
  
http://wjst.wu.ac.th      Engineering and Physical Sciences 

Walailak J Sci & Tech 2014; 11(4): 325-340. 
 

New Results for Boundary Layer Flow and Convection Heat Transfer 

Over a Flat Plate by Using the Homotopy Perturbation Method 
 

Mehran KHAKI
*
, Mehdi KHAZAYI NEJAD and Davood DOMAIRRY GANJI 

 
Department of Mechanical Engineering, Islamic Azad University, Sari Branch, Sari, Iran 

 

(
*
Corresponding author’s e-mail: mehran.khaki@gmail.com) 

 

Received: 3 October 2012,   Revised: 28 December 2012,   Accepted: xx December 2013    

Abstract 

This work presents a boundary-layer analysis of an incompressible viscous steady flow and forced 

convection over a horizontal flat plate. The solution for velocity and temperature are calculated by 

applying the Homotopy perturbation method (HPM). A special technique is attempted by which one is 

able to obtain solutions that are close to the exact solution of the equation. The obtained results are 

compared to the exact solution and another results provided by previous works so that the high accuracy 

of the obtained results is clear. Also, the results reveal that this method is effective, simple, and can be 

applied for other nonlinear problems in different fields of science and engineering, especially some fluid 

mechanics and heat transfer equations. 
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Introduction 

There are few phenomena in different fields of science which occur linearly. Most problems and 

scientific phenomena, such as heat transfer, are inherently nonlinear. Except for a limited number of these 

problems, most of them do not have precise analytical solutions; therefore, these nonlinear equations 

should be solved using approximate analytical solutions. Analytical methods have always been of interest 

to scientists. Perturbation method is one of the most well-known methods to solve nonlinear problems; it 

is based on the existence of small or large parameters, the so-called perturbation quantity [1,2]. Since 

there are some limits with the common perturbation method, and because the basis of the common 

perturbation method is the existence of a small parameter, developing the method for different uses is 

difficult. Therefore, many different new methods have recently introduced to eliminate the small 

parameter, such as the Exp-function method [3], the artificial small parameter method [4], Adomian’s 

decomposition method [5], the Variational iteration method (VIM) [6], and the Homotopy analysis 

method (HAM) [7]. One of the strong analytical methods for eliminating small parameters is applying 

Homotopy perturbation method (HPM) [8-11]. The HPM depends on coupling the classic perturbation 

method and the Homotopy method in topology. The basic idea of the HPM was proposed by He [12-14] 

and was successfully applied to various engineering problems. HPM is the most effective and convenient 

method for both linear and nonlinear equations. This method has eliminated limitations of the traditional 

perturbation techniques. In this paper, the mathematical model of this method is introduced, and its 

application in boundary-layer is studied. Also, the solution for velocity and temperature are calculated by 

applying the HPM. In addition, the Howarth number is calculated. The Howarth number is an important 

number in fluid mechanics. It is used for calculating drag coefficient. Howarth [15] obtained an accurate 

numerical solution for the Blasius equation in which (0) 0.332057f   . This value is acceptable for 

comparison because it has high accuracy. After that, several attempts are made for calculating this 

number from other methods. He [16] in 1998 solved this equation by applying Variational iteration 

method, and found 0.5436  by a first approximation. This value has a 63.7 % relative error with 

respect to Howarth’s calculation. In 2007, Wazwaz [17] used the same method, and found  = 0.37329. 
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This value has 21.42 % relative error with respect to Howarth. In 2003 and 2004, by using the Homotopy 

method, He [18,19] obtained a first iteration step leading to 0.3095  with a 6.8 % accuracy (relative 

error), and a second iteration step which yielded 0.3296  with a 0.7 % accuracy of the initial slope. In 

2007 Ganji [20] found 0.348505  by the HPM with a three term approximation with a 4.9 % relative 

error. In 2009 Fathizadeh and Rashidi [21] found 0.348  by the HPM with a 4.9 % relative error. In 

this paper, the problem is solved by using a special technique HPM, and the results compared with 

previous works. The approximations of f ˝(0) obtained by this paper in comparison with previous HPM 

results provide the higher accuracy. 

 

Basic idea of Homotopy perturbation method  

To explain the basic ideas of this method, consider the following equation; 

 

    0,A u f r r   , (1) 

 

with the boundary condition of; 

 

, 0,
u

B u r
n


  



 
 
 

. (2) 

 

where A  is a general differential operator, B  a boundary operator, ( )f r a known analytical function and 

  is the boundary of the domain  . A can be divided into two parts, which are L  and N , where L  is 

linear and N  is nonlinear Eq. (1) can therefore be rewritten as follows; 

 

      0,L u N u f r r    . (3) 

 

Homotopy perturbation structure is shown as follows; 

 

       

   

, 1 0

0.

 



  

  

  

  

H p p L L u

p A f r

 (4) 

 

where 

   , : 0,1r p R   . (5) 

 

In Eq. (4),  0 ,1p  is an embedding parameter and 0u  is the first approximation that satisfies the 

boundary condition. It can be assumed the solution of Eq. (4) can be written as a power series in p , as 

follows; 

 

0 1 2
0

1 2 n

i

i
p p p

i
        


, (6) 

 

and the best approximation for the solution is; 

 

0 1 2
lim 1u p          (7) 
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The above convergence is discussed in [22]. 

 

Governing equations 

Boundary layer flow over a flat plate is governed by the continuity and the Navier-Stokes equations. 

Under the boundary layer assumptions, for a 2-dimensional, steady state, incompressible flow with a zero 

pressure gradient over a flat plate, the governing equations are simplified to; 

 
2

2

u u u
u v

x y y


  
 

  
 (8) 

0
u v

x y

 
 

 

 (9) 

                                                                                                                                                                                                                            

Subjected to boundary conditions; 

0 0, 0y u v     (10) 

u = Uy      (11) 

 

Under boundary layer assumptions, the energy transport equation is also simplified. 

 
2

2

T T T
u v

x y y


  
 

  
 (12) 

 

The thermal boundary conditions for Eq. (12) are; 

 

y = 0  T = T ,
w

  (13) 

 = Ty T    . (14) 

 

Here u  and v  are the velocity components along the flow direction (x-direction) and normal to the flow 

direction (y-direction),   is the kinematic viscosity,   is the thermal diffusivity, T is the temperature 

across the thermal boundary layer, T
w

is the constant temperature of the wall, T  is the constant 

temperature of the ambient fluid and U  is the constant free stream velocity. By applying a 

dimensionless variable ( ) defined as; 

 

0.5Re
y

x
   

(15) 

 

Re is the Reynolds number and defined as; 

U
(Re = )

x




  

 

The governing Eqs. (8) and (9) can be reduced to the well-known Blasius equation where f is a function 

of variable ( ) ; 
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1
''' '' 0

2

f ff  , (16) 

with boundary conditions; 

 

0 0, ' 0f f     , (17) 

' 1f     . (18) 

                                                                                                                                                                                                                                                                                                                                                                                 

where f   is related to the u velocity by; 

'
u

f
u





, (19) 

 

and the “prime” denotes the derivatives with respect to . 

Defining the non-dimensional temperature ( )  and the Prandtl number, Pr, as follows; 

( ) , Pr
T Tw

T Tw


 




 



. (20) 

 

Upon using these variables, the energy equation can be written in non-dimensional form as; 

Pr
0.

2

'' '  f  (21) 

The transformed thermal boundary conditions for the energy Eq. (21) are; 

 
0 1,     (22) 

0     . (23) 

                                                                                                                                                                                                                                                                

HPM solution for flow over a flat plate 

For a sufficiently large number, M, the conditions (18) and (23) can be replaced by the conditions; 

 

'( ) 1 , ( ) 0f M M  . (24) 

Under the transformation z
M


 , equations of momentum and energy are transformed to; 

2

'''( ) ( ) ''( ) 0,

2

2

'' ( ) Pr ( ) ( ) 0 ,

2

 

 

M
g z g z g z

M
h z g z h z

 (25) 

  

Where
( )

( )
f

g z
M


 ,

( )
( )h z

M

 
 and the “prime” denotes the derivatives with respect to [0,1]z  .The 

boundary conditions (17), (18), (22) and (23) are transformed to; 

0 0 , 0z g g    , (26) 

1 1z g   , (27) 
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1
0z h

M

  

, 

(28) 

1 0z h   . (29) 

 

In this section, the HPM is applied to nonlinear ordinary differential Eqs.(25). According to the 

HPM, a Homotopy of Eqs. (25) can be constructed as follows; 

0

0

2

(1 )( ''' ' ' ') ( '' ' ' ') 0 ,
2

2

(1 )( '' ' ') ( '' Pr ) 0 .
2

    

    

M
p v g p v v v

M
p u h p u v u

 (30) 

 

  and u  are considered as follows; 
6

2 3

0 1 2 3
0

6
2 3

0 1 2 3
0

... ,

... .

          


     


i
p p p pii

i
u u pu p u p u u pii

 (31) 

 

Assuming 
0 0

''' '' 0g h  and substituting , u  from Eq. (31) into Eq. (30) and some simplification and 

rearranging based on powers of p-terms; 

0

0

0 0 0

0

0 0

: 0,

(0) 0 , (0) 0, (1) 1,

0,

1
(0) , (1) 0,

 

   

 

 

P v

v v v

u

u u
M

 (32) 

 

1

1 0 0

1 1 1

0 01

1 1

2

: ( ) 0,
2

(0) 0, (0) 0, (1) 0,

2

Pr ( ) 0,
2

(0) 0, (1) 0,

  

   

  

 

M
P v v v

v v v

M
u v u

u u

 (33) 
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(38) 

 

Solving Eqs. (32) - (38) with boundary conditions; 

 

0

1 2
( )

2
v z z , 

(39) 

1

1 12 5 2 2
( )

240 96
v z M z M z


  , 

(40) 

2

11 14 8 4 5
( )

161280 5760

13 4 2
,

80640

 



v z M z M z

M z

 (41) 

3

1 25 11 296 11 8 5
( ) ( )

107520 198 24 60

1 6 2
,

1548288


  



v z M z z z

M z

 (42) 

4

1 9299 1258 14 11( )
1092 3425779200

502497381 341 8 28 5 ,
112 12 929901772800


 




  



v z M z z

z z M z

 (43) 

5

1 127237910 17( )
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6 24 6012
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1
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M M z M
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(49) 

                  

According to Eq. (31) and the assumption p = 1; 

 
lim ,

1 0 1 2

lim .
1 0 1 2

       


    


g
p

h u u u u
p

 
(50) 

                                                                                                                                                                      

With choice M = 5, Pr = 1; 
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Now, under the transformation
( )

( )
5

f
g z


 , 

( )
( )

5
h z

 
 , the above equations are transformed to; 
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6 8
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2 5
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233810

15 19
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5 4

0

5

3 10

   

 

 



 


 

 
 






 (54) 

 

 

Results and discussion 

In this paper, the HPM, such as analytical technique, is employed for a nonlinear Blasius equation. 

Figures 1 - 3 show the profiles of f (η), f ´(η) and ( )   obtained by the HPM for different values of 

in comparison with the numerical solutions. Good agreement can be seen between the present HPM and 

the numerical results. So, the solutions obtained with the present HPM are more accurate than [20,21]. 

Numerical comparison between the present HPM with other different approximate solutions is tabulated 

in Tables 1 - 3. It is that present HPM which is close to the numerical results in comparison with [20,21]. 

The approximations of the f ˝(0) obtained by HPM and their relative error with respect to the Howarth 

number [15] results are listed in Table 4. Figures 4 - 6 show the absolute error of f(η), f ´(η) and ( )   

related to their numerical solution at different values of η. However, the present results are more 

acceptable than the results obtained by [20,21]. 
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Figure 1 The comparison of answers obtained by HPM and numerical solution for f (η). 

 

 

 
Figure 2 The comparison of answers obtained by HPM and numerical solution for f ´(η). 
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Figure 3 The comparison of answers obtained by HPM and numerical solution for ( ) 

.
 

 

 

 
Figure 4 The comparison of the absolute errors for f (η) with respect to the Howarth number [15] results. 
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Figure 5 The comparison of the absolute errors for f ´(η) with respect to the Howarth number [15] results. 

 

 

 
Figure 6 The comparison of the absolute errors for ( )  with respect to the numerical solution. 
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Table 1 Obtained results, in comparison with HPM [20,21] and numerical method (Howarth number 

[15]) for f(η). 

 

η 
Howarth 

[15] 

Hpm 

[20] 

Hpm 

[21] 

Present          

Hpm 

Error of 

Hpm [20] 

Error of 

Hpm [21] 

Error of 

present 

0 0 0 0 0 0 0 0 

0.2 0.0066412 0.0069699 0.0077932 0.0066484 0.0003287 0.0011520 0.0000072 

0.4 0.0266762 0.0278758 0.0293860 0.0265894 0.0011996 0.0027098 0.0000868 

0.6 0.0597215 0.0626959 0.0647567 0.0598003 0.0029744 0.0050352 0.0000788 

0.8 0.1061082 0.1113738 0.1138493 0.1062224 0.0052656 0.0077411 0.0001142 

1.0 0.1655717 0.1738016 0.1765564 0.1657432 0.0082299 0.0109847 0.0001715 

1.2 0.2379487 0.2498038 0.2527029 0.2381818 0.0118551 0.0147542 0.0002331 

1.4 0.3229815 0.3391217 0.3420312 0.3232729 0.0161402 0.0190497 0.0002914 

1.6 0.4203207 0.4414008 0.4441877 0.4206587 0.0210801 0.0238670 0.0003380 

1.8 0.5295180 0.5561797 0.5587117 0.5298809 0.0266617 0.0291937 0.0003629 

2.0 0.6500243 0.6828833 0.6850282 0.6503809 0.0328590 0.0350039 0.0003566 

2.2 0.7811933 0.8208206 0.8224437 0.7815042 0.0396273 0.0412504 0.0003109 

2.4 0.9222901 0.9691873 0.9701481 0.9225139 0.0468972 0.0478580 0.0002238 

2.6 1.0725059 1.1270772 1.1272213 1.0726070 0.0545713 0.0547154 0.0001011 

2.8 1.2309773 1.2935005 1.2926472 1.2309370 0.0625232 0.0616699 0.0000403 

3.0 1.3968082 1.4674133 1.4653338 1.3966410 0.0706051 0.0685256 0.0001672 

3.2 1.5690949 1.6477584 1.6441417 1.5688630 0.0786635 0.0750468 0.0002319 

3.4 1.7469501 1.8335195 1.8279185 1.7467840 0.0865694 0.0809684 0.0001661 

3.6 1.9295251 2.0237911 2.0155409 1.9296270 0.0942660 0.0860158 0.0001019 

3.8 2.1160298 2.2178650 2.2059613 2.1166770 0.1018352 0.0899315 0.0006472 

4.0 2.3057464 2.4153361 2.3982576 2.3072780 0.1095897 0.0925112 0.0015316 

4.2 2.4980396 2.6162294 2.5916832 2.5008250 0.1181898 0.0936436 0.0027854 

4.4 2.6923609 2.8211494 2.7857122 2.6967390 0.1287885 0.0933513 0.0043781 

4.6 2.8882480 3.0314545 2.9800744 2.8944690 0.1432065 0.0918264 0.0062210 

4.8 3.0853206 3.2494582 3.1747721 3.0934800 0.1641376 0.0894515 0.0081594 

5.0 3.2832736 3.4786579 3.3700690 3.2932580 0.1953843 0.0867954 0.0099844 
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Table 2 Obtained results, in comparison with HPM [20,21] and numerical method (Howarth number 

[15]) for f´ (η). 

 

η 
Howarth 

[15] 

Hpm 

[20] 

Hpm 

[21] 

Present          

hpm 

Error of 

HPM [20] 

Error of 

HPM [21] 

Error of 

present 

0 0 0 0 0 0 0 0 

0.2 0.0664077 0.0696975 0.0703281 0.0664818 0.0032898 0.0039204 0.0000741 

0.4 0.1327641 0.1393444 0.1406060 0.1329106 0.0065803 0.0078419 0.0001465 

0.6 0.1989372 0.2088105 0.2107046 0.1991507 0.0098733 0.0117674 0.0002135 

0.8 0.2647094 0.2778800 0.2804100 0.2649775 0.0131706 0.0157006 0.0002681 

1.0 0.3297800 0.3462538 0.3494253 0.3300826 0.0164738 0.0196453 0.0003026 

1.2 0.3937761 0.4135539 0.4173749 0.3940826 0.0197778 0.0235988 0.0003065 

1.4 0.4562617 0.4793309 0.4838112 0.4565324 0.0230692 0.0275495 0.0002707 

1.6 0.5167567 0.5430747 0.5482248 0.5169439 0.0263180 0.0314681 0.0001872 

1.8 0.5747581 0.6042289 0.6100571 0.5748116 0.0294708 0.0352990 0.0000535 

2.0 0.6297657 0.6622097 0.6687189 0.6296405 0.0324440 0.0389532 0.0001252 

2.2 0.6813103 0.7164291 0.7236108 0.6809787 0.0351188 0.0423005 0.0003316 

2.4 0.7289819 0.7663226 0.7741498 0.7284483 0.0373407 0.0451679 0.0005336 

2.6 0.7724550 0.8113803 0.8197988 0.7717748 0.0389253 0.0473438 0.0006802 

2.8 0.8115096 0.8511819 0.8600992 0.8108053 0.0396723 0.0485896 0.0007043 

3.0 0.8460444 0.8854328 0.8947068 0.8455199 0.0393884 0.0486624 0.0005245 

3.2 0.8760814 0.9140010 0.9234279 0.8760235 0.0379196 0.0473465 0.0000579 

3.4 0.9017612 0.9369507 0.9462547 0.9025271 0.0351895 0.0444935 0.0007659 

3.6 0.9233296 0.9545718 0.9633968 0.9253044 0.0312422 0.0400672 0.0019748 

3.8 0.9411181 0.9673977 0.9753066 0.9446574 0.0262796 0.0341885 0.0035393 

4.0 0.9555182 0.9762106 0.9826929 0.9608570 0.0206924 0.0271747 0.0053388 

4.2 0.9669570 0.9820237 0.9865191 0.9741165 0.0150667 0.0195621 0.0071595 

4.4 0.9758708 0.9860369 0.9879789 0.9845695 0.0101661 0.0121081 0.0086987 

4.6 0.9826835 0.9895542 0.9884434 0.9922967 0.0068707 0.0057599 0.0096132 

4.8 0.9877895 0.9938540 0.9893700 0.9973820 0.0060645 0.0015805 0.0095925 

5.0 0.9915419 0.9999999 0.9921642 0.9999982 0.0084580 0.0006223 0.0084563 
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Table 3 Obtained results, in comparison with HPM [20,21] and numerical method for  (η). 

 

η Numerical Hpm [20] Hpm [21] 
Present          

HPM 

Error of 

HPM [20] 

Error of 

HPM [21] 

Error of 

present 

0 1 1 1 1 0 0 0 

0.2 0.9335922 0.9303024 0.9298261 0.9335182 0.0032898 0.0037661 0.0000740 

0.4 0.8672358 0.8606555 0.8597026 0.8670894 0.0065803 0.0075332 0.0001464 

0.6 0.8010627 0.7911894 0.7897585 0.8008493 0.0098733 0.0113042 0.0002134 

0.8 0.7352908 0.7221199 0.7202081 0.7350225 0.0131709 0.0150827 0.0002683 

1.0 0.6702199 0.6537461 0.6513486 0.6699174 0.0164738 0.0188713 0.0003025 

1.2 0.6062238 0.5864460 0.5835559 0.6059174 0.0197778 0.0226679 0.0003064 

1.4 0.5437381 0.5206690 0.5172777 0.5434676 0.0230691 0.0264604 0.0002705 

1.6 0.4832432 0.4569252 0.4530234 0.4830561 0.0263180 0.0302198 0.0001871 

1.8 0.4252418 0.3957710 0.3913508 0.4251884 0.0294708 0.0338910 0.0000534 

2.0 0.3702342 0.3377909 0.3328480 0.3703595 0.0324433 0.0373862 0.0001253 

2.2 0.3186896 0.2835708 0.2781117 0.3190213 0.0351188 0.0405779 0.0003317 

2.4 0.2710180 0.2336773 0.2277213 0.2715516 0.0373407 0.0432967 0.0005336 

2.6 0.2275449 0.1886196 0.1822082 0.2282253 0.0389253 0.0453367 0.0006804 

2.8 0.1884903 0.1488180 0.1420233 0.1891947 0.0396723 0.0464670 0.0007044 

3.0 0.1539554 0.1145671 0.1075010 0.1544800 0.0393883 0.0464544 0.0005246 

3.2 0.1239183 0.0859989 0.0788228 0.1239763 0.0379194 0.0450955 0.0000580 

3.4 0.0982386 0.0630492 0.0559820 0.0974720 0.0351894 0.0422566 0.0007666 

3.6 0.0766702 0.0454281 0.0387528 0.0746950 0.0312421 0.0379174 0.0019752 

3.8 0.0588819 0.0326022 0.0266662 0.0553421 0.0262797 0.0322157 0.0035398 

4.0 0.0430429 0.0237893 0.0189977 0.0391421 0.0192536 0.0240452 0.0039008 

4.2 0.0314817 1.80E-02 1.48E-02 2.59E-02 0.0135055 0.0167097 0.0055981 

4.4 0.0241292 0.0139630 0.0127911 0.0154301 0.0101662 0.0113381 0.0086991 

4.6 0.0173165 0.0104457 0.0116918 0.0077040 0.0068708 0.0056247 0.0096125 

4.8 0.0122105 0.0061459 0.0100447 0.0026180 0.0060646 0.0021658 0.0095925 

5.0 0.0084581 3.36E-10 6.50E-03 2.00E-06 0.0084581 0.0019576 0.0084561 

 

 

Table 4 Obtained results, in comparison with HPM [18-21] and numerical method for f ˝ (0). (Howarth 

number [15]: f ˝(0) = 0.332057). 

 

Method f ˝(0) Relative error 

HPM [Present method] 0.332428 0.1 % 

HPM [20] 0.348505 4.9 % 

HPM [21] 0.348 4.8 % 

HPM [18] 0.3095 6.8 % 

HAM [19] 0.3296 0.7 % 
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Conclusions 

In this paper, the HPM has been successfully applied for nonlinear equations of momentum and 

energy. Since a special technique was used, the obtained results have excellent accuracy for   5. It is 

also shown that, the present work result for these values of  provide more accuracy than [20,21] and are 

in acceptable agreement with the ones derived by the numerical method. 
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