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Abstract  

Tanh-Coth Method is applied to find solitary wave solutions of the Zoomeron equation which is of 
extreme importance in mathematical physics. The proposed scheme is fully compatible with the 
complexity of the problem and is highly efficient. Moreover, suggested combination is capable to handle 
nonlinear problems of versatile physical nature. 
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Introduction 

Most physical phenomenon are modeled by 
nonlinear differential equations [1-65]. A wide 
range of analytical and numerical techniques 
including Perturbation, Modified Adomian’s 
Decomposition (MADM), Variational Iteration 
(VIM), Homotopy Perturbation (HPM), exp-
function, Spline, Backlund transformation, 
Homotopy Analysis (HAM), have been developed 
to solve such equations, see [1-65] and the 
references therein. The basic motivation of this 
paper is the extension of a relatively new scheme 
called the Tanh-Coth Method [18-22] to obtain 
solitary wave solutions of the Zoomeron equation 
which is of utmost importance in mathematical 
physics. It is observed that the proposed scheme is 
fully compatible with the complexity of such 
problems. Moreover, suggested combination is 
highly capable to handle nonlinear problems of 
versatile physical nature. Numerical results are 
very encouraging and reveal the efficiency of the 
proposed scheme. 
 
Tanh-Coth method [18-22] 

Consider the following nonlinear partial 
differential equation for u(x, t) to be in the form 

 

𝑃(𝑢,  𝑢𝑥, 𝑢𝑡,  𝑢𝑥𝑥, 𝑢𝑥𝑡,𝑢𝑡𝑡 , … ) = 0         (1) 
 
where P is a polynomial in its arguments. The 
essence of the Tanh-Coth method expansion 
method can be presented in the following steps: 
 
Step 1 Seek traveling wave solutions of Eq. (1) by 
taking   𝑢(𝑥, 𝑡) = 𝑢(𝜉), 𝜉 = 𝑥 − 𝑐𝑡,  and 
transform Eq. (1) into an ordinary differential 
equation 
 
𝑄(𝑢,𝑢′, 𝑢′′, … ) = 0,             (2) 

 
where prime denotes the derivative with respect to 
𝜉. 

 
Step 2 If possible, integrate Eq. (2) term by term 
one or more times. This yields constant(s) of 
integration. For simplicity, the integral constant(s) 
may be zero. 
 
Step 3 Introduce a new independent variable 
 
Y = tanh(µ ξ) , ξ = x − ct,            (3) 
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that leads to a change of derivatives: 
 

𝑑
𝑑𝜉

= (1 − 𝑌2) 𝑑
𝑑𝑌

,                                                                                                          
𝑑2

𝑑𝜉2
= −2𝜇2(1− 𝑌2) 𝑑

𝑑𝑌
+ 𝜇2(1 − 𝑌2)2 𝑑2

𝑑𝑌2
,   

𝑑2

𝑑𝜉2
= −2𝜇3(1− 𝑌2)(3𝑌2 − 1) 𝑑

𝑑𝑌
− 6𝜇3(1 − 𝑌2)2 𝑑2

𝑑𝑌2
+ 𝜇3(1− 𝑌2)3 𝑑3

𝑑𝑌3
.               (4)  

 
Other derivatives can be derived in a similar manner. 

 
Step 4 We then propose the following finite series expansion 
 
𝑢(𝜇𝜉) = 𝑆(𝑌) = ∑ 𝑎𝑘𝑌𝑘 +  𝑚

𝑘=0 ∑ 𝑏𝑘𝑌−𝑘,𝑚
𝑘=1                 (5) 

 
in which in most cases m is a positive integer. To determine the parameter m, we usually balance the 
linear terms of highest order in the equation (2) with the highest order nonlinear terms. Substituting (3), 
(4) and (5) into the ODE yields an equation in powers of Y. 
 
 
Step 5 With m determined, we collect all 
coefficients of powers of Y in the resulting 
equation where these coefficients have to vanish. 
This will give a system of algebraic equations 
involving the parameters 𝑎𝑘, 𝑏𝑘, 𝜇, 𝑐. Having 
determined these parameters and using (5) we 
obtain an analytic solution 𝑢 = 𝑢(𝑥, 𝑡), in a 
closed form. 
 
Solution procedure 

Consider the following Zoomeron equation: 
 

�uxy
u
�
tt

 − �uxy
u
�
xx

+ 2(u2)xt = 0,            (6) 

 
assuming the solution in the following frame: 

 
𝑢 = 𝑈(𝜉), 𝜉 = 𝑥 − 𝜔𝑦 − 𝑐𝑡,                    (7) 
 
where 𝑐,𝜔 are constants. We substitute Eq. (7) 
into Eq. (6) and integrating twice with respect 

to 𝜉, by setting the second integration constant 
equal to zero, we obtain the following nonlinear 
ordinary differential equation 

 
𝜔(1 − 𝑐2)𝑈′′ − 2𝑐𝑈3 − 𝑅𝑈 = 0,            (8) 
 
where R is integration constant. Balancing the 
nonlinear term 𝑈3 with the highest order 
derivative 𝑈′′ that gives 
 
3𝑀 = 𝑀 + 2,                    (9) 

 
so that 

 
M = 1.              (10) 

 
The Tanh-Coth method admits the use of the 

substitution 
 

𝑢(𝑥, 𝑡) = 𝑆(𝑌) =  𝑎0 + 𝑎1𝑌+𝑏1𝑌−1,   (11) 
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Substituting (11) into (8), collecting the coefficients of each power of 𝑌, setting each coefficient to 
zero, and solving the resulting system of algebraic equations, we find the following sets of solutions: 

 

(i) 𝑎0 = 0, 𝑎1 = �− 𝑅
2𝑐

,  𝑏1 = 0, 𝜇 = � 𝑅
2𝜔(𝑐2−1)

  ,   𝑐 > 0                         (12) 

(ii)  𝑎0 = 0, 𝑎1 = 0,  𝑏1 = �− 𝑅
2𝑐

, 𝜇 = � 𝑅
2𝜔(𝑐2−1)

 ,   𝑐 > 0                            (13) 

(iii) 𝑎0 = 0, 𝑎1 = 1
4
�− 2𝑅

𝑐
,  𝑏1 = −1

2
𝑅

𝑐�−𝑅𝑐

, 𝜇 = � 𝑅
8𝜔(𝑐2−1)

 ,   𝑐 > 0            (14) 

 
This in turn gives the front wave (kink) solution 
 

𝑢1(𝑥, 𝑡) = 1
2

 �− 𝑅
2𝑐

tanh [� 𝑅
2𝜔(𝑐2−1)

  (𝑥 + 𝜔𝑦 − 𝑐𝑡)],                             (15) 

 
and the travelling wave solutions 
 

𝑢2(𝑥, 𝑡) = 1
2

 �− 𝑅
2𝑐

tanh [� 𝑅
2𝜔(𝑐2−1)

  (𝑥 + 𝜔𝑦 − 𝑐𝑡)],                              (16)   

            
For 𝑐 > 0, we obtain the solution 

 

𝑢3(𝑥, 𝑡) = 1
4
��−2𝑅

𝑐
tanh �� 𝑅

8𝜔(𝑐2−1)
  (𝑥 + 𝜔𝑦 − 𝑐𝑡)� − 𝑅√2

𝑐�−𝑅𝑐

coth �� 𝑅
8𝜔(𝑐2−1)

  (𝑥 + 𝜔𝑦 − 𝑐𝑡)� �,        (17) 
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Figure 1 Kink solution of Eq. (15) when  𝑅 = 0.5, 𝑐 = −1.5, 𝜔 = 1. 
 

                                 
Figure 2 Travelling wave solution of Eq. (16) when 𝑅 = 0.5, 𝑐 = −1.5, 𝜔 = 1. 
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Figure 3 Travelling wave solution of Eq. (17) when 𝑅 = 0.5, 𝑐 = −1.5, 𝜔 = 1. 
 
 
Conclusions 

The Tanh-Coth method was successfully 
used to establish solitary wave solutions of the 
Zoomeron equation. The performance of the Tanh-
Coth method is reliable, effective and hence it may 
be used to tackle other nonlinear problems of a 
versatile physical nature. 
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