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Abstract 

The objective of this paper is to investigate the heat and mass transfer effects on an isothermal 
vertical oscillating plate. The dimensionless governing equations are solved using a finite element 
method. The velocity, temperature and concentration fields for different physical parameters like thermal 
Grashof number, mass Grashof number, prandtl number, Schmidt number, phase angle and time are 
shown graphically. 
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Introduction 

Heat and mass transfer play an important role 
in manufacturing industries for the design of fins, 
steel rolling, nuclear power plants, gas turbines, 
and various propulsion devices for aircraft, 
missiles, satellites, and space vehicles. If the 
temperature of the surrounding fluid is rather high, 
radiation effects play an important role and this 
situation does exist in space technology. The effect 
of free convection flow of a viscous 
incompressible fluid past an infinite vertical plate 
has many important technological applications in 
the astrophysical, geophysical and engineering 
problems. Siegel [1] was the first to study the 
transient free convective flow past a semi-infinite 
vertical plate by an integral method. The same 
problem was studied by Gebhart [2] by an 
approximate method. 

Soundalgekar [3] presented convection 
effects on the Stokes problem for an infinite 
vertical plate. The flow of a viscous, 
incompressible fluid past an infinite isothermal 
vertical plate, oscillating in its own plane, was 
solved by Soundalgekar [4]. The effect on the flow 
past a vertical oscillating plate due to a 
combination of concentration and temperature 
differences was studied extensively by 
Soundalgekar and Akolkar [5]. 

It is proposed to study heat and mass transfer 
effects on an isothermal vertical oscillating plate. 
The dimensionless governing equations are solved 
using the finite element method. The effects of 
various governing parameters on the velocity, 
temperature, concentration are shown in figures 
and discussed in detail. 
 
Formulation of the problem 

Heat and mass transfer effects on unsteady 
flow of a viscous incompressible fluid past an 
infinite isothermal vertical oscillating plate with 
variable mass diffusion is studied. Here the 
unsteady flow of a viscous incompressible fluid 
which is initially at rest and surrounds an infinite 
vertical plate of temperature, T∞ and concentration, 
C′∞. Here, the x′-axis is taken along the plate in the 
vertical upward direction and the y′-axis is taken 
normal to the plate. Figure 1 is the physical model 
of the problem and coordinate system.  Initially, it 
is assumed that the plate and the fluid are of the 
same temperature and concentration. At time t′ > 
0, the plate starts oscillating in its own plane with 
frequency w′ and the temperature of the plate is 
raised to TW and the concentration level near the 
plate is raised linearly with respect to time. The 
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fluid considered here is a gray, absorbing-emitting 
radiation but a non-scattering medium. Then by the 
usual Boussinesq’s approximation, the unsteady 
flow is governed by the following equations: 
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Figure 1 The physical model of the problem and coordinate system. 
 
 

The initial and boundary conditions are: 
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It is assumed that the temperature differences 
within the flow are sufficiently small such that 
they may be expressed as a linear function of the 
temperature. This is accomplished by expanding a 
Taylor series about and neglecting higher-order 
terms, thus:                                                                       

The dimensional quantities are defined as: 

∞′−′
∞′−′

=
∞−
∞−

=

′
=

′
=

′
=

CwC

CC
C

TwT

TT

tu
t

yu
y

u

u
u

,

,
2
0,0,

0

θ

νν
                 

 

( )

( )
,3

0

,3
0

,,Pr

u

CwCvg
Gc

u

TwTvg
Gr

D
Sc

k
pC

∞′−′∗
=

∞−
===

β

βνµ

 

x′  

g 
B0 

y′  

z′  



Heat and Mass Transfer on a Vertical Oscillating Plate Sivaiah SHERI et al 
http://wjst.wu.ac.th 
 

Walailak J Sci & Tech 2012; 9(4) 
 

409 

ν

ν

ρ

νσ 2
0,2

0
,3

0

2
0 u

A
u

w
w

u

B
M =

′
==

       
      (5)                                                                                                                                                                                                                                                     

                                                                                                                                                            
In view of Eq. (5) and Eq. (1) - (3) this reduces to 
the following dimensionless form. 
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where Gr, Gc, Pr, Sc are the thermal Grashof 
number, mass Grashof number, Prandtl number, 
Schmidt number respectively. 

The initial and boundary conditions in non-
dimensional form are: 
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Solution of the problem 

The linear functional for Eq. (6) over a 
typical line segment element (e), (yj ≤ y ≤ yk) is 
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Let kukNjujNeu +=)(  be the linear piecewise 

approximation solution over the element (e), (yj ≤ y 
≤ yk), where kj uu ,  are the values of the function 
u at the ends of the element (e) and 
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where the dot denotes the differentiation with 
respect to t and ( )

jk
e yyl −= . Assembling the 

element equations for two consecutive elements 
(yi-1 ≤ y ≤ yi) and (yi ≤ y ≤ yi+1), the following is 
obtained: 
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Now put row corresponding to the node i  to zero, 

the difference schemes with hel =)(  is 
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Applying the trapezoidal rule, the following 
system of equations using the Crank-Nicholson 
method is obtained: 
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Now from Eq. (7) and Eq. (8) the following 
equations are obtained: 
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Here 2h

k
r =  and kh,  are mesh sizes along 

y-direction and time t-direction respectively. Index 
i refers to the space and t refers to the time. In the 
above Eq. (10) - (12) taking i = 1(1)n and using 
initial and boundary conditions (9), the following 
tri-diagonal system of equations are obtained: 
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where A, D and F are tri-diagonal matrices of order 
– n and whose elements are given by 
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Here u, θ, C and B, E, G are column matrices 

having the n-components 1,1,1 +++ j
iCj
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above system of equations are obtained by using 
the Thomas algorithm for velocity, temperature 

and concentration. Also, the numerical solutions 
for these equations are obtained by the C-program. 
In order to prove the convergence and stability of 
the Ritz finite element method, the computations 
are carried out for slightly changed values of h and 
k by running the same C-program. No significant 
change was observed in the values of u, θ, and C. 
Hence, the finite element method is convergent 
and stable. 
 
Results and discussion 

In order to get a physical insight into the 
problem numerical calculations carried out for the 
different physical parameters viz., thermal Grashof 
number, mass Grashof number, Prandtl number, 
Schmidt number, on the physical flow field, 
computations are carried out for velocity, 
temperature and concentration and they are 
presented in the figures below. In the present study 
we adopted the following default parameter values 
of finite element computations: Gr = 2.0, Gc = 
2.0, Pr = 0.71, Sc = 0.6, wt = π/4, t = 0.4. All 
graphs therefore correspond to these values unless 
specifically indicated on the appropriate figures. 

The influence of the thermal Grashof number 
Gr on the velocity is shown in Figure 2. The 
thermal Grashof number signifies the relative 
effect of the thermal buoyancy force on the viscous 
hydrodynamic force. The flow is accelerated due 
to the enhancement in buoyancy force 
corresponding to an increase in the thermal 
Grashof number i.e., free convection effects. The 
positive values of Gr correspond to cooling of the 
plate by natural convection. Heat is therefore 
conducted away from the vertical plate into the 
fluid which increases the temperature and thereby 
enhances the buoyancy force. In addition, it is seen 
that the peak values of the velocity increase rapidly 
near the plate as the thermal Grashof number 
increases and then decays smoothly to the free 
stream velocity.  
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Figure 2 Velocity profile for different values of Gr. 

 
 

 
Figure 3 Velocity profile for different values of Gc. 
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Figure 3 presents typical velocity profiles in 
the boundary layer for various values of the mass 
Grashof number, Gc. The mass Grashof number, 
Gc defines the ratio of the species buoyancy force 
to the viscous hydrodynamic force. It is noticed 
that the velocity increases with increasing values 
of the mass Grashof number. 

Figures 4 and 5 illustrate the velocity and 
temperature profiles for different values of the 
Prandtl number, Pr. The numerical results show 
that the effect of increasing the Prandtl number 

results in a decreasing velocity. It is observed that 
an increase in the Prandtl number results in a 
decrease of the thermal boundary layer thickness 
and in general lower average temperature within 
the boundary layer. The reason is that smaller 
values of Pr are equivalent to increasing the 
thermal conductivities, and therefore heat is able to 
diffuse away from the heated surface more rapidly 
than for higher values of Pr. Hence in the case of 
smaller Prandtl numbers the boundary layer is 
thicker and the rate of heat transfer is reduced. 

 

 
Figure 4 Velocity profile for different values of Pr. 
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Figure 5 Temperature profile for different values Pr. 

 
 
For different values of the Schmidt number 

Sc, the velocity and concentration profiles are 
plotted in Figures 6 and 7 respectively. The 
Schmidt number Sc embodies the ratio of the 
momentum diffusivity to the mass (species) 
diffusivity. It physically relates the relative 
thickness of the hydrodynamic boundary layer and 
mass-transfer (concentration) boundary layer. As 

the Schmidt number increases the concentration 
decreases. This causes the concentration buoyancy 
effects to decrease yielding a reduction in the fluid 
velocity. The reductions in the velocity and 
concentration profiles are accompanied by 
simultaneous reductions in the velocity and 
concentration boundary layers, which is evident 
from Figures 6 and 7. 
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Figure 6 Velocity profile for different values of Sc. 
 
 

 
Figure 7 Concentration profile for different values of Sc. 
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Conclusions 

An exact analysis is performed to study heat 
and mass transfer effects on an isothermal vertical 
oscillating plate. The governing equations are 
solved using the finite element method. The 
conclusions of the study are that the velocity 
increases with an increase in the thermal Grashof 
number and mass Grashof number and that the 
velocity and concentration decrease with 
increasing the Schmidt number. Finally, the 
velocity and temperature decrease when the 
Schmidt number increases. 
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