
  
http://wjst.wu.ac.th                                                                         Applied Mathematics 

Walailak J Sci & Tech 2019; 16(9): 655-668. 
 

The Truncated Power Lomax Distribution: Properties and Applications 
 
Sirinapa ARYUYUEN1,* and Winai BODHISUWAN2 
 
1Department of Mathematics and Computer Science, Faculty of Science and Technology,  
Rajamangala University of Technology Thanyaburi, Pathum Thani 12110, Thailand 
2Department of Statistics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand 
 
(*Corresponding author’s e-mail: sirinapa_a@rmutt.ac.th) 
 
Received: 25 October 2017,   Revised: 24 September 2018,   Accepted: 23 October 2018 
 
 
Abstract 

A new truncated distribution, called the truncated power Lomax (TPL) distribution, is proposed. 
This is a truncated version of the power Lomax distribution. The TPL distribution has increasing and 
decreasing shapes of the hazard function. Some statistical properties, such as moments, survival, hazard, 
and quantile functions, are discussed. The maximum likelihood estimation (MLE) is constructed for 
estimating the unknown parameters of the TPL distribution. Moreover, the distribution has been fitted 
with real data sets to illustrate the usefulness of the proposed distribution. From the results of the example 
applications, the TPL distribution provides a consistently better fit than the other distributions, i.e., power 
Lomax and Lomax. 
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Introduction 

Data analysis is undertaken in various fields, including engineering, medicine, finance, and 
demographics, where such types of truncated data arise in practical statistics. It is used in cases where the 
ability to record exists, or even when occurrences are limited to values which lie above or below a given 
threshold or within a specified range. Truncated distributions are quite effective for using data analysis 
[1,2]. In 1994, the truncated normal distribution was introduced by Johnson et al. [2], which is a 
probability distribution derived from that of a normal random variable by bounding it from either below 
or above (or both). Many researchers have therefore been attracted to the problems of analyzing such 
truncated data encountered in various disciplines and have proposed truncated versions of usual statistical 
distributions [2-6]. 

Truncated distribution has been derived from that of a parent distribution, such as normal and 
exponential distributions, by bounding the random variable from either below or above (or both). The 
power Lomax distribution is a parent distribution, which was introduced by Rady et al. in 2016. This 
distribution accommodates both the inverted bathtub and decreasing hazard rates. Rady et al. [7] 
presented the PL distribution to analyze data, in that case, for the remission time of bladder cancer. The 
results showed that it could offer a better fit than a set of extensions of the Lomax distribution when the 
Lomax distribution is introduced as a heavy-tail probability function to use data analysis in many fields, 
such as in business, economics, actuarial science, queuing theory, and internet traffic modeling [8-10]. 
From the above commentary and monitoring, and the wide applicability of the truncated distributions, this 
work has proposed a new truncated distribution for data analysis when datasets have values that are 
outside of a usual range. This work also proposes a new truncated distribution by using the PL 
distribution of the parent distribution. 

The rest of the paper has been organized into the following sections. In the material and methods 
section, the methods of the parent and truncated distributions are introduced. Next, a new truncated 
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distribution is proposed, called the truncated power Lomax distribution. Some statistical properties, such 
as moments, survival, hazard, and quantile functions, are discussed. In addition, the method of the 
maximum likelihood is applied to obtain estimates of the TPL parameters. Moreover, some applications 
are discussed as to how they fit when using different distributions, and their applicability is compared. 
Finally, some conclusions are presented. 
 
Methods  

The power Lomax distribution 
The power Lomax (PL) distribution proposed by Rady et al. [7], which is an extension of the Lomax 

distribution [8], is proposed by considering the power transformation 1/ ,X T λ=  where the random 
variable T  follows Lomax distribution, with the cumulative distribution function (cdf) as follows; 

G( ) 1 1 ; 0,tt t
α

β
 

= − + > 
 

                              (1) 

where 0α >
 
and 0β >  are the shape and scale parameters, respectively. This associates the probability 

density function (pdf), given by 
( 1)

g( ) 1 .tt
α

α
β β

− +
 

= + 
    

                                                                      (2) 

 We have a random variable 1/ ,X T λ=  distributed as the PL distribution with positive parameters ,α  
β , and .λ  The pdf and cdf of X  are defined as, respectively, 
 

1 ( 1)g( ) ( )x x xα λ λ ααλβ β− − += +  and  G( ) 1 ( ) ; 0.x x xα λ αβ β −= − + >                (3) 

 

The pdf in Eq. (3) is unimodal if 0, 0, 1α β λ> > >  , and it is decreasing if 0,α > 0,0 1.β λ> < ≤   
 
Truncated distributions   
Suppose X  is a random variable that is distributed according to some pdf ( ),g x  with cdf, ( )G x , 

both of which have infinite support.  A random variable X  lies within the interval [ , ],X a b∈

.a x b−∞ < ≤ ≤ < ∞  Then, the conditional on a x b≤ ≤  has a truncated distribution. Pdf for a x b≤ ≤  is 
given by [2]; 

 
( )( | )

( ) ( )
g xf x a X b

G b G a
≤ ≤ =

−
               (4) 

 
where ( ) ( )g x f x=  for all a x b≤ ≤  and ( ) 0g x =  everywhere else. Notice that ( | )f x a X b≤ ≤  has the 
same support as ( ).g x  Notice that, in fact, ( | )f x a X b≤ ≤  is a distribution; 

( | )
b

a
f x a X b dx≤ ≤∫   [ ]1 1( ) ( )

( ) ( ) ( ) ( )
b b

x aa
g x dx G x

G b G a G b G a =
= =

− −∫    

   [ ]1 ( ) ( ) 1
( ) ( )

G b G a
G b G a

= − =
−

           (5) 

 Truncated distribution need not have parts removed from the top and bottom. A truncated 
distribution, where just the bottom at a  of the distribution has been removed, is as follows; 
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( )( | )
1 ( )

g xf x X a
G a

≥ =
−

                        (6) 

 
where ( ) ( )g x f x=  for all x a≥ , and ( ) 0g x =  everywhere else, and ( | )f x X a≥ is called the left 
truncated (L-T) distribution at .a  A truncated distribution where the top at b  of the distribution has been 
removed is as follows; 
 

 
( )( | )
( )

g xf x X b
G b

≤ =                        (7) 

 
where ( ) ( )g x f x=  for all x b≤ , and ( ) 0g x =  everywhere else, and ( | )f x X b≤ is called the right 

truncated (R-T) distribution at .b   
 
Results and discussion 

 In this section, the truncated distribution of PL distribution, and its statistical properties, are 
discussed. In addition, the parameter estimation is shown for the unknown parameters of the distribution. 
Moreover, the application study is illustrated. 
 
 Truncated power Lomax distribution 
 Theorem 1: Let X  be distributed as the PL distribution with the positive parameters ,α ,β  and .λ  
When a random variable X  lies within the interval [ , ],X a b∈ 0 .a x b< ≤ ≤ < ∞  The conditional of 
random variable X  on a x b≤ ≤  is distributed as the truncated power Lomax (TPL) distribution, with 
pdf and cdf as follows; 

1 ( 1)( )f ( | )
( ) ( )

x xx a x b
a b

λ λ α

λ α λ α

αλ β
β β

− − +

− −

+
≤ ≤ =

+ − +
 and  

( ) ( )F( | ) .
( ) ( )
a xx a x b
a b

λ α λ α

λ α λ α

β β
β β

− −

− −

+ − +
≤ ≤ =

+ − +
        (8) 

 

Suppose expression X ~ TPL( , , , , ),a bα β λ  which is called X , is distributed as the TPL 
distribution with parameters ,α ,β  and λ  on interval [ , ].a b  
 Proof. Let X  be distributed as the PL distribution, with the pdf and cdf in Eq. (3). When a random 
variable X  lies within the interval [ , ],X a b∈ 0 .a x b< ≤ ≤ < ∞  The pdf for the conditional of random 
variable X  on a x b≤ ≤  is obtained by replacing ( )g x  and ( )G x  in Eq. (3) into Eq. (4), i.e.; 

f ( | )x a x b≤ ≤
 

1 ( 1)( )
1 ( ) 1 ( )

x x
b a

α λ λ α

α λ α α λ α

αλβ β
β β β β

− − +

− −

+
=
   − + − − +   

 

              
1 ( 1)( ) ; ,

( ) ( )
x x a x b

a b

λ λ α

λ α λ α

αλ β
β β

− − +

− −

+
= ≤ ≤

+ − +
            (9) 

and f ( ) 0x =  everywhere else, where f ( ) 0x ≥  for all x  and f ( ) 1,x dx
∞

−∞

=∫  i.e.; 
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1 ( 1)
1 ( 1)( ) 1 ( )

( ) ( ) ( ) ( )

1 1 ( )
( ) ( )

1 ( ) ( )
( ) ( )

b b

a a

b

x a

x x dx x x dx
a b a b

x
a b

a b
a b

λ λ α
α λ λ α

λ α λ α α λ α λ α

α λ α
α λ α λ α

α λ α α λ α
α λ α λ α

αλ β αλβ β
β β β β β

β β
β β β

β β β β
β β β

− − +
− − +

− − − −

−
− − =

− −
− −

+
= × +

+ − +  + − + 

 = × − +  + − + 

 = × + − +  + − + 

∫ ∫

 

     1.=              (10) 
The cdf of X  is; 

{ }

1 ( 1)1F( | ) ( )
( ) ( )

1 1 ( ) 1 ( )
( ) ( )

x

a

x a x b s s ds
a b

x a
a b

α λ λ α
α λ α λ α

α λ α α λ α
α λ α λ α

αλβ β
β β β

β β β β
β β β

− − +
− −

− −
− −

≤ ≤ = × +
 + − + 

   = × − + − − +    + − + 

∫
 

          ( ) ( ) .
( ) ( )
a x
a b

λ α λ α

λ α λ α

β β
β β

− −

− −

+ − +
=

+ − +
            (11) 

 Corollary 1: Let X  be distributed as the PL distribution with the positive parameters ,α ,β  and .λ  
When a random variable X  lies within the interval [ , ),X a∈ ∞ 0 .a x< ≤ < ∞  The conditional of random 
variable X  on a x≤ < ∞  is distributed as the left truncated power Lomax (L-TPL) distribution, with pdf 
and cdf, respectively, as follows; 
 

1 ( 1)( )f ( | )
( )

x xx x a
a

λ λ α

λ α

αλ β
β

− − +

−

+
≥ =

+    
and

   

( )F( | ) 1 .
( )
xx x a
a

λ α

λ α

β
β

−

−

+
≥ = −

+
                                (12) 

 Proof. Let X  be distributed as the PL distribution, with the pdf and cdf in Eq. (3). When a random 
variable X  lies within the interval [ , ),X a∈ ∞ 0 .a x< ≤ < ∞  The pdf for the conditional of random 
variable X  on a x≤ < ∞  is obtained by replacing ( )g x  and ( )G x  in Eq. (3) into Eq. (6), i.e.; 
 

1 ( 1)( )f ( | )
1 1 ( )

x xx x a
a

α λ λ α

α λ α

αλβ β
β β

− − +

−

+
≥ =

 − − + 
         

    
1 ( 1)( ) ; ,

( )
x x a x

a

λ λ α

λ α

αλ β
β

− − +

−

+
= ≤ < ∞

+
                                                                          (13) 

and f ( ) 0x =  everywhere else, where f ( ) 0x ≥  for all x  and f ( ) 1,x dx
∞

−∞

=∫  i.e.; 

{ }

1 ( 1)
1 ( 1)( ) 1 ( )

( ) 1 1 ( )

1 1 ( )
1 1 ( )

1 1 1 ( )
1 1 ( )

a a

x a

x x dx x x dx
a a

x
a

a
a

λ λ α
α λ λ α

λ α α λ α

α λ α
α λ α

α λ α
α λ α

αλ β αλβ β
β β β

β β
β β

β β
β β

∞ ∞− − +
− − +

− −

∞−
− =

−
−

+
= × +

+  − − + 

 = × − +  − − + 

 = × − − +  − − + 

∫ ∫

 

             1.=              (14) 
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The cdf of X  is; 

{ }

1 ( 1)1F( | ) ( )
( )

1 1 ( ) 1 ( )
( )

( ) ( )
( )

x

a

x x a s s ds
a

x a
a

a x
a

α λ λ α
α λ α

α λ α α λ α
α λ α

λ α λ α

λ α

αβ λ β
β β

β β β β
β β

β β
β

− − +
−

− −
−

− −

−

≥ = × +
 + 

   = × − + − − +    + 
+ − +

=
+

∫

 

     ( )1 .
( )
x
a

λ α

λ α

β
β

−

−

+
= −

+
                                                                             (15) 

 Corollary 2: Let X  be distributed as the PL distribution with the positive parameters ,α ,β  and .λ  
When a random variable X  lies within the interval [0, ],X b∈ 0 .x b< ≤ < ∞  The conditional of random 
variable X  on 0 x b≤ ≤  is distributed as the right truncated power Lomax (R-TPL) distribution, with pdf 
and cdf as follows; 
 

1 ( 1)( )f ( | )
1 ( )

x xx x b
b

α λ λ α

α λ α

αλβ β
β β

− − +

−

+
≤ =

− +   
and

   

( )F( | ) .
1 ( )

xx x b
b

α λ α

α λ α

β β
β β

−

−

+
≤ =

− +
                        (16) 

 
 Proof. Let X  be distributed as the PL distribution with the pdf and cdf in Eq. (3). When a random 
variable X  lies within the interval [0, ],X b∈ 0 .x b≤ ≤ < ∞  The pdf for the conditional of random 
variable X  on 0 x b≤ ≤  is obtained by replacing ( )g x  and ( )G x  in Eq. (3) into Eq. (7), i.e.; 
 

1 ( 1)( )f ( | ) .
1 ( )

x xx x b
b

α λ λ α

α λ α

αλβ β
β β

− − +

−

+
≤ =

− +
                                              (17) 

and f ( ) 0x =  everywhere else, where f ( ) 0x ≥  for all x  and f ( ) 1,x dx
∞

−∞

=∫  i.e.; 

1 ( 1)
1 ( 1)

0 0

( ) 1 ( )
1 ( ) 1 ( )

b bx x dx x x dx
b b

α λ λ α
α λ λ α

α λ α α λ α

αλβ β αλβ β
β β β β

− − +
− − +

− −

+
= × +

− + − +∫ ∫  

{ }
0

1 1 ( )
1 ( )

1 1 ( ) 0
1 ( )

b

x
x

b

b
b

α λ α
α λ α

α λ α
α λ α

β β
β β

β β
β β

−
− =

−
−

 = × − + − +

 = × − + − − +

 

     1.=              (18) 
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Figure 1 Some pdf plots of the distributions: (a) PL, (b) R-TPL, (c) L-TPL, and (d) TPL. 
 
 
The cdf of X  is; 

{ }

1 ( 1)

0

1F( | ) ( )
1 ( )

1 1 ( ) 1 (0 )
1 ( )

x

x x b s s ds
b

x
b

α λ λ α
α λ α

α λ α α λ α
α λ α

αλβ β
β β

β β β β
β β

− − +
−

− −
−

≤ = +
− +

   = × − + − − +   − +

∫
 

   ( ) .
1 ( )

x
b

α λ α

α λ α

β β
β β

−

−

+
=

− +
             (19) 
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 Figure 1 shows some pdf plots of the distributions. Figure 1(a) shows plots of the PL pdf in Eq. (3) 
with some parameters α  and .β  For 0 ,x b≤ ≤ < ∞  we have the R-TPL distribution at b , and its plot of 
the pdf in Eq. (16) is illustrated in Figure 1(b). The pdf in Eq. (12) of the L-TPL distribution at a  for  
0 a x< ≤ < ∞  is presented in Figure 1(c).  For a random variable X  on interval [ , ],a b  some plots of the 
pdf in Eq. (8) are shown in Figure 1(d). Accordingly, the pdf of the TPL distribution is; a) decreasing if 

0,a > 0β >  and 0 1,λ< ≤ and b) unimodal if 0,a > 0β >  and 1λ > . 

 Moments 
 Some characteristics of a distribution can be studied through moments (e.g., mean, variance, 
skewness, and kurtosis).  

 Theorem 2: Let X  be distributed as the TPL distribution with pdf and cdf in Eq. (8); we have the 
thk  moment about the origin of ,X  that is, E( ),k

k Xµ′ =  
 

( ) ( )
( )

( / ) / / 1
, 1, 2,3,...

( ) ( )

k

k

k k
k

a b

α λ

λ α λ α

β α λ λ
µ

α β β

− −

− −

Γ − Γ +
′ = =

 Γ + − +   
                                                   (20) 

where ( )sΓ  is a gamma function, i.e., 1

0

( ) .s ts t e dt
∞

− −Γ = ∫  

Proof. From the pdf for the conditional of X  on 0 a x b< ≤ ≤ < ∞  in Eq. (8), we have; 

( ) ( )
( )

1 ( 1)

0

1 ( 1)

0

/

( )E( )
( ) ( )

1 ( )
( ) ( )

/ ( ) /1
1( ) ( )

k k
k

k

k

x xX x dx
a b

x x x dx
a b

k k
a b

λ λ α

λ α λ α

α λ λ α
α λ α λ α

λ

α λ α λ α

αλ βµ
β β

αλβ β
β β β

αβ α λ λ λ
αβ β β

∞ − − +

− −

∞
− − +

− −

− −

+′ = =
+ − +

= × +
 + − + 

Γ − Γ +
= ×

Γ + + − + 

∫

∫  

    
( ) ( )

( )

( / ) / / 1
.

( ) ( )

k k k
a b

α λ

λ α λ α

β α λ λ
α β β

− −

− −

Γ − Γ +
=

 Γ + − + 
                                                                                      (21) 

  
 Straightforwardly, as in Eq. (20), the first four moments are, respectively; 

( ) ( )
( )

( 1/ )

1

1 / 1/ 1
,

( ) ( )a b

α λ

λ α λ α

β α λ λ
µ

α β β

− −

− −

Γ − Γ +
′ =

 Γ + − + 
  ( ) ( )

( )

( 2/ )

2

2 / 2 / 1
,

( ) ( )a b

α λ

λ α λ α

β α λ λ
µ

α β β

− −

− −

Γ − Γ +
′ =

 Γ + − + 
        (22) 

 
( ) ( )

( )

( 3/ )

3

3 / 3 / 1
,

( ) ( )a b

α λ

λ α λ α

β α λ λ
µ

α β β

− −

− −

Γ − Γ +
′ =

 Γ + − + 
  ( ) ( )

( )

( 4/ )

4

4 / 4 / 1
.

( ) ( )a b

α λ

λ α λ α

β α λ λ
µ

α β β

− −

− −

Γ − Γ +
′ =

 Γ + − + 
                     (23) 

 
 The mean, variance, skewness, and kurtosis of the TPL distribution are, respectively; 
 

( ) ( )
( )

( 1/ ) 1 / 1/ 1
E( ) ,

( ) ( )
X

a b

α λ

λ α λ α

β α λ λ
α β β

− −

− −

Γ − Γ +
=

 Γ + − + 
                                                                                   (24) 
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[ ]22Var( ) E( ) E( )X X X= −
 ( ) ( )

( )
( ) ( )

( )

( 2/ ) 2( 1/ ) 2 2

22

2 / 2 / 1 1/ 1/ 1
,

( ) ( ) ( ) ( )a b a b

α λ α λ

λ α λ α λ α λ α

β α λ λ β α λ λ
α β β α β β

− − − −

− − − −

Γ − Γ + Γ − Γ +
= −

 Γ + − +  Γ + − +   
       (25) 

 

[ ]{ } [ ]

( ) ( )
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( )

3 3/23 2

( 3/ )

2(2 3/ ) 2
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 Γ − Γ + Γ − Γ + Γ − Γ += −
 Γ + − +  Γ + − +    

Γ − Γ + Γ − Γ +
+

( )
( ) ( )

( )

4( 1/ ) 4 4

3 4/ ) 3 4

3 1/ 1/ 1

( ) ( ) ( ) ( )a b a b

α λ

λ λ α λ α λ α λ α
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α β β α β β

− −

− − − −

Γ − Γ + − 
   Γ + − + Γ + − +     

                         

( ) ( )
( )

( ) ( )
( )

2
( 2/ ) 2( 1/ ) 2 2

22

2 / 2 / 1 1/ 1/ 1
.

( ) ( ) ( ) ( )a b a b

α λ α λ

λ α λ α λ α λ α

β α λ λ β α λ λ
α β β α β β

−
− − − −

− − − −

 Γ − Γ + Γ − Γ + × − 
 Γ + − +  Γ + − +     

        (27) 

 
Survival and hazard functions 

 Survival function is a probability that a subject survives longer than time ,x  i.e., S( ) P(X )x x= >  
1 F( ).x= −  Let X  be distributed as the TPL distribution with the cdf F( )x  as in Eq. (8). When 

S( ) 1 F( )x x= −  is replaced by F( ),x  we have the survival function given by; 
 

( ) ( )S( | ) , 0 ,
( ) ( )
x bx a x b a x b
a b

λ α λ α

λ α λ α

β β
β β

− −

− −

+ − +
≤ ≤ = < ≤ ≤ < ∞

+ − +
                                    (28) 

 
where 0, 0α β> > , and 0.λ >  Consider the ratio of f( )x  to S( ),x  i.e., H( ) f ( ) S( ),x x x=  which is 
called the hazard function. From replacement of the pdf in Eq. (8), and the survival function in Eq. (28) as 
in function H( ),x we obtain the hazard function of ,X  i.e.; 
 

1 ( 1)( )H( | ) , 0 .
( ) ( )

x xx a x b a x b
x b

λ λ α

λ α λ α

αλ β
β β

− − +

− −

+
≤ ≤ = < ≤ ≤ < ∞

+ − +
                                     (29) 



The Truncated Power Lomax Distribution Sirinapa ARYUYUEN and Winai BODHISUWAN 
http://wjst.wu.ac.th 

Walailak J Sci & Tech 2019; 16(9) 
 

663 

 Some plots of the hazard function of the TPL distribution in Eq. (29) are shown in Figure 2(d). In 
addition, some plots of the hazard function of PL distribution are presented in Figure 2(a),, and some 
plots of the R-TPL and L-TPL distribution are shown in Figures 2(b) and 2(c), respectively. 

 
 

  

  
Figure 2 Some plots of the hazard function of distributions: (a) PL, (b) R-TPL, (c) L-TPL, and (d) TPL. 
 
 
 Quantile function 
 One specific property distribution, the quantile function, is in widespread use in general statistics, 
and is often found represented in specifying the location of the data. It is also called the percent-point 
function, or inverse cumulative distribution function. 
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 Theorem 3: Let X  be distributed as the TPL distribution with the cdf in Eq. (8); we have the 
quantile function of ,X  that is,  

( ){ }1/1/
Q( ) ( ) ( ) ( ) .u a u a b

λαλ α λ α λ αβ β β β
−

− − − = + − + − + − 
 
                                  (30) 

 Proof. From the cdf F( )x  in Eq. (8), we have the quantile function of ,X i.e., 1Q( ) F ( ).u x−=  The 
inverse transformation technique is used to generate a random variate for the TPL distribution by setting 

1F ( ),x u−=  or ( )x Q u= , where u  is a random variable which has distributed the uniform distribution on 
(0,1). Suppose F( )u x= . We have; 

( )
( ) 1/

( ) ( )
( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

a xu
a b

x a u a b

x a u a b

λ α λ α

λ α λ α

λ α λ α λ α λ α

αλ λ α λ α λ α

β β
β β

β β β β

β β β β

− −

− −

− − − −

−
− − −

+ − +
=

+ − +

+ = + − + − +

 + = + − + − + 

 

( ){ }1/1/
( ) ( ) ( ) ( )x a u a b Q u

λαλ α λ α λ αβ β β β
−

− − − = + − + − + − =                               (31) 

 Generation of TPL random variate 
 Simulating the TPL random variable is straightforward. The inverse transformation technique is 
used to generate a random variate for the TPL distribution by setting 1F ( )i ix u−= , where iu  is a random 
variable of the uniform distribution on (0,1). Then, , 1, 2,..., ,iX i n=  can be generated as follows: 
 1) Generate , 1, 2,...,iu i n=  from uniform distribution on (0,1). 

 2) Set, ( ){ }1/1/
( ) ( ) ( ) .i ix a u a b

λαλ α λ α λ αβ β β β
−

− − − = + − + − + −   

 Parameter estimation 
 The procedure to estimate the parameters of the TPL distribution based on the random sample 

1 2( , ,..., )nx x x x=  of sample size n  by using the maximum likelihood estimation (MLE) is discussed here. 
If , 1, 2,..., ,iX i n=  is independent and identically distributed, the log-likelihood function of X ~TPL
( , , , , ),a bα β λ  on the observed sample x  is given by log ( , , , , | ) ( | ),L a b x xα β λ = Θ 

  

( | ) log( ) log( ) log[( ) ( ) ]x n n n a bλ α λ αα λ β β− −Θ = + − + − +


    

        
1 1

( 1) log ( 1) log( )
n n

i i
i i

x xλλ α β
= =

+ − − + +∑ ∑                                                         (32) 

If X ~TPL ( , , , , ),a bα β λ  when ˆ min( )ia x=  and  ˆ max( )ib x=  then the MLE of parameters ,α β , and 
λ  are the solutions of the simultaneous in Eqs. (33) - (35), respectively; 
 

1

( | ) [( ) log( ) ( ) log( )] log( ),
( ) ( )

n

i
i

x n n a a b b x
a b

λ α λ λ α λ
λ

λ α λ α

β β β β β
α α β β

− −

− −
=

∂ Θ + + − + +
= − − +

∂ + − + ∑
       (33) 

 

1

( | ) [( ) log( ) ( ) log( )] 1( 1) ,
( ) ( ) ( )

n

i i

x n a a b b
a b x

λ α λ λ α λ

λ α λ α λ

β β β β α
β β β β

− −

− −
=

∂ Θ + + − + +
= − − +

∂ + − + +∑
             (34) 
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( | )x
λ

∂ Θ
=

∂



[( ) log( ) ( ) log( )]

( ) ( )
n n a a b b

a b

λ α λ λ α λ

λ α λ α

β β β β
λ β β

− −

− −

+ + − + +
−

+ − +
 

     
1 1

log( )
log ( 1)

( )

n n
i i

i
i i i

x x
x

x

λ

λα
β= =

+ − +
+∑ ∑ .            (35) 

  
 The expression of these differential Eqs. (33) - (35) are not in closed form. Therefore, the parameter 
estimates, such as ˆ ,α β̂ , and λ̂ , can be obtained by using the numerical optimization with the nlm 
function in the R language [12].  
 
 Applications 
 The usefulness of the TPL distribution is illustrated by having been fitted to real datasets, by using 
MLE to estimate the parameters, and by comparing the proposed TPL distribution with the Lomax (L) 
and PL distributions. The distribution selection is carried out is using the Akaike Information Criterion 
(AIC) and Bayesian Information Criterion (BIC), which are given respectively as follows: 
AIC 2log ˆ) 2( kL θ= − +  and ˆ(BIC 2log log() ),k nL θ= − + where log ˆ( )L θ  denotes the log-likelihood 

function evaluated at the maximum likelihood estimates of θ̂ , k  is the number of parameters of any 
distribution, and n  is the sample size. In addition, we used Kolmogorov–Smirnov test with the value of 
D ,n  which is given as 0D sup ( ) ( ) ,n x nF x F x= −  where ( )nF x  and 0 ( )F x  are the empirical distribution 
function and the theoretical cumulative distribution of the distribution being tested, respectively. The 
distribution with minimum AIC (or BIC or Dn ) value is chosen as the best distribution to fit the data. The 
results of the application studies are shown in Tables 1 - 3. The first data set, an uncensored data set 
corresponding to failure times for a particular windshield model, included 88 observations that were 
classified as failed times of windshields [13], which appears in Ramos et al. [14]. In addition, the failure 
times of 67 truncated aircraft windshield data was shown to the sample data set (see [15]). Finally, the 
cancer patient data, which is an uncensored data set corresponding to remission times (in months) of a 
random sample of 128 bladder cancer patients, was given in Lee and Wang in 2003 [16,17]. These 
example data are considered to fit the data by using the TPL, PL, and Lomax distributions. 
 First data set: Failure times for a particular windshield: 0.040, 1.866, 2.385, 3.443, 0.301, 1.876, 
2.481, 3.467, 0.309, 1.899, 2.610, 3.478, 0.557, 1.911, 2.625, 3.578, 0.943, 1.912, 2.632, 3.595, 1.070, 
1.914, 2.646, 3.699, 1.124, 1.981, 2.661, 3.779,1.248, 2.010, 2.688, 3.924, 1.281, 2.038, 2.82,3, 4.035, 
1.281, 2.085, 2.890, 4.121, 1.303, 2.089, 2.902, 4.167, 1.432, 2.097, 2.934, 4.240, 1.480, 2.135, 2.962, 
4.255, 1.505, 2.154, 2.964, 4.278, 1.506, 2.190, 3.000, 4.305, 1.568, 2.194, 3.103, 4.376, 1.615, 2.223, 
3.114, 4.449, 1.619, 2.224, 3.117, 4.485, 1.652, 2.229, 3.166, 4.570, 1.652, 2.300, 3.344, 4.602, 1.757, 
2.324, 3.376, 4.663. 
 Second data set: Failure times of 67 truncated aircraft windshields: 1.866, 2.385, 3.443, 1.876, 
2.481, 3.467, 1.899, 2.610, 3.478, 1.911, 2.625, 3.578, 1.912, 2.632, 3.595, 1.070, 1.914, 2.646, 3.699, 
1.124, 1.981, 2.661, 3.779,1.248, 2.010, 2.688, 3.924, 1.281, 2.038, 2.82,3, 3.000, 1.281, 2.085, 2.890, 
1.303, 2.089, 2.902, 1.432, 2.097, 2.934, 1.480, 2.135, 2.962, 1.505, 2.154, 2.964, 1.506, 2.190, 3.000, 
1.568, 2.194, 3.103, 1.615, 2.223, 3.114, 1.619, 2.224, 3.117, 1.652, 2.229, 3.166, 1.652, 2.300, 3.344, 
1.757, 2.324, 3.376. 
 Third data set: Remission times (in months): 0.08, 2.09, 3.48, 4.87, 6.94 , 8.66, 13.11, 23.63, 0.20, 
2.23, 3.52, 4.98, 6.97, 9.02, 13.29, 0.40, 2.26, 3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46 , 3.64, 5.09, 
7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 2.62, 3.82, 5.32, 7.32, 
10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39, 10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 
36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 
2.83, 4.33, 5.49, 7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 
7.93, 11.79, 18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 3.31, 
4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 6.76, 12.07, 21.73, 2.07, 3.36, 6.93, 8.65, 12.63, 22.69. 
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Table 1 MLE estimates of distributions of failure times for a particular windshield. 
 

Distributions 
Estimates 

-logL AIC BIC Dn  
(p-value) α̂  β̂  λ̂  â  b̂  

TPL( , , , ,a bα β λ ) 6.0296 75.0378 1.9645 0.0400 4.6630 124.89 259.78 271.99 0.0682 
(0.8236) 

PL( , ,α β λ ) 6.3196 70.3703 2.9645 - - 150.80 307.6 314.93 0.2353 
(0.0002) 

L( ,α β ) 17,050 39,818 - - - 165.37 334.74 339.63 7.3641 
(<0.0001) 

 
 
Table 2 MLE estimates of distributions of failure times of 67 truncated aircraft windshields. 
 

Distributions 
Estimates 

-logL AIC BIC Dn  
(p-value) α̂  β̂  λ̂  â  b̂  

TPL( , , , ,a bα β λ ) 1.9994 31.0496 2.8581 1.0700 3.9240 69.03 148.06 159.16 0.1466 
(0.1076) 

PL( , ,α β λ ) 1.2063 35.0496 3.3349 - - 109.94 225.88 232.54 0.2180 
(0.0031) 

L( ,α β ) 66,957 159,034 - - - 124.96 253.92 258.36 5.2178 
(<0.0001) 

 
 
Table 3 MLE estimates of distributions of remission times (in months). 
 

Distributions 
Estimates 

-logL AIC BIC Dn  
(p-value) α̂  β̂  λ̂  â  b̂  

TPL( , , , ,a bα β λ ) 1.7230 28.9151 1.4476 0.0800 79.0500 408.99 827.98 842.24 0.0374 
(0.9941) 

PL( , ,α β λ ) 2.0701 34.8626 1.4276 - - 409.74 825.48 834.04 0.0351 
(0.9975) 

L( ,α β ) 13.936 121.003 - - - 413.83 831.66 837.36 0.0967 
(0.4865) 

 
 
 For the 3 data-sets, we use nlm() function in R with the starting parameter values, i.e., ( )0 0 0, ,α β λ  

(1,5,1)= , to estimate the parameter , , .α β λ  When data set is fitted by the distributions, i.e., TPL, PL, and 
Lomax, The results in Table 1 indicate that AIC, BIC, and Dn  have the smallest values for data about 
failure times for a particular windshield under the TPL distribution model with regard to the PL and 
Lomax distributions, and Figure 3(a) shows the estimated pdf for the fitted distribution by using the TPL 
when closed to the histogram of the data. In addition, the results in Table 2 and the estimated pdf for the 
fitted distributions as in Figure 3(b) show that the TPL distribution provides a better fit to the data about 
the failure times of 67 truncated aircraft windshields than the PL and Lomax distributions. Finally, the 
results in Table 3 show that the TPL and PL distributions have similar values of AIC, BIC, and Dn , and 
Figure 3(c) gives the estimated pdf for the fitted distribution by using the TPL when closed to the 
estimated pdf of the PL distribution. These results show that the TPL distribution is an alternative to fit 
these data sets, and therefore could be chosen as the best distribution for the first two example data when 
compared with PL and Lomax distributions. However, the TPL distribution provides fitting of the 
remission times close to the PL distribution. 
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Figure 3 The estimated pdf plots of the TPL, PL, and L distributions for the data sets. 
 

Conclusions 

 In this paper, we proposed a new truncated distribution, called the TPL distribution. Some statistical 
properties, i.e., moments, survival, hazard, and quantile functions, were also discussed. Unknown 
parameters of TPL distribution were estimated by the maximum likelihood estimation. The example data 

(b) Failure times of 67 truncated aircraft windshields 
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of 3 real data sets have been considered to show the usefulness of the proposed distribution. From the first 
2 examples, i.e., the failure times for a particular windshield and the failure times of 67 truncated aircraft 
windshields, the TPL distribution provided a better fit than the Lomax and power Lomax distribution. We 
hope that the proposed distribution will attract wider application in many areas, such as engineering, 
economics, medicine, finance, demographics, etc. A suitable situation to use the TPL distribution would 
be such as analysis of data which are lifetime data on any interval values in cases where the ability to 
record exists, or even when occurrences are limited to values which lie above or below a given threshold 
or within a specified range.   
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