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Abstract 

Here, we investigate the effectiveness of the optimal homotopy asymptotic method (OHAM) with a 
symbolic computational method for constructing the approximate solution for quantum Zakharov- 
Kuznetsov equation that is derived to describe the in magnetized plasma in ion acoustic waves. The 
results reveal that the method is explicit, effective and easy to use. The proposed method is a strong and 
easy to use analytic tool for nonlinear problems and does not need small parameters in the equations. The 
results obtained here reveal that the proposed method is very effective and simple for solving nonlinear 
problems. The basic ideas of this approach can be widely employed to solve other strongly nonlinear 
evaluation form equations arising in physics. 

Keywords: Optimal homotopy asymptotic method, quantum Zakharov-Kuznetsov equation, approximate 
solution 
 
 
Introduction 

Analytical methods have made a comeback in research methodology after taking a backseat to the 
numerical techniques for the latter half of the preceding century. The advantages of analytical methods 
are manifold, the main being that they give a much better insight than the numbers crunched by a 
computer using a purely numerical algorithm. As a result, the research on exact solutions of nonlinear 
evolution equations has become more and more important [1-24]. 

Perturbation techniques [1,2] have come to be considered as classical in solving nonlinear problems, 
specifically those that contain small parameters and therefore valid only for weakly nonlinear problems. 
These techniques are very effective in computing solutions, but the small parameters assumption, greatly 
restricts their applications. 

Liao [10,11] employed the basic ideas of the homotopy in topology to propose a general analytical 
method for nonlinear problems, namely, homotopy analysis method (HAM). Based on homotopy of 
topology, the validity of the HAM is independent of the existence of small parameters in the considered 
equation. In recent years, much attention has been devoted to the newly developed methods for 
constructing an analytic solution of an equation. Marinca and Herisanu [7,8] introduced a new method 
known as the optimal homotopy asymptotic method (OHAM). The advantage of OHAM is in the built in 
convergence criteria similar to HAM but more flexible. Marinca have applied this method successfully to 
obtain the solution of currently important problems in science, and have also shown its effectiveness, 
generalization and reliability [7,8]. 

The investigation of ion-acoustic waves and structures in dense quantum plasmas has attracted 
much attention in recent years. It was shown that quantum effects play a crucial role in plasma dynamics 
when the de-Broglie wavelength of the charge carriers becomes comparable to the spatial scale of the 
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system. In dense quantum plasma, the quantum hydrodynamic (QHD) model is one of the most popular 
models. The QHD model is a generalization of classical fluid model of plasmas where QHD transport 
equations are expressed in terms of the conservation laws of particles momentum and energy. 

The rest of this paper is arranged as follows. In section 2, we simply provide the mathematical 
framework of the OHAM. In section 3, the governed equations of the plasma system is given and 
transformed into the quantum Zakharov-Kuznetsov (QZK) equation to illustrate the effectiveness and 
convenience of the proposed method. Finally, conclusions are given in section 4. 
 
Methodology 

In what follows, we summarize the OHAM [7,8]. For a given a nonlinear equations as; 
 

( ( , )) ( ( , )) ( , ) 0,L u x t N u x t g x t x+ + = ∈Ω  

( , ) 0,uB u
t

∂
=

∂
                                                                    (1) 

 
where L is a linear operator and N is a nonlinear operator, B is boundary operator, ( , )u x t is an 
unknown function, and x and t denote spatial and time variables. 

In view of OHAM, one can construct the optimal homotopy ( , ; )x t qψ : [0,1] RΩ∈ →   
 
(1 )[ ( ( , ; )) ( , )] ( )[ ( ( , ; )) ( ( , ; )) ( , )],p L x t q g x t H q L x t q N u x t q g x tψ ψ− + = + +           (2) 

where [0,1]q ∈  is an embedding parameter, ( )H q is a nonzero auxiliary function for 0q ≠ , 
(0) 0H = . Eq. (2) called the optimal homotopy equation admits to; 

 
( ( , ; )) ( , ) 0, 0L x t q g x t qψ + = =  

[ ( ( , ; )) ( ( , ; )) ( , ) 0, 1L x t q N x t q g x t qψ ψ+ + = =                                    (3) 

As long as 0q =  and 1q =  it holds that 0( , ;0) ( , )x t u x tψ =  and ( , ;1) ( , )x t u x tψ = . Then, as 

q  varies from 0  to 1, the solution ( , ; )x t qψ  approaches from 0 ( , )u x t  to ( , )u x t , where 

0 ( , )u x t  is obtained from Eq. (2) for 0q = ; 
 

0
0( ( , )) ( , ) 0, ( , ) 0uL u x t g x t B u

t
∂

+ = =
∂

                                                     (4) 

The auxiliary function ( , )H x q  can be expressed as; 
 

2
1 2( , ) ( ) ( ) ............. ( )m

mH x q qC x q C x q C x= + + +                                    (5) 

In view the proposed method, to get an approximate solution, we expand ( , ; , )ix t q Cψ  in 
Taylor's series about q as; 
 

0
1

( , ; , ) ( , ) ( , ; ) , 1, 2,.......k
i k i

k
x t q C u x t u x t C q iψ

∞

=

= + =∑                                      (6) 
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Inserting (6) into (2) and equating the coefficients of same power of q , we obtain governing 

equations for ( , )ku x t  as; 

0
1 1 0 0 0( ( , )) ( ( , )); ( , ) 0,uL u x t C N u x t B u

t
∂

= =
∂

                                                (7)

2
2 1 2 0 0 1 1 1 0 1 2( ( , )) ( ( , )) ( ( , )) [ ( ( , )) ( ( , ), ( , ))], ( , ) 0,∂

− = + + =
∂
uL u x t L u x t C N u x t C L u x t N u x t u x t B u
t

   (8) 

1

1 0 0 0
0

( ( , )) ( ( , )) ( ( , )) [ ( ( , )) ( ( , ), ( , )],

( , ) 0, 2,3,......

k

k k k i k i k i k i
i

k
k

L u x t L u x t C N u x t C L u x t N u x t u x t

uB u k
t

−

− − − −
=

− = + +

∂
= =

∂

∑
  (9) 

where 0 1( ( , ), ( , )),......, ( , )− −k i k iN u x t u x t u x t  is the coefficients of k iq −  in the expansion of 

( ( , ; )N x t qψ  as; 
 

0 0 0 1
1

( ( , ; ) ( ( , ) ( , ,....., ) k
k k

k
N x t q N u x t N u u u qψ

>

= + ∑                              (10) 

The convergence of the series in (6) depends upon the auxiliary constants iC . If it is convergent at 
1q = , one has; 

*
0

1
( , , ) ( , ) ( , , )i k i

k
u x t C u x t u x t C

∞

=

= + ∑                                                  (11) 

 
Substituting Eq. (11) into (1), we have the residual R; 
 

* *( , , ) ( ( , , )) ( , ) ( , , )i i iR x t C L u x t C g x t N x t C= + +                                       (12) 
 

To compute the auxiliary constants , 1, 2,..,.iC i m= , there are many methods such as Galerkin's 
Method, Ritz Method, Least Squares Method and Collocation method to obtain the values of iC . By 
applying the method of least squares as; 
 

2

0

( ) ( , , ) ,
t

i iJ C R x t C dxdt
Ω

= ∫ ∫                                                                          (13) 

 

 
1 2

.......... 0
m

J J J
C C C

∂ ∂ ∂
= = = =

∂ ∂ ∂
                                                                  (14) 

 
Governed equations of the problem 

The importance of quantum effects in ultra-small electronic devices, in dense astrophysical plasma 
systems and in laser plasma have produced interest on the investigation of the quantum counterpart of 
some of the classical plasma physics phenomena. For instance, quantum plasma has attracted much 
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attention as waves in collisionless unmagnetized quantum plasma have potential applications in different 
scientific areas either in the laboratory or in astrophysics. 

The nonlinear propagation of the electrostatic waves, in a dense Thomas-Fermi magneto-plasma 
whose constituents are the electrons and singly charged ions confined in an external magnetic field of 
strength 0B along the x-axis, is governed by the dimensionless ion continuity and momentum equations 
represented by; 

 
( )( ) 0,i iyi i ix n un n u

t x x
∂∂ ∂

+ + =
∂ ∂ ∂

                                                                     (15) 

 
3[ ] 0,
2

ix
ix iy ix

u u u u
t x y x

φ∂ ∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂
                                                             (16) 

 
3[ ] 0,
2

iy
ix iy iy iz

u
u u u u

t x y y
φ∂ ∂ ∂ ∂

+ + + − =
∂ ∂ ∂ ∂

                                                   (17) 

 

[ ] 0,iz
ix iy iz iy

u u u u u
t x y

∂ ∂ ∂
+ + + =

∂ ∂ ∂
                                                       (18) 

 
with Tomas-Fermi law for degenerate electrons; 
 

3
2(1 )en φ= +                                                                                       (19) 

 
Eqs. (15) - (18) are closed by the Poisson's equation; 
 

2 2

2 2

2[ ] ( )
3 e in n

x y
φ∂ ∂

Ω + = −
∂ ∂

                                                               (20) 

 
Through these Eqs. (15) - (20), ( , , )in x y t  and ( , , )en x y t  are the number densities of the ion 

and electron species, respectively and are normalized by the unperturbed electron/ion number density             
( 0 0 2 / (3 )i e F in n E m= =  where 2F B FE k T= , Bk  is the Boltzmann constant, FT  is the Fermi 

electron temperature and mi is the ion mass. 
( , , )x y tφ  is the electrostatic potential normalized by /FE e  where e  is the magnitude of the 

electron charge. The time and space variables are in units of the ion gyro-frequency 0 / ( )ci ieB m cω =  

and ion sound gyro-radius /s si ciCρ ω= , respectively, where 0B  is the strength of the magnetic field 

taken along the x-axis and c is the speed of light in vacuum. Furthermore, 2(3 9 / 3 9 )ci pic cΩ =  where 

2
04 /pi ie n mω π=  is the ion plasma frequency. 
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The reductive perturbation method introduces the stretching space-time coordinates; 
 

1/2 1/2 3/23 5 ( ), 3 5 3 5X b x t Y b y and T b t= − = =                                         (21) 
 
where ε  is a smallness parameter measuring the weakness of the amplitude or dispersion. The dependent 
variables ( ) ,  ixi en u ; 

 

3 0,A X Y
T
φ φφ

φ
∂ ∂

+ ∂ ∂ =
∂ ∂

                                                                (22) 

1 12, , (1 )
2 2

A B C= = Ω = + Ω  

 
Making use of the transformation; 

 
( ) ( , , ), ,                            x yu X Y T L X L Y Tξ ϕ ξ ν= = + +          (23) 

 
where ν  is a constant speed, xL  and yL  are the directional cosine of the propagation wave vector along 

the X and Y axes, respectively, (22) reduces to; 
 

3( ) ( ) ( )( ) 0,du du d uu
d d d

ξ ξ ξα β ξ
ξ ξ ξ

+ + =                                                            (24) 

 
with boundary and initial conditions as; 
 

0
1

0 0
3 2

0 0

(0)(0) 1, (1) 0, 0

( ) ( ), , , ,

,
y

x y

x x x

uu u
d

Au L X L Y T
B B

A AL B BL CL L

ξ
νφ ξ ξ ξ ν α β

∂
= = =

= = + + = =

= = +

 

 
         (25) 

 
 
         (26) 

 
 
         (27) 

 
New application of OHAM to the quantum Zakharov-Kuznetsov equation 

To solve the reduced Eq. (24) by the proposed method, we choose the auxiliary linear operators as; 
 

3

3

( ; )[ ( ; )] , ( ) 0                            (24)qL q gϕ ξϕ ξ ξ
ξ

∂
= =

∂
         (28) 

 
( ; ) ( ; )[ ( ; )] ( ; ) ,                             (25)q qN q qϕ ξ ϕ ξϕ ξ α βϕ ξ
ξ ξ

∂ ∂
= +

∂ ∂
       (29) 

 
According to the OHAM, with the aid of Eqs. (7) - (9), admits to the following; 
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Zeroth-order problems are given by; 
 

3
0

3

( ) 0,u ξ
ξ

∂
=

∂
                                                                                            (30) 

0
0 0

(0)(0) 1, (1) 0, 0uu u
ξ

∂
= = =

∂
            (31) 

 
Its solutions as; 
 

2
0 ( ) 1u ξ ξ= −                     (32) 

 
First-order problems are given by Eq. (7); 
 

1 1 0 1 0 0 0( ( )) (1 )( ( ( )) ( ),L u C L u C u u uξ ξξ ξ α β= + + +                                        (33) 

1
1 1

(0)(0) 1, (1) 0, 0uu u
ξ

∂
= = =

∂
             (34) 

 
Its solutions as; 
 

6 4 21 1
1 1

2( ) ( ) ( )
60 24 15 15

C Cu Cβ β αξ ξ β α ξ ξ= − + + +                                                  (35) 

 
Second-order problems are given by Eq. (8) for 2m = ;  
 

2 1 1 2 0 0 0 2 0 1 1 0 1 1 0( ( )) (1 )( ( ( )) ( ) ( ( )) (( ) ( )),L u C L u C u u u C L u C u u u u uξ ξ ξ ξ ξξ ξ α β ξ α β= + + + + + + +     (36) 
 

2
2 2

(0)(0) 0, (1) 0, 0uu u
ξ

∂
= = =

∂
                                                             (37) 

 
Third-order problems are given by Eq. (8) for 3m = ; 
 

3 1 2 3 0 0 0 1 2 2 2 1 1 0 2

2 1 3 0 2 1 0 1 1 0

( ( )) (1 )( ( ( )) ( ) ( ( )
( ( )) ( ( )) (( ) ( )),

L u C L u C u u u C u u u u u u u
C L u C L u C u u u u u

ξ ξ ξ ξ ξ ξ

ξ ξ ξ

ξ ξ α β α β

ξ ξ α β

= + + + + + + +

+ + + + +
       (38) 

 

3
3 3

(0)(0) 0, (1) 0, 0uu u
ξ

∂
= = =

∂
                                                                (39) 

 
by solving Eqs. (33) - (39), the explicit form for 0 ( )u ξ , 1( )u ξ  and 2 ( )u ξ  can be directly obtained (see 
Appendix (A.1)). For simplicity it is omitted here. Inserting the results of solutions of these equations into 
(11), we get the third order approximate solution of ( , )approxu x t  as (see Appendix (A.2)). 
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*
0 1 2( ) ( ) ( ) ( )u u u uξ ξ ξ ξ= + +              (40) 

 
and inserting this approximation solution into Eq. (12) yields the residual and functional; 
 

3 * * *
*

1 2 3

( ) ( ) ( )( , , ) ( ) ,u u uR C C uξ ξ ξξ α β ξ
ξ ξ ξ

∂ ∂ ∂
= + +

∂ ∂ ∂
                                       (41) 

 

2
1 2 1 2

0

( , , ) ( , , ) ,

x y

J C C R C C d

L X L Y T

ξ

ξ ξ ξ

ξ ν

=

= + +

∫  

 
                                  (42) 

 
 

                                  (43) 
 

 
For fixed values of α  and β  with 0.1..0.5ξ = , admits to a different values of 1C  and 2C  (see 
Appendix (A.2 - A.4)). Using the obtained auxiliary constants, we will get the third order approximate 
solutions using OHAM. 
 
Conclusions 

In this paper, the optimal homotopy asymptotic method with the aid of a symbolic computational 
method is used for constructing the approximate solution for a nonlinear problem arising in plasma 
physics. The validity and reliability of the OHAM is tested by their applications for nonlinear problems, 
namely, Zakharov-Kuznetsov equation that is derived to describe the ion acoustic waves in magnetized 
plasma. 

The advantages of the OHAM with respect to homotopy perturbation method are illustrated, the 
OHAM provides a convenient way to control the convergence by optimal determining of the auxiliary 
constants and is converges rapidly to the solution and requires less computational work. 

The results obtained here will enrich previous results and help us further understand the physical 
structures and analyze the nonlinear propagation of the quantum ion-acoustic waves in quantum magneto-
plasma. Finally, it is worthwhile to mention that the proposed method is straightforward, concise and can 
also be applied to other nonlinear problems in science and engineering. This is our task in future works. 
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Appendix 

 

 

 

 

   (A.1) 

 

   (A.2) 

 

   (A.3) 

 

   (A.4) 

 = ( )u0 ξ −  + ξ2 1

 := ( )u1 ξ  −  + 
1

60 C1 β ξ6 2 C1






 + 

1
24 β

1
24 α ξ4 






 + 

1
15 C1 β

1
12 C1 α ξ2

( )u2 ξ
1

5400 C1
2

β2 ξ10 





 + 

1
560 C1

2
β2 1

560 β C1
2

α ξ8−  +  := 







 +  +  −  −  − 

1
60 C1 β

1
60 C2 β

1
60 C1

2
β

1
200 C1

2
β2 1

120 β C1
2

α
1

360 C1
2

α2 ξ6 

 +  + 

1
12 C1

2
β

1
12 C1 β

1
12 C1 α

1
12 C2 β

1
12 C2 α

1
12 C1

2
α

1
180 C1

2
β2−  −  −  −  −  −  + 

1
80 β C1

2
α

1
144 C1

2
α2 +  + 


 ξ4 163

75600 C1
2

β2 1
168 β C1

2
α

1
15 C1 β−  −  + 


 + 

1
15 C2 β

1
15 C1

2
β

1
240 C1

2
α2 1

12 C1 α
1

12 C2 α
1

12 C1
2

α +  +  −  +  +  + 

 ξ2

uapprox ξ2 1
1

60 C1 β ξ6 2 C1






 + 

1
24 β

1
24 α ξ4 






 + 

1
15 β C1

1
12 C1 α ξ2−  +  +  −  +  := 

1
5400 C1

2
β2 ξ10 






 + 

1
560 C1

2
β2 1

560 β C1
2

α ξ8 −  + 







 +  +  −  −  − 

1
60 β C1

1
60 C2 β

1
60 C1

2
β

1
200 C1

2
β2 1

120 β C1
2

α
1

360 C1
2

α2 ξ6 

 +  + 

1
12 C1

2
β

1
12 β C1

1
12 C1 α

1
12 C2 β

1
12 C2 α

1
12 C1

2
α

1
180 C1

2
β2−  −  −  −  −  −  + 

1
80 β C1

2
α

1
144 C1

2
α2 +  + 


 ξ4 163

75600 C1
2

β2 1
168 β C1

2
α

1
15 β C1−  −  + 


 + 

1
15 C2 β

1
15 C1

2
β

1
240 C1

2
α2 1

12 C1 α
1

12 C2 α
1

12 C1
2

α +  +  −  +  +  + 

 ξ2

uapprox 1. 1.277651216 ξ2 .1822479272 ξ6 .4235352844 ξ4 .005415894059 ξ10 −  −  +  −  := 

.04177975418 ξ8 + 

uapprox 1.269667194 ξ2 1. .3329981208 ξ6 .5240972353 ξ4 .02055987113 ξ10−  +  −  +  −  := 

.09912795011 ξ8 + 

uapprox .364001237 ξ2 1. 5.176208523 ξ6 2.586388732 ξ4 .2347939433 ξ10−  +  −  +  −  := 

2.188614972 ξ8 + 
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