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Abstract

In this paper, a new efficient recurrence relation is constructed to solve a nonlinear Brusselator
equation. The system, known as the reaction-diffusion Brusselator, arises in the modeling of certain
diffusion processes. The Laplace transform method and the new homotopy perturbation method (NHPM)
are used to solve these equations. Since mathematical modeling of numerous scientific and engineering
experiment lead to the Brusselator equation, it is worthwhile to try new methods to solve this system.
Comparison of the results with those of the homotopy perturbation method, the Adomian decomposition
method and the dual-reciprocity boundary element method leads to significant consequences. The method
is tested using various examples and the results show that the new method is more effective and
convenient to use, and has an evident high accuracy rate.

Keywords: Laplace transform method, new homotopy perturbation method (NHPM), Brusselator
equation, reaction-diffusion systems

Introduction

Many physical, chemical, biological, environmental and even sociological processes are driven by
reaction-diffusion systems. These are multi component models involving 2 different mechanisms: one is
diffusion, a random particle movement, and the other, chemical, biological or sociological reactions
representing instantaneous interactions, which depend on the state variables themselves and, possibly
explicitly, on the position of particles [1].

An example of an important reaction-diffusion equation, both in biology and in chemistry, is known
as the Brusselator system, which is used to describe a mechanism of chemical reaction-diffusion with
nonlinear oscillations [2-4]. The reaction-diffusion Brusselator system contains a pair of variable
intermediates, with reactant and product chemicals whose concentrations are controlled. It consists of the
following four intermediate reaction steps;

A—->X, B+X -Y +D, 2X +Y - 3X, X >E.

The global reaction is 4 + B — D + E and corresponds to the transformation of input products 4
and B into output products D and E . The reaction-diffusion Brusselator [5-8] prepares a useful model
for the study of cooperative processes in chemical kinetics, such as trimolecular reaction steps arising
from the formation of ozone by atomic oxygen via a triple collision. This system also governs in
enzymatic reactions and in plasma and laser physics in multiple couplings between certain modes.

Solving partial differential equations is very important in mathematical sciences and engineering.
Partial differential equations which arise in real-world physical problems are often too complicated to be
precisely solved. Even if an exact solution is obtainable, the required calculations may be too complicated
to be practical, or it might be difficult to interpret the outcome. In recent years, an increasing amount of
interest of scientists and engineers has been devoted to analytical asymptotic techniques for solving

Walailak J Sci & Tech 2013; 10(5): 449-465.



An Efficient Method for Solving Brusselator System Hossein AMINIKHAN and Ali JAMALIAN

http://wjst.wu.ac.th

problems. Many new numerical techniques have been widely applied to these problems. The homotopy
method is a powerful device for solving functional equations [9]. Based on homotopy, which is a basic
concept in topology, the general analytical method, namely the homotopy perturbation method (HPM),
was established by He [9-15] in 1998 to obtain series solutions of differential equations. The He HPM has
been already used to solve various functional equations. In this method, the problem is transferred to an
infinite number of sub-problems and then the solution is approximated by the sum of the solutions of the
first several sub-problems. This simple method has been applied to solve linear and nonlinear equations
of heat transfer [16-18], fluid mechanics [19], nonlinear Schrodinger equations [20], integral equations
[21], boundary value problems [22], fractional KdV-Burgers equation [23], and nonlinear system of
second order boundary value problems [24]. Also, there are new powerful analytical methods, such as
variational itration method (VIM), homotopy analysis method (HAM), differential transform method
(DTM) etc, which can propose a semi exact solution for nonlinear models[25-28].

The Brusselator system has been extensively investigated in the last decade from both analytical and
numerical points of view (see, for instance, [29-37]). Numerical methods which are commonly used, such
as finite difference, finite element or characteristics methods, need a large size of computational works
and are usually affected by round-off errors which can cause a loss of accuracy in the results. Analytical
methods commonly used for solving the Brusselator equation are very restrictive and are used in very
special cases, so they cannot be used to solve equations of numerous realistic scenarios. The dual-
reciprocity boundary element method [38], ADM method [39,40] VIM [41] and HPM [42] are applied for
solving the Brusselator system.

In this work, an analytical approximation to the solution is constructed using a combination of the
Laplace transform method and the new homotopy perturbation method (LTNHPM). The two-dimensional
Brusselator system [38] has the following form;

2 2
a—u:B+uzv—(A+l)u+oz 6u2+6u2
ot ox° Oy 0
ov N ov o
—=Au-uv+a —2+—2
ot ox* Oy

For u(x,y,t) and v(x,y,t) in a two dimensional region R bounded by a simple closed curve C
subject to the initial conditions;

@@,y )y @,y )= (x,y)g(x,y)for(x,y)eR

()
and the boundary conditions;
@@,y )y x,y,0)=wx,p.t)zx,p.0) for(x,y)eC, and t >0, 3)
[Z—Z,Z—;j—(p(x,y,t),q(x,y,t)) for(x,y)eC2 and t >0, 4

where A4,B and a are suitably given constants f,g,w,z,p and g are suitably prescribed functions,
. . ou . . .
C, and C, are nonintersecting curves such that C,UC, =C,a—= n.Vv and 7 is the unit normal
n

outward vector R at the point (x,y) on C.

In this paper, the proposed method is tested on some examples. The results obtained via LTNHPM
confirm the validity of the method. The rest of this paper is organized as follows: In section two, basic
ideas of LTNHPM and the homotopy perturbation method are presented. In section three, the uses of
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LTNHPM for solving the Brusselator system are presented. Some examples are solved by the proposed
method in section four. The conclusion appear in the last section.

Materials and methods

To illustrate the basic ideas of this method, the following nonlinear differential equation is
considered:

Aw)—f (r)=0, reQ, (5)
with the following initial conditions;

u(0)=ayu'0)=a,,....u" "(0)=a,_, (6)
where 4 is a general differential operator and f (») is a known analytical function. The operator 4 can

be divided into two parts, L and N , where L is a linear and N is a nonlinear operator. Therefore, (5)
can be rewritten as;

L@)+N@)-f(r)=0 (7)
Based on NHPM [43,44], a homotopy U (r,p): Qx[0,1]— R , is constructed which satisfies;
HU,p)=0-p)ILU)-uy]+plAU)-f(r)]=0,p €[0,1],r €Q,. )

or equivalently;
HU,p)=LU)-u,+pu,+p[NU)-f(r)]=0, )

where p €[0,1] is an embedding parameter, u, is an initial approximation for the solution of (5).
Clearly, (8) and (9) give;

HU,0)=LU)-u, =0, (10)
HU(x),1)=AU)-f (r)=0. (11)

Applying the Laplace transform method to both sides of (9), we have;
L{LU)~u,+puy,+p[NU)~f (1]} =0 (12)

Using the differential property of the Laplace transform method shows;

S"LU L =s""U (0)=s" U (0) = =U "™ (0) = L{u, — pu, + p[N U)~f ()]} (13)

or

L{U}= iﬂ{s"-‘U(O)ﬂ"-zU ")+ +U ") +L{u, — puy+p [N U)—f (r)]}} (14)
S

Finally, applying the inverse Laplace transform method to both sides of (14), one can successfully
reach the following;
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U=L" {in{s"‘U(O)Jrs”U "0)+++-+U " (O)+L{u, — pu, + p [N U)~f (r)]}}} (15)
S

According to the HPM, the embedding parameter p as a small parameter can be used first, and the
solutions of (15) can be represented as a power series in p as;

U(x):ip"un. (16)

n=0

Eq. (15) can be rewritten using Eq. (16) as;

Zp U, { : { U0)+5"U(0)+-+U 1)(0)+L{uo pu, +p{N(ZP"U ) f(r)}}}} (17)

Therefore, equating the coefficients of p with the same power leads to;

p’:U,=L" {%(s”-‘U(O)+s"-2U'(0)+---+U<"-‘>(0)+L{u0})},
S

p' U = L‘{ L{N (U,)-u, f(r)})}

p>:U, L]{ln N(UO,U)})}

U, L‘{SL (NW,,U,.U, )})} (18)

s b 1),

Supposing that the initial approximation has the form U (0) =u, = «,,U'(0) = «,,...,U " " (0) = @, , , the
exact solution may be obtained as the following;

u=limU=U,+U,+U, +-- (19)

p-l
To show the capability of the method, the NHPM is applied to some examples in the next section.

Results and discussion

To solve Eq. (1) with initial condition (2), according to the LTNHPM, the following homotopy is
constructed.
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2 2
(1-p) U _ouy ), (Y gy +(A+1)U —a az£+_auz -0,
o ot ot Ox oy
v o 0 o (20)
- Lo pl Y gu v —al v T | |0,
ot ot ot ox° oy
or
2 2
H(U,P):a—U—%ﬂv -B-UW +(4A+1)U —a 6(]2+a(]2 +% =0,
o ot Ox Oy ot
oV o v oV ) ov -
HV ,p)=—-—24p|-AU +U¥ —a| —+— |[+—2|=0,
ot ot ox”~ 0oy ot

where p €[0,1] is an embedding parameter, u,is an initial approximation of the solution of the system.
Clearly, from Eq. (21), we obtain;

(22)

+ +—=0,
ox* o oy’ ot

oV, oV ]+ v,

2 2
HU,1)=-B-U¥ +(4 +1)U—a[a v, UJ o,

(23)

=0,
ox’ oy’ ot

HY ,)=-AU +U¥ —0{

By applying the Laplace transform method on both sides of (21);

2 2
L{HU.p)} = L{a—U—%w[—B —UW +(4+1)U _a[ZUZ Lo j+%}’

ot ot x> oy®) ot

(24)

o ov v o) ov
LIHV ,p)l =1 —-"L+p|-AU +UV — |+ =2t
H P} {81 o p[ O{axz 8y2j o j}

Using the differential property of the Laplace transform method;

du QU U, ou
LU (x,y,t)}-U(x,y,00=Ls—2—p| -B-U¥V +(4+1)U - b |+ =2 |},
SLU (x, 3,0} =U (x,,0) {& p( (4+1) a(axz ayz] atj}

(25)

ov o oV ov
SLY (x,y V=V (x,y,0)=L{——p| -AU +U YV -« + +—2 8
V(x,y.0)} =V (x,y,0) {az p( [axz 6y2] = J}

or
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2 2
LU (x,y.t)} =sl[U(x,y,0)+L{%—p(—B ~U¥ +(A+1)U _a[Z({ +a IZ}%JH

X oy ot
(26)
1 ov oV oV ) ov
L VD ==V (x,y,00+L{—2—p| AU +U ¥ -« aa il
{V(xy)}s (x,y,0) {Gt p[ [Gx 8yj 6tJ}J
By applying the inverse Laplace transform method to both sides of (26);
1 ou o’'U o0U ) ou
Ux,y,t)=L'"{~U(x,y,0)+Ls—"~p|-B-UW¥ +(4+1)U -« +— [+—L ,
27

1 ov o oW\ ov
Vx,y,t)=L"3=|V(x,y,0)+L{—2—p| AU +U YV - + +—L ,
(x,y,t) P (x,y,0) or P[ [axz asz ot J}]}

According to the HPM, the embedding parameter p is used as a small parameter, and it is assumed
that the solutions of Eq. (27) can be represented as a power series in p as;

U,y,t)=Y.p"U,(x,y.t)
n=0
(28)

V(x,y,0)=2.p"V,(x.y.1)
n=0

Substituting Eq. (28) into Eq. (27), and equating the terms with the identical powers of p, leads to the
calculations U, (x,y,t),V , (x,y,t), j =0,1,2,...

)
po: 61‘
1 ov
VO(xayat):L { V(x y, 0)+L{ o }]}
2 2
U,y =L{—L{-B UV, +(A+1)U,-a 8Uz +‘9U; L0
S ox oy ot
a (29)
2 2
Vl(x,y,t)=L’1 =3 —AU+UV, ~a 6V2 +‘3V20 e
o oy ot
U,(x,y,t)=L" 1L —~Uy, +20 UV ) +(4+1)U, —a U, +&
XY, B 0”1 oo | o’ 6)}2
2
p

o=l oV, oV
V,(x,y,t)=L" {TL{—A Uu+Uy, +2U0U,V0)—a(?2‘+ % K ]}}
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U (x,y,t)= L _—L{ (ZUZL:IVU U, ik 1)+(A+1)U (6 Uj,l +6 Ujlj}}

i=0 k=0

i=0 k=0

= 17l ov., oV,
V,(x,y,0)=L" —L{(ZZVUU,,:{J—AU {ax—szr 6)}]2

For simplicity,
uy=U,=f (x,y)+Bty,=V,=g(x,y). (30)
The exact or approximate solution of Eq. (20) can be obtained by setting p =1,

u :limU:U0+pU1+p2U2+

p—1 , (31)
v=1imV =V, +pV, +pV,+

p—1
Examples

To show the efficiency and ability of the proposed method, 2 examples are presented in this section.
Example 1. Consider the two-dimensional Brusselator system [38];

Ou ou  Ou
—=u’v-2u +— + ,
ot 4\ ox* oy’

ov ) kAl 62v
—:u—uv+ — .
ol 6y2

(32)

Inregion R = {(x ,p)ixP+y?<lx >0,y > 0} subject to the initial and boundary conditions;

wux,y,0),v(x,y,0)=c 7, e"") for (x,y)eR

_tr_ L,
@ (0,y,0),v(0,y,0)=( 2 ,e2 )for 0<y <land t >0,

e Ly 33
w(x,0,t),v(x,0,t)=( 2 ,e? )for0<x <landt >0, 33)

(au ov

t t
—,_j:(X+y) — " er 7 |forx’+y?=land t > 0.
on oOn

To solve Eq. (32) by the LTNHPM, the following homotopy is constructed:
2 2
(1-p)| L%y [ Yoy 2U—l CACRMCIC | R)
ot ot ot ox*> oy

2 2
1-p) o |V iy L 6—V+6V -0,
o o ot ox® oy’

(34
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or

2 2
Hw,py=2Y % gy - L a—[f+a[f L9 |,
ot ot 4\ Ox oy ot

2 2;
H{V ,p) =a—V—6V—t°+p[—U +UW —%(Z—Vﬁ Zsz J+aav_to]: 0,
X

(35)

Applying the Laplace transform method to both sides of Eq. (35);

2 2
L{HU,p)}=L 6_U_6u0+p U s -t a_lera_Uz L0 |
or ot 4l ox? oy ot

oV v (o v ) ov
Ly =01 Po ) ey SO0V P L
Hw.p)y { . o p[ 4(6# 6y2j or j}

(36)

Using the differential property of the Laplace transform method;

ou 1({6*U &*U )\ ou
LU G,y ) =U(x,y,0)=L—2—p| U¥ +2U ——| —+— |+ =2},
sLU (x,y,0)}-U(x,y,0) {Gt p[ 4(5x2 6yz] o ]}

(37)

ov 1(o% o\ ov
L DNV (x,y,0)=L{ =2 —p| U +UW —=| =+ |+ =L},
sLY (x,y,0)} -V (x,y,0) {Bt p{ 4(6)(2 6y2] Y j}

or

1 Ou 1{o°U U\ ou
LUG,y, O =—Ux,y,0)+L{——-p|-B-U¥ +2U ——| —+ +—2 1,
{Ux,y,t)} . (x,y,0) {6t p{ 4(6# 32j o JH

(3%)

1 ov 1(oV oW | ov
L VN ==V (x,y,0)+L{——p| U +UY ——| —+— [+—2|} |,
V@.y.nl Ky x..0) {(’% p{ 4(8)62 6y2j ot j}}

By applying the inverse Laplace transform method to both sides of Eq. (38);

1 ou 1(3°U 80U\ ou
Ux,y,t) =L~ U(x,y,0)+L{=—L—p| -U¥ +2U ——| —+ 0 ,
(s:) s (x..0) ot p{ 4[6x2 6y2) j}]}

39)

1 ov 1(eV ov ) ov
Vx,y,t) =L~V (x,y,0)+L{—L~p| U +UV —— [+ =2 |t
(x,y.1) (x,y,0) P p{ 4(5# 6yzj JH}

Supposing the solution of Eq. (39) has the following form.
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Ux,y.t)=p"U,(x.,y.t)
n=0
(40)

Vix,y.t)=2p"V, (x,y.t)
n=0

where U, (x,y,t),V, (x,y,t) are unknown functions which should be determined. Substituting Eq. (40)
into Eq. (39), and equating the terms with the identical powers of p, leads to the calculations
Uj(x’yﬂt)JVj(xiy’t)’ j =05]‘529"'

Uo(x,y,t)=L{ (U(x Vv, O)+L 6_ }
0 K ot

Vo@,y,t)=L" 1[V(x v, O)+L }

2
UG,y =02 Lo, +ou, - 1o 6U2° ey
s ox’ oy ot

p
2 2
Vi(x,y,t)=L" _lL U, +UY, _1 6V2+6V20 +6v0
s ot oy ot
2 2
U,y ) =L 2L o, vouop v, - L 29 90
S ox® oy
P’
— 2 %7
Vo)=L v o, s oy, -4 2 20
S 4{ox” oy
(41)
B =lj—i-l 62UH 82Uj71
U,Gy.n=1" —L SV, ), SN
=0 k=0 Ox oy
p.i
-1 88 1 52V»_1 oV
V,(x.y.)=L" —L (ZZVUU}I“)U SN
=0 k=0 Ox oy

Assuming u,(x,y.,t)=e " ,v,(x,y,t)=e""", and solving the above equation for U, (x,y.t),
V. (x,y,t),j =0,1,2,... leads to the result.
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Uyx,y,t)=e™7 (1+1),

Ul(x,y,t)=%e""y (—6t +3t% +44° +t4),

Uy(x,p,t)= 2—;05*%2 (=595t +140¢* +35¢% +329¢> +20¢ ) (42)

175 L gy (140+105t3 +315¢ +273¢7 +15t4),
420

V,(x,y,t)y=¢" (1+t),
V,(x,y,t) :_Tle"“ytz(t +2)2 +%e”}’t(z‘ -2),

_ 1 3y-3x,3 3 2 4
Vz(x,y,t)—4—20e £*(140+105¢° +315¢ + 273> +15¢*) (43)

L ((—1540t +420¢* +315¢7 +1029¢° + 60¢° —840)617,\/ 35t -3)e" ™ )
840

Therefore using algebra with the aid of a symbolic computation tool, the solution of Eq. (32) is
determined as;

ux,y,t)=U,(x,y.t)+U,(x,y,t)+U,(x,y,)+U,;(x,y,t)+---

el L L s
2 8 48 384 3840
1 1 1 1 1
=e 7| 1- ot ——— Pt -1+
2x1! 27 x2! 27 x3! 2% x 4! 2° x5!
:e7X7y7%
(44)
V(xvy:t)=V0(x’y’t)+V1(xsyat)+V2(x’y’t)+V3(x:yat)+"'
=g (1+lt+lt2+it3+Lt4+Lt5+---J
2 8 48 384 3840
e L 21 £+ 31 £+ 41 tt+ 51 3+
2x1! 27 x2! 27 x3! 2% x 4! 2° x5!
:ex+y+t§
which is the exact solution of problem.
Example 2. Consider the two-dimensional Brusselator system [42];
Ou , 22 1 (0 Ou
—=ltuv ——ut—| —+— |,
5 500{ ox~ Oy
(45)
ov 17 2 1 (ov o
—=—u-uv+— s+ — |-
o 5 500{ ox~ Oy
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subject to the initial conditions of;

@(x,y,0)w(x,v,0)) = (2+yz,1+4Tx)

To solve Eq. (45) by the LTNHPM, the following homotopy is constructed,

2 2
(l—p) 6_U_% +p 8_U_U2V +£U_L 8_U2+6_U2 -1{=0,
ot ot ot 5 500\ ox oy

2 2
(l—p) a_V_% +p 5_V_1_7U+U2V _L 8_1/24_6_1/2 =0,
ot ot o 5 5001 ox oy

or

2 2
Hu,py=2Y %y s B2y L A NIy Y
a o 5 500 ax’ oy’ ) o

2 2
HV .,p _a—V—aV°+p[—1—7U+U2V —L[a—V+aV)+av°J—0,

ot ot 5 500\ ox* oy ) ot

applying the Laplace transform method to both sides of Eq. (48);

2 2
LHU.p) =LY Pl yy 2y L [OU O o L
ot ot 5 500\ ox oy ot

oV ov 17 1 (o oW ) ov
LiHY p) =12 Doy | Yy py | 2L 07 1 P
P {at o p[ 5 soo[ax2 6y2] o j}

Using the differential property of the Laplace transform method;

2 2
SLAU (3,0} =U (x,7,0) = L{%—p{—l—UzV 2y _L(a u,o U}%]},

_J’__
5 500 ax > oy’ ot

ov 17 1 (o o¥ ) ov
LW ey )=V (ray.0) =00 ol Yy gy L[ OV OV L el
SLV .y, 0=V (x,7,0) {& p[ 5 500(6)62 8y2J ot J}

or

+_
500 ax?® oy’

2: 2
LY (x.y.0)) =17 (x,y,O)+L{ath° —p[—1—7U +UW —L(a—V+ o j+6V°J}],
S

5 500\ ox* oy’ ot

By applying the inverse Laplace transform method to both sides of Eq. (51);

2 2
LU G,y )} = U()CJ&HL{%—p(—l—UZV +25_2U—L(6_U GU}%}],
S

(46)

(47)

(48)

(49)

(50)

(51
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2 2
U(x,y,t)=L" 1 U(x,y,00+L %_ -Uw +2U—L 8(]2+6U2 +% ’
ot 5 5000 x> oy ) ot
(52)
2 2
R R B L R K B S e
ot 500 ox oy ot

Supposing the solution of Eq. (52) has the following form;

U(x,y,t):ip"Un (x,y.t)
e (53)

Vx,y,0)=2p"V,(x.y.t)
n=0

where U, (x,y,t),V, (x,y,t) are unknown functions which should be determined. Substituting Eq. (53)
into Eq. (52), and equating the terms with the identical powers of p, leads to the calculations
Uj(x5y’t)9Vj(x5y5t)’j:0!172""

Uo(x,y,t)—L{ (U(x v, 0)+L aa”t‘)}}

p
Vol oy o)=L {I(V(x . 0)+L a }]}
s ot
Uty =L o, + 2o, - L [0 UL ) Ay
s 5 500| ax? ay ot
P
2; 2
V(x,y,t)=L"1— ——U WUV - L 6V20+6V20 +%
5001 ox oy ot
-1 22 1 (U, oU
U,(x,y,t)= L'{? { (U02V1+2U0U1V0)+?U1 —%( 8x21+ ay;}}}
2
p N
2 2
V,(x,y,t)=L"{— ——U +(UW, +20UY - B 6V+6V;
s 500 ox oy
_1 Jlicicl 1 (oU,, oU,,
Ux,tL‘—L v.UuU + -— L
( y ) { (,Z;;Z;) Jj—i—k— l) -1 500{ axz 6y2
p.i
-1 17 “ljcicl 1 62V 62V.,1 (54)
V. (x,y,t)=L'"{—L v.U.u +—
sy0) s {5 ZZ k) soo[a oy
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Assuming uo(x,y,t):2+yZ,v0(x,y,t)=l+4?x, and solving the above equation for

U,(x,y,t), U,(x,y,t), j =0,1,2,... leads to the result.

Uy oyt :%(gw )(1+1),

U,(x,y,t) =$t (256xt2y +241xy > +1536tx +320¢° +1280¢°

11024512 +256x1° + 20y 2 +30y 2 +320¢ 2y +200 2y 2 +80¢y (55)
+5t7y % +256xy +16xy > —1856 +64xt’y +4xt’y* +512¢
—112y +1024x +16xt>y > +384txy +304ty ),

and

Vo(x,y,t) :%(5+4x )(1+1),

Vix,y,t)= —ﬁt (256xt2y +24txy * —576+1536tx +320¢° +1280¢°

+1024x12 +256x1° +20y 2 +300y 2 +3200 %y +20¢2y 2 +80¢y (56)
+5t%y 7 +256xy +16xy > +64xt’y +4xt’y” +832t +48y
+1280x +16x¢°y* +384txy +3441y ),

Using algebra with the aid of a symbolic computation tool, to make a direct comparison with
[40,42], x =y =0.11is considered. The 6-term LTNHPM solutions to the Brusselator model for this case

is given by;

ux,y,t)=U,(x,y.t)+U,(x,y,t)+U,(x,y,t)+U,+(x,y,t)+--
=2.025-3.4813¢ +5.0816¢> —11.7847¢> +32.7015¢* —92.347¢°
+266.62381° —749.2341¢7 +283.5752¢" +2466.1745t° +O (¢ )

v(x,y,)=V,x,y,t)+V (x,y,t)+V,(x,y,t)+V +(x,y,t)+-
=1.08+2.4563¢ —3.3407¢> +10.1045¢> — 29.8288¢* +86.118¢°
—252.4259¢° +710.6276¢7 —285.0708¢° —2391.8422¢° +O (t')

(57)

The 3-term HPM solutions are shown in Figures 1 - 3.
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Figure 1 Numerical results for #(0.1,0.1,7) and v (0.1,0.1,¢).
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Figure 2 Comparison of numerical results of «(0.1,0.1,¢#) with ADM ([40]) and HPM ([42]).
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Figure 3 Comparison of numerical results of v (0.1,0.1,¢) with ADM ([40]) and HPM ([42]).

Conclusion

Mathematical physics and population growth models characterized by systems of partial differential
equations, such as the Brusselator model, are of wide applicability. In the present work, a combination of
the Laplace transform method and the homotopy perturbation method is proposed to solve the Brusselator
equation. This method, unlike most numerical techniques, provides a closed form of the solution. By
using this method, a new efficient recurrence relation to solve nonlinear Brusselator equations is obtained.
The results show that the LTNHPM is a powerful mathematical tool for solving systems of nonlinear
partial differential equations, having wide applications in sciences and engineering. Compared with the
Adomian decomposition method and the homotopy perturbation method, the present method does not
require specific algorithms or complex calculations, such as ADM. In comparison with the boundary
element method, computational size has been reduced and rapid convergence has been guaranteed.
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