘

2𝑛−2

𝑘=1
2𝑛−1
𝜅=1 � + 𝑛𝜋

4(2𝑛−1)
[22𝑛−4 + 2𝑛−2 − 2𝑛−2]  

                              < (2𝑛−1)
𝑛𝜋

�∫ 𝑑𝑘
𝑘
− 𝑛−2

2
𝑙𝑛22𝑛−1

𝑘=1 � + 𝑛𝜋
4(2𝑛−1)

[22𝑛−4]  

                                              < (2𝑛−1)
𝑛𝜋

�(𝑛 − 1)𝑙𝑛2 − 𝑛−2
2
𝑙𝑛2� + 𝑛𝜋22𝑛−4

4(2𝑛−1)
  

                                               < (2𝑛−1)
𝑛𝜋

�𝑛
2
𝑙𝑛2� + 𝑛𝜋22𝑛−4

4(2𝑛−1)
  

∑ 1

sin(2𝜅−1)𝑛𝜋
2𝑛−1

2𝑛−2
𝜅=1 < (2𝑛−1)

2𝜋
𝑙𝑛2 + 𝑛𝜋22𝑛−4

4(2𝑛−1)
                                                                                                              (32) 

 
And the expression of other summation in (31) is given as; 
 

∑ 1
2cos 𝜅𝑛𝜋2𝑛−1

2𝑛−2−1
𝜅=1 < ∑ 1

2 cos𝜋6

2𝑛−1−1
3𝑛

𝑗=1 + ∑ 1
2 cos𝜋4

2𝑛−2 −1
𝑗=2

𝑛−1+2
3𝑛

  

                               < �2
𝑛−1−1
3√3𝑛

� + 1
√2
�2𝑛−2 − 1 − 2𝑛−1+2

3𝑛
�  

                               < 1
3√3𝑛

[2𝑛−1 − 1] + 1
√2
�2

𝑛−1

2
− 1 − 2𝑛−1−1

3𝑛
− 1

𝑛
�  

                               < 1
3√3𝑛

[2𝑛−1 − 1] + 1
√2
�2

𝑛−1−1
2

− 1
2
− 2𝑛−1−1

3𝑛
− 1

𝑛
�  

                               < 1
3√3𝑛

[2𝑛−1 − 1] + 1
√2
�(2𝑛−1 − 1) �1

2
− 1

3𝑛
� − 1

2
− 1

𝑛
�  

∑ 1
2cos 𝜅𝑛𝜋2𝑛−1

2𝑛−2−1
𝜅=1 < (2𝑛−1−1)

𝑛
� 1
3√3

+ (3𝑛−2)
6√2

� − (𝑛+2)
2√2𝑛

                                                                                           (33) 

 
From (31), (32) and (33), Walsh-transform for 𝛾 ∈ F2n

∗  is given by; 
 

�𝑊𝑓(𝛾)� ≤ 2
𝑛
2+2

2𝑛−1
�(2𝑛−1)

2𝜋
𝑙𝑛2 + 𝑛𝜋22(𝑛−2)

4(2𝑛−1)
+ �2𝑛−1−1�

𝑛
� 1
3√3

+ (3𝑛−2)
6√2

� − (𝑛+2)
2√2𝑛

� +  4|𝐾0| + 2𝑛

2𝑛−1
                  (34) 

 
Since, 𝑊𝑓(0) = 0 for balanced Boolean function. Therefore, by using (5), the nonlinearity of 

Boolean function 𝑓 in Construction 1 and Construction 2 is provided as                                                                  
𝑛𝑙(𝑓) = 2𝑛−1 − 1

2
max𝛾ЄF2n�𝑊𝑓(𝛾)�. Substituting (34) in above equation, we get; 
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𝑛𝑙(𝑓) > 2𝑛−1 − 2
𝑛
2+1

2𝑛−1
�(2𝑛−1)

2𝜋
𝑙𝑛2 + 𝑛𝜋22𝑛−4

4(2𝑛−1)
+ (2𝑛−1−1)

𝑛
� 1
3√3

+ (3𝑛−2)
6√2

� − (𝑛+2)
2√2𝑛

�  − 2|𝐾0| − 1                 (35) 
 

By making similar analysis for 𝑟1 = 0 and 𝛾 ∈ F2n
∗ , same equation as above for 𝑛𝑙(𝑓) will be 

obtained. However, in the case of 𝑟1 = 0, sets S, Y and Z will be different from 𝑟𝐸−1 = 0. This is left as 
an open problem to find the lower bound of nonlinearity.   
 
Table 3 Comparison of lower bound of nonlinearity of 𝑓 from previous papers. 
 

  𝒏     The bound in     The bound in     The bound in    The bound in      The bound in      The bound from 
                 [8]                      [22]                     [18]                     [16]                   [37]           Theorem 1 with 
                                                                                                                                                     |𝑲𝟎| = 𝟎 

5 1.763363407  2.286675194 3.302582586  5.101344930 3.6568 
7 26.36971911  31.34530696 34.37712174  37.73859719 35.079 
8 68.09659747 78.12250526 82.82435241 86.91864318 87.54131214 84.1306 
9 161.6849643  180.2345270 187.2981566  193.9992625 189.7118 

10 364.8920089 397.4578707 407.8615650 416.716608 417.4653787 412.1732 
11 796.3883648  851.5568804 866.6841395  880.5305827 874.1389 
13 3561.877002  3709.289413 3740.543932  3769.622283 3761.1992 
14 7380.562538  7615.534364 7660.149141 7700.901005 7702.398012 7693.5650 
15 15156.98621  15526.93013 15590.43917  15651.86605 15643.7293 
16 30920.18676  31496.77161 31587.00116 31673.83658 31676.33065 31670.9864 
17 62763.45267  63654.56287 63782.58095  63912.47489 63913.6403 
19 255960.8738  258046.5310 258303.5671  258577.9353 258615.2095 
 

     
The lower bound of nonlinearity of 𝑓 in Construction 1 and Construction 2 can be calculated by 

using |𝐾0| = 0 in (35). Some values of the lower bound of nonlinearity for different values of 𝑛 and their 
comparison with previous papers have been listed in Table 3. A brief analysis of the results shown in 
Table 3 is provided here. In [8], the lower bound of nonlinearity is found to be 

2𝑛−1 + 2𝑛 2⁄ +1

𝜋
ln � 𝜋

4(2𝑛−1)
� − 1 and its values have been shown in second column in Table 3. The lower 

bound is improved to 2𝑛−1 − �ln 2
3

(𝑛 − 1) + 3
2
�2

𝑛
2  in [22] and its corresponding values for different 𝑛 are 

given in third column in Table 3. The lower bound is further improved to 2𝑛−1 − �ln 2
3

(𝑛 − 1) + 5
6

+
1
3√3

+ 1
6√2

� 2
𝑛
2 − 1 in [18] and the corresponding values for different 𝑛 are recorded in forth column of 

Table 3. The lower bound of nonlinearity is again improved in [16] by making construction of Boolean 
functions for 2k variables, ie. for even 𝑛. In [16], lower bound has been found to be 2𝑛−1 − �𝑛 ln 2

𝜋
+

0.74� 2
𝑛
2 − 1. The values of lower bound of nonlinearity of [16] for even 𝑛 have been shown in fifth 

column of Table 3. These values are greater than those of [8],[22] and [18]. More improvement in the 
lower bound of nonlinearity is provided in [37] by making similar type of constructions as done in [18] 
and its bound is raised to 2𝑛−1 − �𝑛 ln 2

𝜋
+ 0.7322106411� 2

𝑛
2 − 2𝑛−1

2𝑛−1
. This value is slightly greater than 

that of [16]. Corresponding values of lower bound have been shown in sixth column of Table 3. The 
lower bound of this paper has been provided in seventh column of Table 3. It can be observed that the 
lower bound of Boolean function in proposed construction is greater than that of lower bound of previous 
papers [8,16,18,22] for all given values of 𝑛. But it is greater than that of [37] for 𝑛 ≥17. Although the 
results in Table 3 are shown upto 𝑛 = 19, however, it is obvious that the lower bound of nonlinearity will 
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be greater than all other Boolean functions included in the table for 𝑛 >19 also when gcd(𝑛, 2𝑛 − 1) = 1. 
This work can be further extended to find the lower bound for higher values of 𝑛. It also shows that for 
higher values of 𝑛, we might achieve good value of nonlinearity without |𝐾0|. 

By finding values of |𝐾0|, 𝑛𝑙(𝑓) of 𝑓 in Construction 1 and Construction 2 is calculated for 𝑛 = 5, 
7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19 as shown in Table 4. The 𝑛𝑙(𝑓) is also compared with nonlinearity 
of Boolean functions of previous papers [8,16,18,37]. From Table 4, it can be noted that nonlinearity of 𝑓 
is greater than that of Boolean functions for 𝑛 =8, 10, 11, 13, 14, 15, 16, 17, 19 of previous papers 
[8,16,18,37] and it is greater or equal to that of [8,16,18,37] for 𝑛 = 5, 7. Therefore, it can be concluded 
from Table 4 that nonlinearity of 𝑓 is either greater or equal to nonlinearity of previous papers [8],[18] 
and [16] after 𝑛 >19 also when gcd(𝑛, 2𝑛 − 1) = 1.  
 
 
Table 4 Comparison of nonlinearity of 𝑓 from previous papers. 
 
𝒏 Nonlinearity in 

[8] 
Nonlinearity in 

[18] 
Nonlinearity in 

[16] 
Nonlinearity in 

[37] 
Nonlinearity in this 

paper 
5 10 10  12 12 
7 54 54  54 54 
8 112 114 112 114 116 
9 232 230  234 234 
10 478 480 476 478 484 
11 980 980  980 988 
13 3988 3988  3988 4008 
14 8072 8072 8028 8072 8106 
15 16212 16212  16212 16266 
16 32530 32530 32508 32530 32614 
17 65210 65210  65210 65340 
19 261294 261294  261294 261606 

 
 
Algebraic degree and Algebraic immunity of 𝑓 

In this section, algebraic degree and algebraic immunity of Boolean function 𝑓 in Construction 1 
and Construction 2 has been found. 
 
Lemma 3 [13] By using univariate polynomial representation, Boolean function 𝑓 is given by; 
 
𝑓(𝑥) = ∑ 𝑓𝑠𝑥𝑠2𝑛−1

𝑠=0                                                                                                                                                       (36) 
 
and coefficients 𝑓𝑠 are specified as 𝑓𝑠 = 𝑓(0) for 𝑠 = 0, 𝑓𝑠 = 𝐹(𝛼−𝑠) for 1 ≤ 𝑠 ≤ 2𝑛−2 and 𝑓𝑠 = 𝐹(1) +
𝑓0 for 𝑠 = 2𝑛−1 and 𝐹(𝑥) = ∑ 𝑓(𝛼𝑠𝑛)𝑥𝑠2𝑛−2

𝑠=0 . 
a) For 1 ≤ 𝑏 < 𝑛 − 1,𝑑𝑒𝑔(𝑓) = 𝑏, if following conditions are satisfied: 
 
𝑅𝑏+1,𝑛+1(𝑥)|𝐹(𝑥),𝑅𝑛(𝑥)|𝐹(𝑥) + 𝑓(0), and 𝑅𝑏(𝑥) ∤ 𝐹(𝑥)                                                                      (37) 
 
where symbol “|” represents “factor of” and symbol “∤” represents “not factor of”. 
b) For 𝑏 = 𝑛 − 1,𝑑𝑒𝑔(𝑓) = 𝑏  if the following conditions are satisfied: 
 
𝑅𝑛(𝑥)|𝐹(𝑥) + 𝑓(0), and 𝑅𝑏(𝑥) ∤ 𝐹(𝑥).                                                                                                             (38) 
 
Using these two conditions, we can find out the algebraic degree of Boolean function. 
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Theorem 2 [18] There is a Boolean function 𝑓 with 𝑑𝑒𝑔(𝑓) = 𝑛 − 1, if proper subset of 𝐽 given by (20) 
for 𝑟𝐸−1 = 0 is non-empty. 
Proof. Using Lemma 3(a), 𝐹(𝑥) + 𝑓(0) = ∑ 𝑓(𝛼𝑠𝑛) +2𝑛−2

𝑠=0 𝑓(0) = 0, if and only if |supp(𝑓)| = 2𝑛−1 is 
even. Then, always 𝑅𝑛(𝑥)|𝐹(𝑥) + 𝑓(0). 
Using Lemma 3(b), 𝑑𝑒𝑔(𝑓) = 𝑛 − 1, if and only if 𝑏 = 𝑛 − 1, i.e., 𝐹(𝑥) = ∑ 𝑥𝑥𝜖supp(𝑓) ≠ 0. If  
∑ 𝑥𝑥𝜖supp(𝑓) = 0, then degree of Boolean function 𝑓 is less than 𝑛 − 1. 
 

Let 𝛽 ⊆ 𝐽 and an element 𝑠 is chosen in 𝐽\𝛽 and replace an element 𝑠′ in 𝛽 with 𝑠, then a Boolean 
function 𝑓′ can be constructed from (18) and (19) with the help of subset 𝛽′ = ({𝑠} ∪ 𝛽)\{𝑠′} of 𝐽. For 
𝑟𝐸−1 = 0, 
 
∑ 𝑥𝑥∈supp(𝑓′) = ∑ 𝑥 + 𝛼𝑛2𝑛−1−𝑛−𝑠𝑛 + 𝛼𝑛2𝑛−2𝑛−𝑠𝑛 + 𝛼𝑛2𝑛−1−𝑛−𝑠′𝑛 + 𝛼𝑛2𝑛−2𝑛−𝑠′𝑛𝑥∈supp(𝑓)   
∑ 𝑥𝑥∈supp(𝑓′) = �1 + 𝛼𝑛2𝑛−1−𝑛��𝛼𝑛2𝑛−1−𝑛−𝑠𝑛 + 𝛼𝑛2𝑛−1−𝑛−𝑠′𝑛� ≠ 0                                                         (39) 
 
Therefore, by Lemma 3(b), 𝑑𝑒𝑔(𝑓′) = 𝑛 − 1, and hence, there is a Boolean function 𝑓 in the 
Construction 1 and Construction 2 with  𝑑𝑒𝑔(𝑓) = 𝑛 − 1, if |𝐽| > 1. 
 
Lemma 4 (Theorem 4, [13]) An annihilator 𝑔 ∈ 𝐴𝑁(𝑓) with 𝑑𝑒𝑔(𝑔) ≤ 𝑏 < 𝑛 exists for an 𝑛-variable 
Boolean function 𝑓, if and only if 𝛿𝑔(𝑏) > 0, where; 
 
 𝛿𝑔(𝑏) = ∑ �𝑛𝑖 � − 𝑟𝑎𝑛𝑘(𝑏

𝑖=0 𝑹𝑏+1,𝑛−1
1𝑓 )                                                                                                      (40) 

 
and 𝑹𝑏+1,𝑛−1

1𝑓  is specified as submatrix of 𝑹𝑏+1,𝑛−1for every 𝑖𝑡ℎcolumn such that 𝛼𝑖 ∈ 𝑠𝑢𝑝𝑝(𝑓) is 

contained in 𝑹𝑏+1,𝑛−1
1𝑓 . 

It can be proved that there is no annihilator 𝑔 ∈ 𝐴𝑁(𝑓) with 𝑑𝑒𝑔(𝑔) ≤ 𝑏 < �𝑛
2
� using Lemma 4, if 

𝛿𝑔(𝑏) = 0 for 𝑏 = �𝑛
2
� − 1. 

 
Lemma 5 (Theorem 5, [13]) An annihilator ℎ ∈ 𝐴𝑁(𝑓 + 1) with 𝑑𝑒𝑔(ℎ) ≤ 𝑏 < 𝑛 exists for an 𝑛-
variable Boolean function 𝑓, if and only if 𝛿ℎ(𝑏) > 0, where;  
 
𝛿ℎ(𝑏) = ∑ �𝑛𝑖 � − 𝑟𝑎𝑛𝑘([𝑏

𝑖=0 𝛾1𝑓(𝑏)       𝑹𝑏+1,𝑛−1
0𝑓 ])                                                                                     (41) 

  
𝑹𝑏+1,𝑛−1
0𝑓  is a submatrix of 𝑹𝑏+1,𝑛−1for every 𝑖𝑡ℎcolumn such that 𝛼𝑖 ∈ 𝑧𝑒𝑟𝑜𝑠(𝑓) is contained in 

𝑹𝑏+1,𝑛−1
0𝑓 and   𝛾1𝑓(𝑏) = 𝑹𝑏+1,𝑛−1

1𝑓 . 1|supp(𝑓)|
𝑇  and 1|supp(𝑓)|

𝑇  represents the transpose of the all ones vector 
with length |supp(𝑓)|. 
 

It can be proved that there is no annihilator ℎ ∈ 𝐴𝑁(𝑓 + 1) with 𝑑𝑒𝑔(ℎ) ≤ 𝑏 < �𝑛
2
�  using Lemma 

5, if 𝛿ℎ(𝑏) = 0 for 𝑏 = �𝑛
2
� − 1. 

 
Theorem 3 In Construction 1 and Construction 2, the Boolean function 𝑓 has algebraic immunity  𝑛+1

2
 

and 𝑛
2
. The Boolean function 𝑓 is balanced. 

Proof: In Construction 1 and Construction 2, Boolean function defined by (18) and (19) are balanced 
because 𝑠𝑢𝑝𝑝(𝑓) has 2𝑛−1 elements. It will be proved that an 𝑛-variable Boolean function 𝑓 in 
Construction 1 possess algebraic immunity of  𝑛+1

2
. Let nonzero 𝑔 ∈ 𝐴𝑁(𝑓). For Construction 1; 
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𝑹
 𝑛+12 ,𝑛−1

1𝑓 = (𝝋𝑠)𝑠∈�𝑃0\𝑄0�∪ 𝐾0                                                                                                                            (42) 

 
By interchanging the (𝐵1 − 1 − 𝑗)th and 𝑖𝑗th columns of 𝑹𝑛+1

2 ,𝑛−1 for all 𝑗 ∈ 𝐽1, an upper triangular 

matrix is obtained consisting of 𝑖th column with 0 ≤ 𝑖 < 𝐵1, since;  
 
Ɲ0�𝝋𝐵1−1−𝑗� = Ɲ0�𝝋𝑖𝑗� = 𝑗                                                                                                                                  (43) 

 
where 𝑗 ∈ 𝐽1. These upper triangular matrix diagonal elements are 1. Therefore it’s invertible. 
(𝝋𝑠)𝑠∈�𝑃0   ⃥ 𝑄0�∪ 𝐾0 can be used to obtain above upper triangular matrix by using elementary column 

transformations. Therefore, 𝑹
 𝑛+12 ,𝑛−1

1𝑓 = (𝝋𝑠)𝑠∈�𝑃0\𝑄0�∪ 𝐾0 achieves full rank i.e. 2𝑛−1. From (40), we get;  

 

𝛿𝑔 �
𝑛−1
2
� = ∑ �𝑛𝑖 � − 𝑟𝑎𝑛𝑘(

𝑛−1
2
𝑖=0 𝑹𝑏+1,𝑛−1

1𝑓 ) = 2𝑛−1 − 2𝑛−1 = 0.                                                                        
                                     
Therefore, by Lemma 4, there does not exist any annihilator 𝑔 ∈ 𝐴𝑁(𝑓) with 𝑑𝑒𝑔(𝑔) ≤ 𝑛−1

2
< 𝑛. Similar 

analysis can be done for 𝑹
 𝑛+12 ,𝑛−1

0𝑓  and from (41), we can prove that 𝛿ℎ �
𝑛−1
2
� = 0. Hence, by using 

Lemma 5, there does not exist any annihilator ℎ ∈ 𝐴𝑁(𝑓 + 1) with 𝑑𝑒𝑔(ℎ) ≤ 𝑏 < 𝑛. Therefore, the 
algebraic immunity of Boolean function 𝑓 in Construction 1 is  𝑛+1

2
. 

Similarly, it can be proved that the Boolean function 𝑓 in Construction 2 has algebraic immunity  𝑛
2
. 

 
Conclusions and future work 

Two constructions of balanced 𝑛-variable Boolean functions with high nonlinearity, maximum 
algebraic immunity and optimal algebraic degree which are required for cryptographic purpose have been 
proposed. The lower bound of nonlinearity of Boolean functions in Construction 1 and Construction 2 is 
greater than that of lower bound of previous papers [8,16,18,22] for all given values of 𝑛. But it is greater 
than that of [37] only for 𝑛 = 17, 19. The nonlinearity of these Boolean functions is greater than that of 
[8,16,18,22,37] for 𝑛 = 8, 9, 10, 11, 13, 14, 15, 16, 17, 19. These Boolean functions have also achieved 
algebraic degree of 𝑛 − 1 and algebraic immunity of  𝑛+1

2
 for odd 𝑛, 𝑛

2
 for even 𝑛. It is, therefore, 

concluded that Boolean function in proposed constructions are better suited to provide a higher resistance 
against linear approximation attack, fast correlation attack, algebraic attack, and to provide high linear 
complexity in comparison with Boolean functions of [8,16,18,22,37]. The present work can be further 
extended to find the primitive polynomials such that Boolean function 𝑓 achieves higher nonlinearity in 
the proposed constructions. The mathematical analysis of the resistance to algebraic attacks and fast 
algebraic attacks for proposed Boolean functions can also be carried out. 
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