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Abstract 

In this paper, we derive the Laguerre operational matrix (LOM) of fractional derivatives, which is 
applied together with the spectral tau method for numerical solution of general linear multi-term fractional 
differential equations (FDEs) on the half line. A new approach implementing Laguerre operational matrix 
in combination with the Laguerre collocation technique is introduced for solving nonlinear multi-term 
FDEs. The main characteristic behind this approach is that it reduces such problems to those of solving a 
system of algebraic equations, greatly simplifying the problem. The proposed methods are applied for 
solving linear and nonlinear multi-term FDEs, subject to initial conditions, and the exact solutions are 
obtained for some tested problems. 

Keywords: Multi-term fractional differential equations, nonlinear fractional differential equations, 
operational matrix, Laguerre polynomials, Tau method, collocation method, Caputo derivative 
 
 
Introduction 

The applications of fractional calculus, used in many fields such as electrical networks, control theory 
of dynamical systems, probability and statistics, electrochemistry of corrosion, chemical physics, optics, 
and signal processing, can be successfully modelled by linear or nonlinear fractional differential equations 
(FDEs). So far, there have been several fundamental works on fractional derivative and fractional 
differential equations (see [1-4]). These works are an introduction to the theory of fractional derivative and 
FDEs, and provide a systematic understanding of fractional calculus, such as their existence and their 
uniqueness. 

Finding the approximate or exact solutions of FDEs is an important task. Save in a limited number, 
there is difficulty in finding the analytical solutions for these equations. Therefore, there have been attempts 
to develop new methods for obtaining analytical solutions which reasonably approximate the exact 
solutions. Several such techniques have drawn special attention, such as Adomians decomposition methods 
[5], Homotopy analysis method [6,7] and Variational iteration method [8]. 

Spectral methods are a class of techniques used in applied mathematics and scientific computing to 
numerically solve certain differential equations. The main idea is to write the solution of the differential 
equation as a sum of certain orthogonal polynomials, and then obtain the coefficients in the sum in orderto 
satisfy the differential equation as well as possible. Due to their high order of accuracy, spectral methods 
have been increasing in popularity for several decades, especially in the field of computational fluid 
dynamics (see, e.g., [9,10] and the references therein). There are 4 versions of spectral methods, namely the 
Galerkin-type [11,12], Petrov-Galerkin [13-15], tau [15,16] and collocation methods [17,18]. 

Many researchers have paid attention to existence result of solution of the initial value problem for 
fractional differential equations, among them [19-21]. Recently, Doha et al. [22] introduced a shifted 
Chebyshev operational matrix and applied it with spectral methods for solving multi-term linear and 
nonlinear FDEs subject to initial and boundary conditions. Doha et al. [16] derived a new formula 
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expressing explicitly any fractional-order derivatives of shifted Chebyshev polynomials of any degree in 
terms of shifted Chebyshev polynomials themselves, and used it, together with tau and collocation spectral 
methods, to find an approximate solutions for multi-term linear and nonlinear FDEs. Doha et al. [22] 
introduced a shifted Chebyshev operational matrix and applied it with spectral methods for solving 
multi-term linear and nonlinear FDEs subject to initial and boundary conditions. Moreover, Bhrawy and 
Alshomrani [23] introduced the shifted Legendre operational matrix for fractional derivatives and applied it 
with spectral methods for numerical solution of multi-term linear and nonlinear FDEs subject to multi-point 
boundary conditions. 

Furthermore, Bhrawy et al. [24] proposed a suitable way to approximate the multi-term FDEs with 
variable coefficients subject to initial conditions, using a quadrature shifted Legendre tau approximation; 
this approach extended the tau method for variable coefficients FDEs by approximating the weighted inner 
products in the tau method by using the shifted Legendre-Gauss-Lobatto quadrature. The authors in [25-27] 
presented the spectral tau method for numerical solution of some FDEs, and in [28] Pedas and Tamme 
developed the spline collocation methods for solving FDEs. Recently, Esmaeili and Shamsi [29] introduced 
a direct solution technique for obtaining the spectral solution of a special family of fractional initial value 
problems using a pseudo-spectral method; moreover, Esmaeili et al. [30] presented a computational 
technique based on the collocation method and Müntz polynomials for the solution of FDEs. The 
algorithms in the present work are somewhat related to the ideas used by Doha et al. [16,22] and Bhrawy et 
al. [24,31,32] in developing accurate algorithms for various purposes. More recently, the authors in [33,34] 
constracted the operational matrix of fractional integration of Laguerre polynomials and modified 
generalized Laguerre polynomials to solve liear fractional differential equations on semi-infinite intervals. 

The aim of this paper is to introduce the Laguerre operational matrix (LOM) of fractional derivative, 
which is based on the Laguerre tau method, for solving numerically linear multi-order FDEs with initial 
conditions. Also, we introduce a suitable way to approximate the nonlinear multi-order fractional initial 
value problems on the interval ),0( ∞=Λ , by the spectral Laguerre collocation method based on the 

LOM to find the solution )(xuN . The nonlinear FDE is collocated at 1)( +−mN  points. For suitable 

collocation points, we use the 1)( +−mN  nodes of the Laguerre-Gauss interpolation on Λ . These 
equations, together with m  initial conditions, generate 1)( +N  nonlinear algebraic equations, which 
can then be solved using Newton's iterative method.  Another considerable advantage of the proposed 
method is that our N-th order approximation gives the exact solution when the solution is polynomial of a 
degree equal to or less than N. If the solution is not polynomial, Laguerre approximation converges to the 
exact solution as N increases. Finally, the accuracy of the proposed algorithms is demonstrated by test 
problems. 

The article is organized as follows: We begin by reviewing certain basic facts about fractional 
calculus theory and Laguerre polynomials, which are required for establishing our results in Section 2. In 
Section 3 the LOM of fractional derivative is obtained. Section 4 is devoted to applying the LOM of 
fractional derivative for solving linear and nonlinear multi-order FDEs. Finally, in Section 5 the proposed 
method is applied to several examples. 
 
Preliminary 

The two most commonly used definitions are the Riemann-Liouville operator and the Caputo 
operator. We give some definitions and properties of fractional derivatives and Laguerre polynomials. 

 
Definition 1 The Riemann-Liouville fractional integral operator of order 0)>(νν  is defined as; 
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Γ ∫           (1) 
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Definition 2 The Caputo fractional derivatives of order ν  is defined as; 
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−−− ∫       (2) 

 
where mD  is the classical differential operator of order m. 

For the Caputo derivative we have; 
  

),constant a is(0,= CCDν             (3) 
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where ν  and ν  are the ceiling and floor functions respectively, while }{1,2,= N  and 

}{0,1,2,=0 N . 
The Caputo's fractional differentiation is a linear operation, similar to the integer-order differentiation 

 
),()(=))()(( xgDxfDxgxfD ννν µλµλ ++           (5) 

 
where λ  and µ  are constants. For more details on the geometric and physical interpretation for 
fractional derivatives for both the Riemann-Liouville and Caputo types, see [4]. 

Now, let )(0,= ∞Λ  and xexw −=)(  be a weight function on Λ  in the usual sense. Define 

},<||||andon measurable is|{=)(2 ∞ΛΛ ww vvvL equipped with the following inner product and 

norm .),(=||||,)()()(=),( 2
1

www vuvdxxwxvxuvu ∫Λ  

Next, let the Laguerre polynomial of degree   be defined by; 
 

.0,1,=),(
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1=)( 
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x
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 They satisfy the equations ,0=)())(( Λ∈+∂∂ −− xxLexLex x

x
x

x   and 

0.),()(=)( 1 ≥∂−∂ +  xLxLxL xx  

The set of Laguerre polynomials is the )(2 ΛwL -orthogonal system, namely; 
 

0,,,=)()()( ≥∀∫Λ jidxxwxLxL jkkj δ           (7) 

 
where jkδ is the Kronecher function. 

The analytical form of Laguerre polynomials of degree i  on the interval )(0,∞≡Λ  is given by; 
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The special value 
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where q  is a positive integer, will be of important use later. 
 
Laguerre operational matrix of fractional derivative 

Let )()( 2 Λ∈ wLxu ; then )(xu may be expressed in terms of Laguerre polynomials as; 
 

.0,1,2,=,)()()(=),(=)(
0

0=
jdxxwxLxuaxLaxu jjjj

j
∫∑
∞∞

      (10) 

 
In practice, only the first 1)( +N -terms Laguerre polynomials are considered. Then we have; 
 

).(=)(=)(
0=

xCxLaxu T
jj

N

j
N φ∑            (11) 

 
where the Laguerre coefficient vector C  and the Laguerre vector )(xφ  are given by; 
 

],,.....,,[= 10 N
T cccC .)](),.......,(),([=)( 10

T
N xLxLxLxφ        (12) 

 
The derivative of the vector )(xφ  can be expressed by; 
 

),(=)( (1) xD
dx

xd φφ
            (13) 

 
where (1)D is the 1)(1)( +×+ NN operational matrix of derivative given by; 
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By using Eq. (13), it is clear that; 
 

),()(=)( (1) xD
dx

xd n
n

n

φφ
           (14) 

 
where Nn∈  and the superscript in (1)D , denotes matrix powers. Thus; 
 

1,2,.....=,)(= (1))( nDD nn           (15) 
 
Lemma 1 Let )(xLi  be a Laguerre polynomial; then, 
 

0.>1,,0,1,=0,=)( ννν −ixLD i          (16) 
 
Proof. Immediately, if we use Eqs. (4) - (5) in Eq. (8), the lemma can be proved. 
In the following theorem, we generalize the operational matrix of derivatives of Laguerre 

polynomials given in Eq. (13) for fractional derivatives. 
 
Theorem 2 Let )(xφ  be Laguerre vector defined in Eq. (12), and also suppose 0>ν ;then, 
 

),()( )( xDxD φφ νν =             (17) 
 
where )(νD  is the 1)(1)( +×+ NN  operational matrix of derivatives of order ν  in the Caputo sense, 
and is defined as follows; 
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Note that in )(νD , the first ν  rows are all zero. 
Proof. The analytic form of the Laguerre polynomials )(xLi  of degree i  is given by (8). Using 

Eqs. (4), (5) and (8), we have; 
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Now, approximating ν−kx  by 1+N  terms of Laguerre series, we have; 
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Employing Eqs. (19) - (21), we get; 
 

,,,=),(),(=)(
0=

NixLjiSxLD j

N

j
i ∑ νν

ν          (22) 

 

where .
)!()!(!1)()!(

1)(!!1)(=),( 2
0== 



 −+−Γ−
++−Γ− +


∑∑ jkkki

kjijiS
kji

k ν
ν

ν
ν  



Laguerre Operational Matrix (LOM) of Fractional Derivatives Mohamed ABDELKAWY and Taha TAHA 
http://wjst.wu.ac.th 

Walailak J Sci & Tech 2014; 11(12) 
 

1047 

Accordingly, Eq. (22) can be written in a vector form as follows;  
 

.,,=),()],(,,2),(,1),(,0),([)( NixNiSiSiSiSxLD i  = νφνννν
ν      (23) 

 
Also, according to Lemma 1, we can write; 
 

1.,0,1,=),(,0][0,0,0,)( −= νφν  ixxLD i         (24) 
 
A combination of Eqs. (23) and (24) leads to the desired result. 
Remark. If Nn∈=ν , then Theorem 2 gives the same result as Eq. (14). 
 
Applications of the Laguerre operational matrix (LOM) for FDEs 

The main aim of this section is to propose a suitable way to approximate linear multi-term FDEs with 
constant coefficients using the Laguerre tau method based on the LOM, such that it can be implemented 
efficiently. 

 
Linear multi-order initial FDEs 
Consider the linear FDE; 
 

),(0,=in),()()(=)( 1
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∞Λ++ +∑ xgxuxuDxuD k
j

j

k

j
γγ

βν        (25) 

 
with initial conditions; 
 

1,,0,=,=(0))( −midu i
i            (26) 

 
where jγ  for 1,1,= +kj   are real constant coefficients and also 

νβββν <<<<<0,<1 21 kmm ≤− . Moreover )()( )( xuxuD νν ≡  denotes the Caputo 

fractional derivative of order ν  for )(xu , the values of 1),0,=( −midi   describe the initial state 

of )(xu , and )(xg  is a given source function. 
To solve problem Eqs. (25) with conditions (26), we approximate )(xu  and )(xg by the Laguerre 

polynomials as; 
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ii

N

i
φ∑=            (28) 

where vector T
NggG ],,[= 0   is known but T

NccC ],,[= 0   is an unknown vector. 
 
By using Theorem 2 (relation Eqs. (17) and (27)) we have; 
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),()()( )( xDCxDCxuD TT φφ ννν ;=           (29) 
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==         (30) 
 

Employing Eqs. (27) - (30), the residual )(xRN  for Eq. (25) can be written as; 
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As in a typical tau method, see [9], we generate 1+−mN  linear equations by applying; 
 

.,0,1,=0=)()()(=)(),(
0

mNjdxxLxRxwxLxR jNjN −〉〈 ∫
∞

       (32) 

 
Also by substituting Eqs. (15) and (27) in Eq. (26), we get; 
 

1,,0,1,=,=(0)=(0) )()( −midDCu i
iTi φ         (33) 

 
Eqs. (32) and (33) generate 1)( +−mN  and m  set of linear equations, respectively. These linear 

equations can be solved for unknown coefficients of the vector C . Consequently, )(xu  given in Eq. (27) 
can be calculated, which give the solution of the initial value problem in Eqs. (25) and (26). 

 
Nonlinear multi-order initial FDEs 
Consider the nonlinear FDE; 
 

),(0,=in)),(,),(),(,(=)( 1 ∞ΛxuDxuDxuxFxuD kββν         (34) 
 
with initial conditions; 
 

1,,0,=,=(0))( −midu i
i            (35) 

 
with initial conditions (26), where F can be nonlinear in general. 

In order to use Laguerre polynomials for this problem, we first approximate )(xu , )(xuDν  and 

)(xuD jβ
, for kj ,1,=   as Eqs. (27), (29) and (30) respectively; by substituting these equations in 

Eq. (34), we get; 
 

).,,),(,()( )()1()( kTTTT DCDCxCxFxDC ββν φφ =         (36) 
 
Also, by substituting Eqs. (14) and (27) in Eq. (35), we obtain; 
 

1,,0,1,=,=(0)=(0) )()( −midDCu i
iTi φ         (37) 
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To find the solution )(xu , we first collocate Eq. (36) at 1)( +−mN  points, For suitable 

collocation points, we use the first 1)( +−mN  Laguerre roots of )(xLi . These equations, together 

with Eq. (37), generate 1)( +N  nonlinear equations, which can be solved using Newton's iterative 
method. Consequently, the approximate solution )(xu can be obtained. 

 
Numerical results 

To illustrate the effectiveness of the proposed methods in the present paper, several test examples are 
carried out in this section. 

 
Example 1 As the first example, we consider the following initial value problem in the case of the 

inhomogeneous Bagely-Torvik equation; 
 

 
                  (38) 

 
The exact solution of this problem is xxu +1=)( .  

By applying the technique described in Section 4.1 with 2=N , we approximate the solution as; 
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Therefore using Eq. (32), we obtain; 
 

0.=22 20 −+ cc             (40) 
 

Now, by applying Eq. (33), we have; 
 

0,=12 21 −−− cc             (41) 
 

1,=210 ccc ++             (42) 
 
Finally, by solving Eqs. (40) - (42), we get; 

 
0.=1,=2,= 210 ccc −                                                                 (43) 

 
Thus, we can write;                                                     

.1,=(0)1,=(0),1=)()()( 2
3

2 Λ∈+++ xuuxxuxuDxuD '

).(=)()()(=)( 220100 xCxLcxLcxLcxu Tφ++
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which is the exact solution. 

 
Example 2 Consider the equation; 
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whose exact solution is given by .=)( 2xxu  

By applying the technique described in Section 4.1 with 2=N , we approximate the solution as; 
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Here, we have;  
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Therefore, using Eq. (32), we obtain; 
 

6.=10 cc −              (48) 
 

Now, by applying Eq. (33), we have; 
  

0,=210 ccc ++             (49) 
 

0,=2 21 cc −−              (50) 
 

Finally, by solving Eqs. (48) - (50), we get; 
 

2.=4,=2,= 210 ccc −                                                                 (51) 
 

Thus, we can write; 
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which is the exact solution. 

 
Example 3 Consider the equation; 
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5
1666=)()()(2)( 2.5232

1
2 Λ∈′++−++− xuuxxxxxuxuDxDuxuD

π
  (53) 

 
whose exact solution is given by .=)( 3xxu  

By applying the technique described in Section 1 with 3=N , we approximate the solution as; 
 

).(=)(=)(
3

0=
xCxLcxu T

ii
i

φ∑
                                                              

       (54) 

 
Here, we have; 
 

,
0111
0011
0001
0000

=,
0012
0001
0000
0000

= (1)(2)























−























DD  

 

.=,

16
11

8
3

2
11

16
2

8
5

2
11

16
1

8
1

2
11

0000

=

3

2

1

0

)
2
1(

















































−−−

−−

−

g
g
g
g

GD                                          (55) 

 
Therefore, using Eq. (32), we obtain; 
 

0,=32 03210 gcccc −+++            (56) 
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0.=
2
5

2
1

2
1

1321 gccc −++            (57) 

 
Now, by applying Eq. (33), we have; 
 

0.=32=(0)
0,==(0)

321
(1)

3210

cccDC
ccccC

T

T

−−−
+++

φ
φ

          (58) 

 
Finally, by solving Eqs. (56) - (58), we get; 

 
6.=18,=18,=6,= 3210 −− cccc                                                (59) 

 
Thus, we can write; 
 

.=
)(
)(
)(
)(

618,18,6,
=)( 3

3

2

1

0

x
xL
xL
xL
xL

xu






























 −−
                                           (60) 

 
Numerical results will not be presented, since the exact solution is obtained. 

Example 4 We next consider the following nonlinear initial value problem; 
 

(0,20),0,=(0)1,=(0)),(=)()()( 22 ∈++ xuuxgxuxuDxuD 'ν      (61) 
 
where 
 

dttutxxcosxcosxg
x

)()(
)(

1)()(=)( 1

0

22 −−−
−Γ

+− ∫ ν

ν
γγγ

                                    
(62) 

 
and the exact solution is given by ).(=)( xcosxu γ  

The solution of this problem is obtained by applying the technique described in Section 2. The 

maximum absolute error for 
30
1=γ  and 0.01=γ  with various choices of N  and ν  are shown in 

Tables 1 and 2. 
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Table 1 Maximum absolute error for
30
1=γ  and different values of ν  and N  for Example 4. 

 

N ν  error ν  error 
20   11.93.10−   12.67.10−  
30  

2
1

 
25.90.10−  

10
9

 
24.72.10−  

40   21.44.10−   22.85.10−  
 
 
Table 2 Maximum absolute error for 0.01=γ  and different values of ν  and N  for Example 4. 

  

N ν error ν Error ν error 

20   16.20.10−   12.12.10−

 
 13.14.10−  

30  

10
2

 
12.16.10−  

2
1

 
24.32.10−

 10
9

 
26.60.10−  

40   25.51.10−   22.19.10−

 
 21.21.10−  

 
 
Conclusions 

In this paper, we have derived a general formulation for the Laguerre operational matrix of fractional 
derivatives, which is used to approximate the numerical solution of a class of fractional differential 
equations on the half-line. Our approach was based on the Laguerre tau and collocation methods. To the 
best of our knowledge, this is the first study concerning the spectral tau Laguerre method based on the 
Laguerre operational matrix of fractional derivatives for solving multi-term FDEs on the half-line. 

An efficient and accurate numerical scheme based on the Laguerre collocation spectral method is 
proposed for solving the nonlinear FDEs on the half-line. The problem is reduced to the solution of 
nonlinear algebraic equations. The numerical results given in the previous section demonstrate the good 
accuracy of these algorithms. Moreover, only a small number of Laguerre polynomials is needed to obtain a 
satisfactory result. 
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