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Abstract 

The finite element method (FEM) is a numerical analysis technique for obtaining approximate 
solutions to a wide variety of engineering problems. A finite element model of a problem gives a piecewise 
approximation to the governing equations. The basic premise of the FEM is that a solution region can be 
analytically modeled or approximated by replacing it with an assemblage of discrete elements 
(discretization). Since these elements can be put together in a variety of ways, they can be used to represent 
exceedingly complex shapes. 
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Introduction 

Several approximate numerical analysis 
methods have evolved over the years. As an 
example of how a finite difference model and a 
finite element model might be used to represent a 
complex geometrical shape, consider the turbine 
blade cross section in Figure 1 and plate geometry 
in Figure 2. A uniform finite difference mesh 
would reasonably cover the blade (the solution 
region), but the boundaries must be approximated 
by a series of horizontal and vertical lines (or “stair 
steps”). On the other hand, the finite element model 
(using the simplest two-dimensional element-the 
triangle) gives a better approximation of the region. 
Also, a better approximation to the boundary shape 
results because the curved boundary is represented 
by straight lines of any inclination. This is not 
intended to suggest that finite element models are 
decidedly better than finite difference models for 
all problems. The only purpose of these examples is 
to demonstrate that the finite element method is 

particularly well suited for problems with complex 
geometries and numerical solutions to even very 
complicated stress problems can now be obtained 
routinely using finite element analysis (FEA). 

 
History of the method 

Although the label finite element method first 
appeared in 1960, when it was used by Clough [1] 
in a paper on plane elasticity problems, the ideas of 
finite element analysis date back much further. The 
first efforts to use piecewise continuous functions 
defined over triangular domains appear in the 
applied mathematics literature with the work of 
Courant [2] in 1943. Courant developed the idea of 
the minimization of a functional using linear 
approximation over sub-regions, with the values 
being specified at discrete points which in essence 
become the node points of a mesh of elements. 
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Figure 1 (a) Finite difference and (b) finite element discretizations of a turbine blade profile. 
 
 
 

                
(a)                                                   (b) 

 
Figure 2 (a) Plate geometry finite difference model and (b) Finite element model. 
 

 
 

 
 

Figure 3 Flowchart of model-based simulation (MBS) by computer. 
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The overall schematics of a model-based 
simulation (MBS) by computer are shown in a 
flowchart in Figure 3. For mechanical systems 
such as structures the Finite Element Method 
(FEM) is the most widely used discretization and 
solution technique. Historically the ancestor of the 

FEM is the MSA, as illustrated in Figure 4. On the 
left “human computer” means computations under 
direct human control, possibly with the help of 
analog devices (slide rule) or digital devices (desk 
calculator). The FEM configuration shown on the 
right was settled by the mid 1960s. 

 
 

 
 
Figure 4 Morphing of the pre-computer MSA (before 1950) into the present FEM. 
 
 

As the popularity of the finite element 
method began to grow in the engineering and 
physics communities, more applied mathematicians 
became interested in giving the method a firm 
mathematical foundation. As a result, a number of 
studies were aimed at estimating discretization 
error, rates of convergence, and stability for 
different types of finite element approximations. In 
the 1930s when a structural engineer encountered a 
truss problem, to solve for component stresses and 
deflections as well as the overall strength of the 
unit. He recognized that the truss was simply an 
assembly of rods whose force-deflection 
characteristics he knew well. Then he combined 
these individual characteristics according to the 
laws of equilibrium and solved the resulting system 
of equations for the unknown forces and deflections 
for the overall system. This procedure worked well 
whenever the structure had a finite number of 
interconnection points, but then a question arose: 
What can we do when we encounter an elastic 
continuum structure such as a plate that has an 
infinite number of interconnection points? For 
example, if a plate replaces the truss, the problem 
becomes considerably more difficult. Intuitively, 
Hrenikoff [3] reasoned that this difficulty could be 

overcome by assuming the continuum structure to 
be divided into elements or structural sections 
(beams) interconnected at only a finite number of 
node points. Under this assumption the problem 
reduces to that of a conventional structure, which 
could be handled by the old methods. Attempts to 
apply Hrenikoff’s “framework method” were 
successful, and thus the seed to finite element 
techniques began to germinate in the engineering 
community. 

Shortly after Hrenikoff, McHenry [4] and 
Newmark [5] offered further development of these 
discretization ideas, while Kron [6,7] studied 
topological properties of discrete systems. There 
followed a ten-year spell of inactivity, which was 
broken in 1954 when Argyris and his collaborators 
[8-12] began to publish a series of papers 
extensively covering linear structural analysis and 
efficient solution techniques well suited to 
automatic digital computation. The actual solution 
of plane stress problems by means of triangular 
elements whose properties were determined from 
the equations of elasticity theory was first given in 
1956 paper of Turner, Clough, Martin, and Topp 
[13]. These investigators were the first to introduce 
what is now known as the direct stiffness method 
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for determining finite element properties. Their 
studies, along with the advent of the digital 
computer at that time, opened the way to the 
solution of complex plane elasticity problems. 
After further treatment of the plane elasticity 

problem by Clough [1] in 1960, engineers began to 
recognize the importance of the finite element 
method. The time line of developments in the field 
of finite element method is given in Table 1. 

 
 
Table 1 A time line of developments in finite elements. 

 
Year Analysis technology 

1930 Collar and Duncan formulated discrete aeroelasticity in matrix form 
1941 Framework method 
1943 Courant studies of St. Venant torsion problem 

1954 & 1955 Argyris publishes efficient solution techniques in classic paper solving plane stress 
1956 Argyris presented a formal unification of Force and Displacement Methods using dual energy theorems  
1959 Greenstadt’s discretization approach 
1959 Turner proposed the direct stiffness method 
1960 Phrase finite element coined 
1964 First commercial offering of finite element software 

 

In 1965 the finite element method received an 
even broader interpretation when Zienkiewicz and 
Cheung [14] reported that it was applicable to all 
field problems that can be cast into variational 
form. During the late 1960s and early 1970s (while 
mathematicians were working on establishing 
errors, bounds, and convergence criteria for finite 
element approximations) engineers and other 
practitioners of the finite element method were also 
studying similar concepts for various problems in 
the area of solid mechanics. In the years since 1960 
the finite element method has received widespread 
acceptance in engineering. Thousands of papers, 
hundreds of conferences, and many books have 
appeared on the subject. 

 
How the finite element method works 

The finite element discretization procedure 
reduces the problem by dividing a continuum to be 
a body of matter (solid, liquid, or gas) or simply a 
region of space into elements and by expressing the 
unknown field variable in terms of assumed 
approximating functions within each element. The 
approximating functions (sometimes called 
interpolation functions) are defined in terms of the 
values of the field variables at specified points 
called nodes or nodal points. Nodes usually lie on 
the element boundaries where adjacent elements 

are connected. In addition to boundary nodes, an 
element may also have a few interior nodes. The 
nodal values of the field variable and the 
interpolation functions for the elements completely 
define the behaviour of the field variable within the 
elements. 

For the finite element representation of a 
problem the nodal values of the field variable 
become the unknowns. Once these unknowns are 
found, the interpolation functions define the field 
variable throughout the assemblage of elements. 
Clearly, the nature of the solution and the degree of 
approximation depend not only on the size and 
number of the elements used but also on the 
interpolation functions selected. As one would 
expect, we cannot choose functions arbitrarily, 
because certain compatibility conditions should be 
satisfied. Often functions are chosen so that the 
field variable or its derivatives are continuous 
across adjoining element boundaries. 

An important feature of the finite element 
method that sets it apart from other numerical 
methods is the ability to formulate solutions for 
individual elements before putting them together to 
represent the entire problem. This means if we are 
treating a problem in stress analysis, we find the 
force–displacement or stiffness characteristics of 
each individual element and then assemble the 
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elements to find the stiffness of the whole structure. 
In essence, a complex problem reduces to a series 
of greatly simplified problems. Another advantage 
of the finite element method is the variety of ways 
in which one can formulate the properties of 
individual elements. There are basically three 
different approaches. 

The first approach to obtaining element 
properties is called the direct approach because its 
origin is traceable to the direct stiffness method of 
structural analysis. Although the direct approach 
can be used only for relatively simple problems, it 
is the easiest to understand when meeting the finite 
element method for the first time. The direct 
approach suggests the need for matrix algebra in 
dealing with the finite element equations. Element 
properties obtained by the direct approach can also 
be determined by the variational approach. The 
variational approach relies on the calculus of 
variations. For problems in solid mechanics the 
functional turns out to be the potential energy, the 
complementary energy, or some variant of these, 
such as the Reissner variational principle. 
Knowledge of the variational approach is necessary 
to work beyond the introductory level and to extend 
the finite element method to a wide variety of 
engineering problems. Whereas the direct approach 
can be used to formulate element properties for 
only the simplest element shapes, the variational 
approach can be employed for both simple and 
sophisticated element shapes. 

A third and even more versatile approach to 
deriving element properties has its basis in 
mathematics and is known as the weighted 
residuals approach. The weighted residuals 
approach begins with the governing equations of 
the problem and proceeds without relying on a 
variational statement. This approach is 
advantageous because it thereby becomes possible 
to extend the finite element method to problems 
where no functional is available. The method of 
weighted residuals is widely used to derive element 
properties for nonstructural applications such as 
heat transfer and fluid mechanics. 

Regardless of the approach used to find the 
element properties, the solution of a continuum 
problem by the finite element method always 
follows an orderly step-by-step process. To 
summarize in general terms how the finite element 
method works these are the steps. 

 
 

Discretize the continuum 
The first step is to divide the continuum or 

solution region into elements. In the example of 
Figure 1 the turbine blade has been divided into 
triangular elements that might be used to find the 
temperature distribution or stress distribution in the 
blade. A variety of element shapes may be used, 
and different element shapes may be employed in 
the same solution region. Indeed, when analyzing 
an elastic structure that has different types of 
components such as plates and beams, it is not only 
desirable but also necessary to use different 
elements in the same solution. Although the 
number and type of elements in a given problem 
are matters of engineering judgment, the analyst 
can rely on the experience of others for guidelines. 

 
Select interpolation functions 

The next step is to assign nodes to each 
element and then choose the interpolation function 
to represent the variation of the field variable over 
the element. The field variable may be a scalar, a 
vector, or a higher-order tensor. Often, polynomials 
are selected as interpolation functions for the field 
variable because they are easy to integrate and 
differentiate. The degree of the polynomial chosen 
depends on the number of nodes assigned to the 
element, the nature and number of unknowns at 
each node, and certain continuity requirements 
imposed at the nodes and along the element 
boundaries. The magnitude of the field variable as 
well as the magnitude of its derivatives may be the 
unknowns at the nodes. 

 
Find the element properties 

Once the finite element model has been 
established (that is, once the elements and their 
interpolation functions have been selected), we are 
ready to determine the matrix equations expressing 
the properties of the individual elements. For this 
task we may use one of the three approaches just 
mentioned: the direct approach, the variational 
approach, or the weighted residuals approach. 

 
Assemble the element properties to obtain the 
system equations 

To find the properties of the overall system 
modelled by the network of elements we must 
“assemble” all the element properties. In other 
words, we combine the matrix equations expressing 
the behavior of the elements and form the matrix 
equations expressing the behavior of the entire 
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system. The matrix equations for the system have 
the same form as the equations for an individual 
element except that they contain many more terms 
because they include all nodes. The basis for the 
assembly procedure stems from the fact that at a 
node, where elements are interconnected, the value 
of the field variable is the same for each element 
sharing that node. A unique feature of the finite 
element method is that the system equations are 
generated by assembly of the individual element 
equations. In contrast, in the finite difference 
method the system equations are generated by 
writing nodal equations. 

 
Impose the boundary conditions 

Before the system equations are ready for 
solution they must be modified to account for the 
boundary conditions of the problem. At this stage 
we impose known nodal values of the dependent 
variables or nodal loads. 

 
Solve the system equations 

The assembly process gives a set of 
simultaneous equations that we solve to obtain the 
unknown nodal values of the problem. If the 
problem describes steady or equilibrium behavior, 
then we must solve a set of linear or nonlinear 
algebraic equations. If the problem is unsteady, the 
nodal unknowns are a function of time, and we 
must solve a set of linear or nonlinear ordinary 
differential equations. 

 
Make additional computations if desired 

Many times we use the solution of the system 
equations to calculate other important parameters. 
For example, in a structural problem the nodal 
unknowns are displacement components. From 
these displacements we calculate element strains 
and stresses. Similarly, in a heat-conduction 
problem the nodal unknowns are temperatures, and 
from these we calculate element heat fluxes. 

 
Range of applications 

Applications of the finite element method 
divide into three categories, depending on the 
nature of the problem to be solved. In the first 
category are the problems known as equilibrium 
problems or time-independent problems. The 
majority of applications of the finite element 
method fall into this category, for the solution of 
equilibrium problems in the solid mechanics area, 

we need to find the displacement distribution and 
the stress distribution for a given mechanical or 
thermal loading. Similarly, for the solution of 
equilibrium problems in fluid mechanics, we need 
to find pressure, velocity, temperature, and density 
distributions under steady-state conditions. 

In the second category are the so-called eigen 
value problems of solid and fluid mechanics. These 
are steady-state problems whose solution often 
requires the determination of natural frequencies 
and modes of vibration of solids and fluids. 
Examples of eigen value problems involving both 
solid and fluid mechanics appear in civil 
engineering when the interaction of lakes and dams 
is considered and in aerospace engineering when 
the sloshing of liquid fuels in flexible tanks is 
involved. Another class of eigen value problems 
includes the stability of structures and the stability 
of laminar flows. 

The third category is the multitude of time-
dependent or propagation problems of continuum 
mechanics. This category is composed of the 
problems that result when the time dimension is 
added to the problems of the first two categories. 
Just about every branch of engineering is a 
potential user of the finite element method. But the 
mere fact that this method can be used to solve a 
particular problem does not mean that it is the most 
practical solution technique. Often several are 
attractive but civil, mechanical, and aerospace 
engineers are the most frequent users of the 
method. In addition to structural analysis other 
areas of applications include heat transfer, fluid 
mechanics, electromagnetism, biomechanics, 
geomechanics, and acoustics. The method finds 
acceptance in multidisciplinary problems where 
there is a coupling between two or more of the 
disciplines. Examples include thermal structures 
where there is a natural coupling between heat 
transfer and displacements, as well as aeroelasticity 
where there is a strong coupling between external 
flow and the distortion of the wing. Techniques are 
available to solve a given problem. Each technique 
has its relative merits, and no technique enjoys the 
lofty distinction of being “the best” for all 
problems, the range of possible applications of the 
finite element method extends to all engineering 
disciplines. 
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Commercial finite element software 

The first commercial finite element software 
made its appearance in 1964. The Control Data 
Corporation sold it in a time-sharing environment. 
No pre-processors (mesh generators) were 
available, so engineers had to prepare data element 
by element and node by node. A keypunched IBM 
(Hollerith) card represented each element and each 
node. Batch-mode line plots were used to check 
geometry and to post-process results. Only linear 
problems could be addressed. Nevertheless it 
represented a breakthrough in the complexity of the 
problem that could be handled in a practical time 
frame. Later, finite element software could be 
purchased or leased to run on corporate computers. 
Typically the corporate computer had been 
purchased to process financial data, so that 
computer availability to the engineer was restricted, 
perhaps to nights and weekends. The introduction 
of workstations circa 1980 brought several 
breakthrough advantages. Interactive graphics were 
practical and availability of computer power to 
solve problems on a dedicated basis was achieved. 
Finally, the introduction of personal computers 
(PCs) powerful enough to run finite element 

software provides extremely cost effective problem 
solving. 

Today we have hundreds of commercial 
software packages to choose from. A small number 
of these dominate the market. It is difficult to make 
comparisons purely on a finite element basis, 
because the software houses are often diversified. 
Data from Daratech suggest that the companies 
listed in Table 2 are dominant providers of general-
purpose finite element software. Choice among 
these, or other providers, involves a complex set of 
criteria, usually including: analysis versatility, ease 
of use, efficiency, cost, technical support, training, 
and even the labor pool locally available to use 
particular software. 

In contrast to the early days, we can now use 
computer-aided design (CAD) software or solid 
modelers to generate complex geometries, at either 
the component or assembly level. We can (with 
some restrictions) automatically generate elements 
and nodes, by merely indicating the desired nodal 
density. Software is available that works in 
conjunction with finite elements to generate 
structures of optimum topology, shape, or size. 
Nonlinear analyses including contact, large 
deflection, and nonlinear material behaviour are 
routinely addressed. 

 
 
Table 2 Leading commercial finite element software companies. 

 
Company name Product name Web site 
Hibbitt, Karlsson & Sorensen ABAQUS http://www.hks.com 
Ansys, Incorporated ANSYS http://www.ansys.com 
Structural Data Research Corp. SDRC-Ideas http://www.sdrc.com 
Parametric Technology, Inc. RASNA http://www.ptc.com 
MSC Software Corp. MSC/NASTRAN http://www.mscsoftware.com  
 
 
Conclusion 

Our brief look at the history of the finite 
element method shows us that its early 
development was sporadic. The applied 
mathematicians, physicists, and engineers all 
dabbled with finite element concepts, but they did 
not recognize at first the diversity and the multitude 
of potential applications. After 1960 this situation 
changed and the tempo of development increased. 
By 1972 the finite element method had become the 

most active field of interest in the numerical 
solution of continuum problems. It remains the 
dominant method today. Part of its strength is that 
it can be used in conjunction with other methods. 
Software components such as solvers can be used 
in a modular fashion, so that improvements in 
diverse areas can be rapidly assimilated. Certainly, 
improved iterative solvers, mesh less formulations, 
better error indicators, and special-purpose 
elements are on the list of things to come. Although 
the finite element method can be used to solve a 

http://www.hks.com/
http://www.ansys.com/
http://www.sdrc.com/
http://www.ptc.com/
http://www.mscsoftware.com/
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very large number of complex problems, there are 
still some practical engineering problems that are 
difficult to address because we lack an adequate 
theory of failure, or because we lack appropriate 
material data. 

The mechanical and thermal properties of 
many nonmetallic materials are difficult to acquire, 
especially over a range of temperatures. Fatigue 
data is often lacking. Fatigue failure theory often 
lags our ability to calculate changing complex 
stress states. Data on friction is often difficult to 
obtain. Calculations based on the assumption of 
Coulomb friction are often unrealistic. There is a 
general paucity of thermal data, especially 
regarding absorbvity and emissivity needed for 
radiation calculations. The World Wide Web 
should offer a means of placing material properties 
into accessible databases. From a practitioner’s 
viewpoint, the finite element method, like any other 
numerical analysis techniques, can always be made 
more efficient and easier to use. As the method is 
applied to larger and more complex problems, it 
becomes increasingly important that the solution 
process remains economical. 

The rapid growth in engineering usage of 
computer technology will undoubtedly continue to 
have a significant effect on the advancement of the 
finite element method. Improved efficiency 
achieved by computer technology advancements 
such as parallel processing will surely occur. Since 
the mid 1970s interactive finite element programs 
on small but powerful personal computers and 
workstations have played a major role in the 
remarkable growth of computer-aided design. With 
continuing economic pressures to improve 
engineering productivity, this decade will see an 
accelerated role of the finite element method in the 
design process. This methodology is still exciting 
and an important part of an engineer’s tool kit. 
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