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Abstract 

Differential transformation method (DTM), followed by Laplace transformation, has been used to 
solve the governing mass balance equations through a packed bed of solid reactants. The principle of this 
method is briefly introduced and is then applied to the nonlinear mass balance equations. Conversion and 
dimensionless gas concentration has been achieved and plotted with different values of Dz. Results show 
that conversion increases with a high rate initially, and the rate of increasing will decrease dramatically in 
infinity. All obtained results have been compared with the experimental results, which represent the high 
accuracy of the presented method. DTM is an efficient analytical technique which is used to solve the 
nonlinear differential equations, governing the problem in the form of series with easily computable 
terms. 

Keywords: Gas solid reactions, packed bed, differential transformation method (DTM), Laplace 
transform, analytical methods 
 
 
Introduction 

Non-catalytic gas solid reactions are very important in chemical and metallurgical industries, such 
as reduction of metal oxides, roasting of sulfides, calcination of limestone, etc. These reactions are 
processed in packed bed reactors, which are more flexible and efficient, and also have lower costs 
compared to the other types of reactors because of their low amounts of heat generation and consumption. 
Due to the transient nature of gas-solid reactions in comparison with catalytic reactions, the complexity of 
governing mass and energy balance equations are higher. As a result, analytical solutions have not yet 
been used for solving coupled series of mass and energy balance equations in the bed and in the pellets. 
Despite using modern computers, solving these equations consumes much time and energy. The models 
describing gas solid reactions and transport phenomena in packed bed reactors have been grouped in 2 
broad categories by Froment and Bischoff [1]. The 2 categories are the pseudo homogeneous model 
(which ignores the presence of catalyst pellets) and the heterogeneous model (which accounts for the 
changes occurring inside the pellet). The non-catalytic gas solid reactions in packed beds stand in the 
second group. 

Numerical solution of packed bed equations for non-catalytic gas solid reactions has been followed 
by numerous researchers. Sampath, Ramachandran and Hughes [2] solved a set of one dimensional 
coupled mass and energy balance equations in the axial direction using orthogonal collocation, and 
accounted for the wall heat transfer by introducing the corresponding term into the heat balance equation. 
Hastaoglu and Jibril [3] proposed an extensive 2 dimensional non-isothermal model, and solved the 
equations using the finite difference method. Furthermore, the finite volume method, with uniform and 
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non-uniform mesh size, has frequently been used for the numerical solution of governing equations of 
mass and energy in gas solid reactions [4-8]. As mentioned before, analytical methods have not yet been 
applied to solve these equations. Differential transformation method, as an analytical method, was first 
applied in the engineering domain by Zhou [9]. The DTM obtains an analytical solution in the form of a 
polynomial. It is different from the traditional higher order Taylor series method. The traditional higher 
order Taylor series method requires symbolic computation. So, the Taylor series method is 
computationally expensive for large orders. However, the DTM obtains a polynomial series solution by 
means of an iterative procedure. The DTM is an alternative procedure for obtaining an analytic Taylor 
series solution of the differential equations. With this method, it is possible to obtain highly accurate 
results or exact solutions for differential equations. This method is well addressed in [10-19]. Chiou [20] 
applied the Taylor transformation to solve non-linear vibration problems. Furthermore, the method may 
be employed for the solution of both ordinary and partial differential equations. Jang et al. [21] applied 
the 2-dimensional differential transformation method to the solution of partial differential equations. 
Hassan [22] adopted the differential transformation method to solve some problems. Finally Joneidi et al. 
[23] solved fin efficiency of convective straight fins with temperature-dependent thermal conductivity. 
Analytical methods were successfully applied to various application problems [24-30]. In the present 
study, the one dimensional differential transformation method is applied to the Laplace transformed 
governing equations. The run time and CPU usage of the computer is considerably reduced in comparison 
with the numerical methods. 

 
Description of the problem 

A general form of non-catalytic gas solid reaction has been considered as; 
 

aA(g) + bB(s) → Product                 (1) 
 

where A and B are the reacting gas and solid, respectively and, a and b are the stoichiometric coefficients.  
 

The products include both the gas and the solid phases. The grain model [8] has been considered to 
describe what is happening in the pellet. In the grain model, it is assumed that the pellet consists of small 
particles or grains which are nonporous and react according to the shrinking core model. The reacting gas 
penetrates through the interstices between the grains and reacts with each grain. If the chemical reaction 
presents a high resistance to the progress of reaction compared to the diffusion through the pellet, the 
concentration profile through the pellet will have a smooth shape. The other possibility is that the 
diffusion through the pellet plays the main role for the resistance to the progress of reaction which results 
in a steep profile for the concentration through the pellet. In this case, the whole pellet can be divided into 
2 separate zones during the reaction time as the reacted and unreacted zones. On the other hand, in a 
packed bed reactor (a schema of which has been shown in Figure 1), the gaseous reactant is charged 
through the reactor and flows through the interstices formed between the pellets. As is seen in Figure 1, 
each pellet consists of finer particles or grains which react with the gaseous reactant and are converted to 
the reaction products. The pellets near the reactor inlet, due to their access to higher concentrations of 
unreacted gas compared to the pellets in higher heights, have higher conversions. Depending on the rate 
of reaction, rate of diffusion, and flow rate, the concentration profile of reacting gas can take various 
shapes in the bed and through the pellets. 
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Figure 1 Packed bed reactor, pellets and grains. 
 
 

Assumptions 
To reduce the complexity of the physical and chemical phenomena of the flow and chemical 

reaction through the bed and the pellets, the following assumptions have been considered: 
• The chemical reaction is irreversible and first order with respect to the gas reactant. 
• There is a counter-diffusion flow inside the pellets, so fluxes due to the bulk flow and viscous 

flow are ignored. 
• The pellets and their grains are spherical and their sizes do not change during the course of 

chemical reaction. 
• The isothermal condition is assumed through the whole bed and pellets. 
• The gas concentration through the bed changes in an axial direction only. 
• There is no diffusion resistance in the product layer formed around each grain. 

 
Governing equations 
Using the simplifying assumptions considered for the bed and the pellets, the governing equations 

through the bed and the pellets can be written. 
 

Mass balance equation in the bed 
The mass balance equation in the bed is written as follows; 

 
2

2 ( )b b b
d S m s b p r R

C C C
D U k a C C

Z tZ =

∂ ∂ ∂
− − − =

∂ ∂∂
             (2) 

 
where bC  is the concentration of the reacting gas through the bed and pC  is the concentration of the 

reacting gas through the pellet in the considered axial position, sU is the superficial velocity of the 

reacting gas, dD and km are the axial mass dispersion coefficient and the convective mass transfer 
coefficient, respectively. r is the radial coordinate through the pellet and R is the radius of the pellet. Z 
and t are the independent parameters of distance and time coordinates in the bed, respectively, and sa is 
the surface area of the solid per unit volume of the bed which is defined as; 
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3(1 )b
sa

R
ε−

=  (3) 

where bε  is the porosity of the bed. The boundary condition for (2) at the reactor inlet is; 
 

( ) 0b
d s b in

C
D U C C at z

Z
∂

= − =
∂

 (4)  

 
where inC  is the concentration of the gaseous reactant at the reactor inlet. Mass transfer at the reactor 
inlet has been considered to include convection and dispersion, while, outside of the reactor, convection is 
the only mechanism of mass transfer. The boundary condition at the end of the bed is as follows; 
 

0b
b

C
at Z L

Z
∂

= =
∂

 (5)  

 
where bL  is the height of the bed. In (5), it is assumed that there is no change for the concentration of the 
gaseous reactant out of the bed. The initial condition for (2) throughout the bed is; 
 

0 0 0b bC at t for Z L= = ≤ ≤  (6)  
 
Defining; 
 

b

ZZ
L

=  (7)  

 
as the dimensionless axial coordinate and; 
 

b

in

C
C

C
=  (8)  

 
as the dimensionless concentration of the reacting gas through the bed, and considering the following 
dimensionless form for the concentration of the gaseous reactant through the pellet; 
 

p

in

C
C

C
=   (9)  

 
Eq. (2) can be rewritten in a dimensionless form as follows; 
 

2

2 1
( )z

C C CD C C
ZZ ζ

α
τ=

∂ ∂ ∂
− − − =

∂∂∂
   (10)  

 
where zD is the axial dispersion coefficient. zD ,τ and α are defined as; 
 

d s
z

b

D U
D

L
=  (11) 
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s

b

U t
L

τ =  (12) 
 

 
s m b

s

a k L
U

α =  (13) 

 
Eqs. (4), (5) and (6) can be rewritten in dimensionless forms as follows; 
 

( 1) 0z
CD C at Z
Z
∂

= − =
∂

  (14) 

 

0 1C at Z
Z
∂

= =
∂

  (15) 

 
0 0 0 1C at for Zτ= = ≤ ≤  

 (16) 

 
Mass balance equation in the pellet 
The mass balance equation for the pellet is written as follows; 
 

( ) 2
2

2

3 11 r pp pc
e p p

g g

kC Cr
r D C

r r r r tr

ε
ε

−  ∂ ∂ ∂
− =     ∂ ∂ ∂   

  (17) 

 
where pε  is the porosity of the pellet, and gr and cr are the radius of the grains and the radius of the 

reaction front through each grain, respectively. rk is the chemical reaction rate coefficient and eD is the 
effective diffusivity of the gaseous reactant through the pellet. The boundary condition for (17) at the 
pellet surface is; 
 

( )p
e m b r Rp

C
D k C C at r R

r =

∂
= − =

∂
  (18) 

 
where the mass transfer of the gaseous reactant from the bulk flow to the surface of the pellet is 
considered to be equal to the diffusion of gaseous reactant through the pellet on its surface. The boundary 
condition in the center of the pellet is; 
 

0 0pC
at r

r
∂

= =
∂

 (19) 

 
where it is assumed that, due to the symmetry of the pellet, there is no concentration gradient for the 
gaseous reactant in the center of the pellet. The initial condition for the concentration of the gaseous 
reactant throughout the pellet is; 
 

0 0 0pC at t for r R= = ≤ ≤  (20) 
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The local rate of reaction through the pellet is; 
 
c

s r p
r

bk C
t

ρ
∂

= −
∂

    (21) 

 
where sρ is the molar density of the solid reactant. The initial condition for (21) is; 
 

1 0 0Cr at t for r R= = ≤ ≤        (22) 
 
Defining; 
 

r
R

ζ =       (23) 

 
as the dimensionless time, (17) can be rewritten in a dimensionless form as follows; 
 

2 2 2
2

1 ( )C CC Nζ φ ρ
ζ ζ τζ
∂ ∂ ∂

− =
∂ ∂ ∂

    (24) 

 
where N is a constant which matches the dimensionless time for (33) and (25). ϕ is the Thiele modulus 
for the non-catalytic gas solid reaction through the pellet. These are defined as follows; 
 

3 (1 )r p
p

e g

k
r

D r
ε

φ
−

=       (25) 

 
2

p s

e b

R U
N

D L
ε

=

 

     (26) 

 
The dimensionless form of (18) is; 
 

1( ) 1C Nsh C C atζ ζ
ζ

∗
=

∂
= − =

∂
  (27) 

 
where ∗Nsh is the modified Sherwood number which is defined as follows; 

 
m

e

k R
Nsh

D
∗ =    (28) 

 
The dimensionless forms of (19) and (20) are; 
 

0 0C at ζ
ζ
∂

= =
∂

    (29) 

 
0 0 0 1C at forτ ζ= = ≤ ≤     (30) 
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Defining; 
 

c

g

r
r

ρ =      (31) 

 
as the dimensionless reaction front radius, (21) can be written in a dimensionless form as; 
 

N Cρ
τ

∗∂
= − ⋅

∂
 (32) 

 
where ∗N  is defined as follows; 
 

in r b

g s s

C b k L
N

r Uρ
∗ =  (33) 

 
and its initial condition in a dimensionless form is; 
 

1 0 0 1at forρ τ ζ= = ≤ ≤  (34) 
 
Fundamentals of differential transformation method (DTM) 

We suppose x(t) to be analytic function in a domain D and itt =  represents any point in D. The 
function x(t) is then represented by one power series whose center is located at it . The Taylor series 
expansion function of x(t) is of the form [31-33]; 

 

( )
0

( )( )
!

i

k k
i

k
k t t

t t d x tx t t D
k dt

∞

= =

 −
= ∀ ∈ 

  
∑                                     (35) 

  
The particular case of Eq. (35) when 0=it is referred to as the Maclaurin series of x(t) and is 

expressed as; 
 

0 0

( )( )
!

k k

k
k t

t d x tx t t D
k dt

∞

= =

 
= ∀ ∈ 

  
∑                 (36) 

 
As explained in [13] the differential transformation of the function x(t) is defined as follows; 
 

0 0

( )( )
!

k k

k
k t

H d x tX k
k dt

∞

= =

 
=  

  
∑                                    (37) 

  
where x(t) is the original function and X(k) is the transformed function. The differential spectrum of X(k) 
is confined within the interval [ ]Ht ,0∈ , where H is a constant. The differential inverse transform of X(k) 
is defined as follows; 
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0

( ) ( )
k

k

tx t X k
H

∞

=

 =  
 ∑                                     (38) 

 
It is clear that the concept of differential transformation is based upon the Taylor series expansion. 

The values of function X(k) at values of argument k are referred to as Discrete, i.e. X(0) is known as the 
zero discrete, X(1) as the first discrete, etc. The more discrete available, the more precisely it is possible 
to restore the unknown function. The function x(t) consists of the T-function X(k), and its value is given 

by the sum of the T-function with 
k

H
t






 as its coefficient. In real applications with the right choice of 

constant H, the larger values of argument k lead to the rapid reduction in the discrete number. The 
function x(t) is expressed by a finite series, and Eq. (38) can be written as; 

 

0

( ) ( )
kn

k

tx t X k
H=

 =  
 ∑                               (39) 

  
Mathematical operations performed by differential transformation method are listed in Table 1. 

 
Application of the coupled Laplace and differential transformation methods 

Considering that Eqs. (10), (25) and (33) are partial differential equations, we try to convert them to 
ordinary differential equations using Laplace transformation. Eq. (10) is linear, whereas Eq. (25) is 
nonlinear due to existence of the term 2ρ . Therefore, Laplace transformation cannot be applied to Eq. 

(25) in its present form. Rectifying this problem, here, it is assumed that 1=ρ . Considering this 
assumption, Eq. (33) will be omitted and we can apply Laplace transform to the Eqs. (10) and (25) as 
follows; 
 

( )( ) ( ) ( )
2

2 1
0, .

( , ) ( , ) ( , ) , , ,0z

initial cond

d C Z S dC Z SD C Z S C S SC Z S C Z
dZdZ ζ

α ζ
=

=

− − − = −


 (40) 

 
( , ) 1( , ) 0z

dC Z SD C Z S at Z
SdZ

= − =  (41) 

 
( , ) 0 1dC Z S at Z
dZ

= =  (42) 

 
And Eq. (25) will convert as follows; 
 

2 2
2

0, .

1 ( , ) ( , ) ( , ) ( ,0)
initial cond

d dC S C S N SC S C
d d

ζζ φ ζ ζ ζ
ζ ζζ

=

    − = −      


 (43) 

 

( )( , ) ( , ) ( , ) 1dC S Nsh C Z S C S at
d
ζ ζ ζ
ζ

∗= − =  (44) 
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( , ) 0 0dC S at
d
ζ ζ
ζ

= =  
 
 

(45) 
 
Considering differential transformation method, ),( SZC  and ),( SC ζ  are assumed as follows; 

 

0

( , ) ( )
n

k
k

k

C Z S c S Z
=

= ⋅∑  (46) 

 

0

( , ) ( )
n

k
k

k

C S c Sζ ζ
=

= ⋅∑  (47) 

 
Substituting Eq. (46) into Eqs. (40), (47) into Eq. (43), considering the boundary conditions and 

assuming 2=n , the initial results for )(Sck  and )(Sck will be as follows; 
 

 

(48) 

 

(49) 
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(50) 

 

(51) 
 
 
 
 
 
 
 
 

 
 (52) 

  

 

(53) 

Regarding to the definition of the differential transformation method, )(Sck terms should not be 

functions of z; therefore, with respect to the obtained results for )(Sck  terms, Differential transformation 
has been applied to Eq. (40) for the second test. The new results have been achieved as follows; 

  

 

(54) 
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(55) 

 

(56) 

 
At this step, ),(1 τZC , regarding to the new results, and ),(1 τζC  have been achieved after 

applying Laplace inversion. Substituting ),(1 τζC into Eq. (32), and considering Eqs. (33) and (34), 

),(1 τζρ has been obtained. The obtained results can be seen in Figure 2. Figure 2 shows the 
conversion with respect to the time variation, where conversion is defined as follows; 

 
31 ρ−=conversion  (57) 

 
It can be observed from the second figure that the achieved results for conversion are very close to 

the results represented by Ranade and Evans [34]. Table 1 shows error of the obtained conversion in 
comparison with Ranade and Evans’ results. It is obvious from both Figure 2 and Table 1 that the present 
work is considerably accurate. 
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Figure 2 Diagram of conversion versus time. 
 
 
In order to be more accurate, this procedure should be continued, meaning that obtained ),(1 τζC  

and ),(1 τζρ have to be used in the Eqs. (10) and (24), respectively, to obtain ),(2 τZC , ),(2 τζC  

and ),(2 τζρ . As the obtained results represented in Table 1 show a very good convergence, we stop at 

this step. Figures 3, 4 and 5 represent Conversion, ),(2 τZC  and ),(1 τζC for different values of Dz, 
respectively. 
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Table 1 Error of present work in comparison with Ranade and Evans’ results [34]. 
 

Time Ranade’s results Present work Error, % 
0 0.0021097046 0.0021097046 0.00 
25 0.1244725738 0.1160337553 6.78 
50 0.2447257384 0.2320675105 5.17 
75 0.3459915612 0.3417721519 1.22 

100 0.4388185654 0.4345991561 0.96 
125 0.5253164557 0.5210970464 0.80 
150 0.6054852321 0.6012658228 0.70 
175 0.6687763713 0.6708860759 0.32 
200 0.7278481013 0.7320675105 0.58 
225 0.7742616034 0.7827004219 1.09 
250 0.8164556962 0.8291139241 1.55 
275 0.8607594937 0.8670886076 0.74 
300 0.8924050633 0.9008438819 0.95 
325 0.9135021097 0.9282700422 1.62 
350 0.9261603376 0.9514767932 2.73 
375 0.9324894515 0.9704641350 4.07 
400 0.9388185654 0.9831223629 4.72 

 

 

Figure 3 Conversion with respect to different values of Dz. 
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Figure 4 ),(2 τZC achieved in the present work for different values of Dz. 

 
Figure 5 ),(1 τζC achieved in the present work for different values of Dz. 
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Conclusions 

The differential transformation method, coupled with the Laplace transformation, is successfully 
applied to the governing mass balance equations through the packed bed of solid reactants. A symbolic 
calculation software package, MATLAB, is used for all calculations. All the computations show that the 
approximate solutions are perfectly identical to the solutions presented in the previous relevant literatures. 
Also, the work emphasizes our belief that this method is a reliable technique to handle these types of 
problems. It provides solutions in terms of convergent series with easily computable components in a 
direct way. This method saves time and energy, in comparison to numerical works, to a great extent. 
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