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Abstract 

In this paper, the sine-cosine method is used to construct exact traveling wave solutions of the Ito 
equation. As a result, many new periodic and solitary wave solutions are derived to generalized (2+1)-
dimensional Ito equation. Throughout the paper, all the calculations are made with the aid of the Maple 
packet program. 
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Introduction 

In the field of nonlinear science, nonlinear evolution equations (NLEEs) used to describe complex 
phenomena in various fields of science, especially in physics and plasma. Moreover, studies of finding 
periodic and solitary wave solutions of the nonlinear equations attracted huge number of works in a 
variety of fields. Many effective methods of obtaining explicit solutions of nonlinear partial differential 
equations (NPDEs) have been presented such as the tanh-method [1], the extended tanh-method [2], the 
sine-cosine method [3], the homogeneous balance method [4], the homotopy analysis method [5-6], the 
expansion method [7], the three-wave method [8-10], the extended homoclinic test approach (EHTA) [11-
13], the expansion method [14] and the exp-function method [15-18]. After all, an exact solution is an 
essential necessity in this field. 

While numerical simulations provide a visual effect of such NLEEs, exact solutions always provide 
a better analytical insight into these equations such as stability issues, constraint relations between the 
parameters that the numerical codes are unable to depict. Therefore, it is imperative to address the 
analytical aspects of NLEEs in parallel to numerical studies. 

In this paper, the traveling wave solutions obtained via the sine-cosine method are expressed by 
hyperbolic functions and the trigonometric functions. In addition the solitary wave solutions are obtained 
from the generalized (2+1)-dimensional Ito equation when the choice of parameters are taken at special 
values. In the following section we have a brief review on the sine-cosine method and in Section 3, we 
apply the Sine-cosine method to obtain analytic solutions of the generalized (2+1)-dimensional Ito 
equation. Finally, the paper is concluded in Section 4. 
  
The Sine-cosine method  

We introduce the wave variable = x ctξ −  into the PDE; 
 

( , , , , , , ) = 0,t x tt xx txP u u u u u u                               (1) 
 
where ( , )u x t  is the traveling wave solution. This enables us to use the following changes; 
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∂ ∂ ∂ ∂ ∂ ∂

                (2) 

 
One can immediately reduce the NPDE (1) into a nonlinear ordinary differential equation (NODE); 
 

( , , , , ) = 0.Q u u u uξ ξξ ξξξ                                          (3) 
 
The ordinary differential Eq. (3) is then integrated as long as all terms contain derivatives, where we 
neglect integration constants. 

The solutions of many nonlinear equations can be expressed in the form; 
 

( ), ,
( , ) =

0 ,

sin
u x t

otherwise

β π
λ µξ ξ

µ
≤





                   (4) 

 
or in the form;  

( ), ,
2( , ) =

0 ,

cos
u x t

otherwise

β π
λ µξ ξ

µ
≤





                  (5) 

 
where ,λ µ  and 0β ≠  are parameters that will be determined. µ and c are the wave number and the 
wave speed respectively. We use; 
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              (6) 

 
and the derivatives of (5) becomes; 
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and so on for other derivatives. 

We substitute (6) or (7) into the reduced equation obtained above in (3), balance the terms of the 
cosine functions when (7) is used, or balance the terms of the sine functions when (6) is used, and solving 
the resulting system of algebraic equations by using computerized symbolic calculations. We next collect 
all terms with the same power in ( )cosk µξ  or ( )sin k µξ  and set to zero their coefficients to get a system 

of algebraic equations among the unknowns ,µ β  and λ . We obtained all possible values of the 

parameters ,µ β  and λ  [3]. 
 
The generalized (2+1)-dimensional Ito equation 

In this section we apply the sine-cosine method to the (2+1)-dimensional Ito equation [19]; 
 

'

3(2 )

3 = 0,

tt xxxt x t xt

x

xx t yt xt

u u u u uu

u u dx au bu
−∞

+ + +

+ + +∫
              (8) 

 
We next use the transformation ( , , ) = ( , , )xu x y t v x y t , this transformation changes the (2+1)-
dimensional Ito  Eq. (8) to the  
 

3(2 )

3 = 0.
ttx xxxxt xx xt x xxt

xxx t xyt xxt

v v v v v v

v v au bu

+ + +

+ + +
              (9) 

 
After that we use the transformation; 
 

= ( ) , =v x y ctϕ ξ ξ + −              (10) 
 

where c  is a constant. Therefore Eq. (9) converts to;  
 

2 ''' (5) '' 2

' ''' ''' '''

6 ( )
6 = 0,

c c c
c ac bc

ϕ ϕ ϕ

ϕϕ ϕ ϕ

− −

− − −
            (11) 

 
or equivalently;  
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' '' ' ' (5) ' 2( ( )) 3 ( ) = 0,c c a b c cϕ ϕ ϕ − + − −              (12) 

 
where by integrating twice we obtain;  
 

' ''' ' 2( ( )) 3( ) = 0,c a b ϕ ϕ ϕ− + − −             (13) 
 
setting ' ( ) = ( )ϕ ξ φ ξ , Eq. (13) becomes;  
 

'' 2( ( )) 3 = 0.c a b φ φ φ− + − −              (14) 
 

Substituting (4) into (14) gives; 

2 2

2 2 22

( ( )) ( ) ( )sin

( 1) ( ) 3 ( ) = 0.sin

c a b sin

sin

β β

ββ

λ µξ µ β λ µξ

µ λβ β µξ λ µξ−

− + +

− − −
 

Equating the exponents and the coefficients of each pair of the sine functions we find the following 
system of algebraic equations;  
 

( )

2 2

2 2

( 1) 0,

2 = 2 ,

( ( )) = 0,

1 3 = 0,

c a b

β

β β

λ µ β λ

λµ β β λ

− ≠

−

− + +

− − −

             (15) 

 
Solving the system (15) yields;  
 

1 1
= 2, = ( ) , = ( ( )),

2 2
a b c c a bβ µ λ− + − − +  

 
where c is a free parameter. Hence, for < 0c , the following periodic solutions;  
 

2
1 (16)

( )( )( ) = csc2 2
a b cc a bφ ξ ξ

 + −− +
 
  

           (16) 

 

where 
1

0 < ( ) <
2

a b cξ π+ − , and 

 

2
2 (17)

( )( )( ) = sec2 2
a b cc a bφ ξ ξ

 + −− +
 
  

           (17) 
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where 
1

| ( ) |<
2 2

a b c
π

ξ+ − . 

In view of these results and recall ' ( ) = ( )ϕ ξ φ ξ , integrating (16) and (17) with respect to ξ  and 
considering the zero constants for integration we obtain; 
 

1

2

( )
( ) = ( ) cot ,

2

( )
( ) = ( ) tan

2
.

a b c
a b c

a b c
a b c

ϕ ξ ξ
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+ −
+ −

+ −
− + −

 
 
 
 
 
 

           (18) 

 
Recall that ( , , ) = ( )v x y t ϕ ξ and ( , , ) = ( , , )xu x y t v x y t  we get;  
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           (19) 

 
Working with Maple interactively, we proved our solutions (19) is exact. However, for > 0c , the 
following periodic solutions; 
 

2
3

2
4

(18)

(19)

( )( )
( ) =

2 2

( )( )
( ) =

2 2

c a bc a b
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−
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In view of these results and recall ' ( ) = ( )ϕ ξ φ ξ , integrating (20) and (21) with respect to ξ  and 
considering the zero constants for integration we obtain; 
 

 

 

(20)   

(21)   
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Recall that ( , , ) = ( )v x y t ϕ ξ and ( , , ) = ( , , )xu x y t v x y t   
we get; 
 

2
3

2

2
4

2

( )( )
( ) = 1

2 2

( )( )
= ,

2 2

( )( )
( ) = 1

2 2

( )( )
= .

2 2

c a bc a b
u coth

c a bc a b
csch

c a bc a b
u tanh

c a bc a b
sech

ξ ξ

ξ

ξ ξ

ξ

− +− +
−

− +− +
−

− +− +
−

− +− +

  
  
   

 
 
 

  
  
   

 
 
 

           (23) 

 
Working with Maple interactively, we proved our solutions (23) is exact. The solutions are compared 
with the solutions obtained by Wazwaz [19], and it is found that the solutions obtained are exactly same 
as determined by Khani [20]. 
 
Conclusions 

In this paper, we obtained exact solutions for the generalized (2+1)-dimensional Ito equation by 
means of the sine-cosine method. This paper is shown that the sine-cosine method provides a very 
effective and powerful mathematical tool to seek more new exact solutions of NPDEs in mathematical 
physics. 
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