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Abstract 

In this paper, the Haar wavelet method is applied to find an approximate solution for heat transfer in 
moving fins with temperature-dependent thermal conductivity losing heat through both convection and 
radiation to the surroundings. The effects of various significant parameters involved in the problem, such 
as the thermal conductivity parameter a, sink temperature 𝜃𝑎, convection-radiation parameter Nc, 
radiation-conduction parameter Nr, and Peclet number Pe on the temperature profile of the fin, is 
discussed and physical interpreted through illustrative graphs. 

Keywords: Haar wavelets, extended surface, convective-radiative heat transfer, temperature-dependent 
thermal conductivity, Newton’s method 
 
 
Introduction 

Fins are generally used as a medium for enhancing heat transfer to or from the environment. The 
amount of heat transfer depends upon the amount of conduction, convection, or radiation of an object. 
Adding a fin to an object increases the surface area of the object exposed to the surroundings and hence 
facilitates the rate of heat transfer. Fins are extensively used in various industrial applications, such as 
heat exchanging devices in car radiators, coolants in refrigerators, and heat exchangers in power plants, 
etc. An extensive study on an analytical solution to evaluate the temperature distribution of fins is 
available in [1-3]. The solutions to heat transfer problems are based on the assumption that all the thermo-
physical properties, including thermal conductivity and heat transfer coefficients, are constant. However, 
in practical situations with a high temperature difference between the fin base and its tip, variation of the 
thermal conductivity of the fin with temperature should be considered. Variable thermal conductivity 
introduces nonlinearity, which affects the energy balance equation and its solution. Chiu and Chen [4] 
utilized the Adomian decomposition method to evaluate the efficiency and optimal length of convective 
rectangular fins with variable thermal conductivity. The Adomian decomposition method was presented 
by Arslanturk [5] to evaluate the temperature distribution within the fins, and also evaluated the 
efficiency of the fin. Rajabi [6] studied the efficiency of straight fins with temperature-dependent thermal 
conductivity using the homotopy perturbation method. A series form analytical solution using the 
homotopy analysis method was presented for evaluating the fin efficiency of straight convective fins in 
[7]. Ganji et al. [8] used the differential transformation method for studying the effect of temperature 
dependent thermal conductivity on the fin efficiency of straight convective fins. Kulkarni and Joglekar [9] 
implemented a numerical technique based on residue minimization to solve the nonlinear differential 
equation governing the temperature distribution in straight-convective fins having temperature-dependent 
thermal conductivity, and further evaluated the fin efficiency. In [10] a simplex search method was used 
to evaluate the temperature field for a conductive-convective fin with variable thermal conductivity. A 
two-parameter perturbation method was used to evaluate the temperature distribution in conducting-
convecting-radiating fins with temperature dependent thermal conductivity in [11]. Nguyen and Aziz [12] 
studied the performance of different kinds of fins, namely rectangular, trapezoidal, triangular, and 
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concave parabolic shapes using the finite difference method, and showed the effect of different profile 
shapes on the heat transfer rate and fin efficiency. Yu and Chen [13] investigated the optimal fin length of 
convective-radiative rectangular fins with variable thermal conductivity with the help of the Taylor 
transformation method. In [14] the efficiency of double optimal linearization method was compared with 
the homotopy perturbation method, variational method and double series regular perturbation method in 
evaluating the temperature distribution in straight convective-radiative fins with variable thermal 
conductivity. Recently, moving fins with both convective and radiative heat transfer have been studied by 
a number of authors viz. Aziz and Khani [15] presented the homotopy analysis method for the analytic 
solution of heat transfer in moving fins with variable thermal conductivity losing heat to the surroundings 
simultaneously through convection and radiation. A numerical study of the heat process in continuously 
moving rods undergoing thermal processing of variable thermal conductivity losing heat by both 
convection and radiation was studied in [16]. The differential transformation method was applied by 
Torabi et al. [17] for analyzing the heat transfer in moving fins with temperature dependent thermal 
conductivity, losing heat through both convection and radiation. 

In the present paper, the Haar wavelet method is introduced as an alternative approach to study the 
temperature distribution along convective-radiative fins with temperature-dependent thermal 
conductivity. With the present method, it is possible to obtain highly accurate results, which is one of the 
major concerns of applied mathematicians and engineers for solving problems arising in scientific and 
industrial applications. To verify the accuracy of the present approach, the Haar solutions are compared 
with the numerical solutions obtained through the standard fourth-order Runge-Kutta method using 
MATLAB software. 

In last few years wavelet based algorithms have become an important and convenient tool in the 
field of numerical approximations. One of the popular families of wavelets is Haar wavelets, which are 
wavelets made up of pair of a piecewise constant functions, and are the simplest orthonormal wavelets 
with compact support. Due to its mathematical simplicity and computationally efficiency, the Haar 
wavelets have turned out to be an efficient tool for solving initial and boundary value problems. Chen and 
Hsiao [18] introduced the concept of Haar wavelets as an operational matrix of integration for solving the 
problems of dynamical systems. The applications of Haar wavelets were used to solve linear and 
nonlinear stiff systems in [19,20]. Maleknejad [21] suggested a rationalized Haar wavelet approach to 
solve a system of linear integro-differential equations. Lepik [22] developed a segmentation method 
based on Haar wavelets for the solution of ODEs and PDEs, and subsequently the method was used to 
solve nonlinear integro-differential equations in [23]. A Haar wavelet based method to analyze the design 
in a generalized state space singular system of transistor circuits was presented in [24]. Babolian and 
Shahsavaran [25] used the Haar wavelet method to obtain the approximate solutions of nonlinear 
Fredholm integral equations of second kind. Hariharan [26] presented a Haar wavelet based method for 
solving Fisher’s equation. Siraj et al. [27] have used uniform Haar wavelets in order to obtain the 
numerical solutions of 2 point boundary value problems arising in various engineering applications. A 
spectral collocation method based on Haar wavelets for solving Poisson and biharmonic equations was 
presented in [28]. Zhi and Yong-yan [29] have devised a computational method based on the use of Haar 
wavelets for solving higher order eigen value problems. Recently, in [30], the solutions of 2D and 3D 
Poisson and biharmonic equations were presented by means of Haar wavelets. 

 
Mathematical formulation 

Now, the problem description for a continuously moving fin with temperature-dependent thermal 
conductivity losing heat to the environment through both convection and radiation is presented. A straight 
convective-radiative fin of cross-sectional area A with perimeter P and moving horizontally with a 
constant velocity v is considered. The heated fin emerges from a hotter environment at a constant 
temperature Tb to a colder environment. A common sink temperature Ta < Tb is assumed for both 
convection and radiation. The thermal conductivity of the material of the fin is assumed to be a linear 
function of temperature according to; 
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𝑘(𝑇) = 𝑘𝑎[1 + 𝛽(𝑇 − 𝑇𝑎)],                (1) 
 
where 𝑘𝑎 is the thermal conductivity of the material at temperature Ta and β is a measure of thermal 
conductivity variation with temperature. 

The one-dimensional energy balance equation for the moving fin with a constant speed and losing 
heat simultaneously through convection and radiation can be written as in Aziz and Khani [15]; 
 
𝑑
𝑑𝑥
�[1 + 𝛽(𝑇 − 𝑇𝑎)] 𝑑𝑇

𝑑𝑥
� − ℎ𝑃

𝑘𝑎𝐴
(𝑇 − 𝑇𝑎) − 𝜀𝜎𝑃

𝑘𝑎𝐴
(𝑇4 − 𝑇𝑎4) − 1

𝛼
𝑣 𝑑𝑇
𝑑𝑥

= 0,           (2) 
 
where 𝛼 = 𝑘𝑎/𝜌𝑐 is the thermal diffusivity of the material, h is the constant heat transfer coefficient over 
the entire surface of the moving fin, ε is the constant emissivity from the surface of the fin due to 
radiation, 𝜌 is the density of material, c is the specific heat and σ is the Stefan-Boltzmann constant. The 
axial distance x is measured from the point where the fin emerges and comes in contact with the 
surrounding fluid as shown in Figure 1. 
 

                   q radiation, Ta  q convection, h, Ta  

                                                𝜀                                           P 

      L 𝑑𝑇
𝑑𝑥

= 0 

 

                 Tb 

 

                             x                                                                                                  A 

 
Figure 1 Convection and radiation from the surface of a moving fin. 
 
 
Making use of the following dimensionless parameters; 
 
𝜃 = 𝑇

𝑇𝑏
,  𝜃𝑎 = 𝑇𝑎

𝑇𝑏
,  𝐿∗ = 𝑃𝐿

𝐴
,  𝑋 = 𝑥𝐿∗

𝐿
,            (3) 

 

𝑎 = 𝛽𝑇𝑏 , 𝑁𝑐 = ℎ𝐴
𝑃𝑘𝑎

 , 𝑁𝑟 = 𝜀𝜎𝑇𝑏
3𝐴

𝑃𝑘𝑎
, 𝑃𝑒 = 𝑣𝐴

𝑃𝛼
,           (4) 

 
the structure of the Eq. (2) reduces to; 
 
𝑑
𝑑𝑋
�[1 + 𝑎(𝜃 − 𝜃𝑎)] 𝑑𝜃

𝑑𝑋
� − 𝑁𝑐(𝜃 − 𝜃𝑎) − 𝑁𝑟(𝜃4 − 𝜃𝑎4) − 𝑃𝑒 𝑑𝜃

𝑑𝑋
= 0,           (5) 

 
where L is the length between the point of emergence (x = 0) and the point where the temperature 
gradient in the fin is zero, 𝑁𝑐 is the convection-conduction number, 𝑁𝑟 is the radiation-conduction 
number, and Pe is the Peclet number which represents the dimensionless speed of the moving fin. When 
the material is stationary, Pe = 0 and Eq. (5) reduces to that of a stationary fin. For the sake of 
convenience it is assumed that 𝐿∗ = 1 in the following discussions. 

The boundary conditions are given by; 
 
𝑋 = 0,  𝜃(𝑋) = 1,               (6) 
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𝑋 = 1,   𝑑𝜃
𝑑𝑋

(𝑋) = 0.                (7) 
 
Haar Wavelets [22]  

For the convenience of the readers of this paper, a review of the Haar wavelets is presented. Let M 
= 2J (J is the maximal level of resolution); the ith wavelet is defined as; 
 

ℎ𝑖(𝑥) = �
1,              for 𝑥 ∈ [𝛼, 𝜉),
−1,          for 𝑥 ∈ [𝜉, 𝛾)
0,       elsewhere             

� i = 2, …, 2M             (8) 

 
where 𝛼 = 𝑘

2𝑗
 ,    𝜉 = 𝑘+0.5

2𝑗
,  and 𝛾 = 𝑘+1

2𝑗
. Here 𝑘 =  0, 1, . . . , 2𝑗 − 1 is the translation parameter and 

𝑗 =  0, 1, … , 𝐽 is the dilatation parameter. The number of wavelets is given by 𝑖 = 2𝑗 + 𝑘 + 1, and the 
maximum value is  𝑖 = 2𝑀. 
For i = 1, it is assumed that; 
 

ℎ1(𝑥) = �1, 𝑓𝑜𝑟 𝑥 ∈ [0,1).
0, elsewhere

�               (9) 

 
The following notations are introduced; 
 
𝑝𝑖,1(𝑥) = ∫ ℎ𝑖(𝑥′)𝑑𝑥′,

𝑥
0               (10) 

 
𝑝𝑖,𝜈+1(𝑥) = ∫ 𝑝𝑖,𝜈(𝑥′)𝑑𝑥′,𝑥

0  i = 2, 3, …           (11) 
 
These integrals can be evaluated using Eq. (8) and are given by; 
 

𝑝𝑖,1(𝑥) = �
𝑥 − 𝛼               for 𝑥 ∈ [𝛼, 𝜉),
𝛾 − 𝑥               for 𝑥 ∈ [𝜉, 𝛾),

      0          elsewhere                    
�            (12) 

 

𝑝𝑖,2(𝑥) =

⎩
⎪
⎨

⎪
⎧

1
2

(𝑥 − 𝛼)2                       for 𝑥 ∈ [𝛼, 𝜉),
1

22𝑗+2
− 1

2
(𝛾 − 𝑥)2             for 𝑥 ∈ [𝜉, 𝛾)

1
22𝑗+2

                                 for 𝑥 ∈ [𝛾, 1)   ,
0                         elsewhere                    

�           (13) 

 
Also, it is assumed that; 
 
𝐶𝑖,1 = ∫ 𝑝𝑖,1(𝑥′)𝑑𝑥′.1

0               (14) 
 
The collocation points are defined as; 
 
𝑋𝑗 = 𝑗−0.5

2𝑀
, j = 1, 2, …, 2M             (15) 

 
Re-writing Eq. (5) as; 
 
𝑑2𝜃
𝑑𝑋2

= 𝑓 �𝑋,𝜃, 𝑑𝜃
𝑑𝑋
�.               (16) 
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The Haar wavelet method for the above nonlinear problem subject to the boundary conditions is now 
discussed; 
 
𝜃(0) = 𝜆1,   𝜃′(1) = 𝜆2.              (17) 
 
Following Chen and Hsiao [18], it is assumed that; 
 
𝜃′′(𝑋) = ∑ 𝑎𝑖ℎ𝑖(𝑋).2𝑀

𝑖=1               (18) 
 
Integrating Eq. (18) from 0 to X, the derivative 𝜃′(𝑋) can be expressed as; 
 
𝜃′(𝑋) = 𝜃′(0) + ∑ 𝑎𝑖𝑝𝑖 ,1(𝑋).2𝑀

𝑖=1               (19) 
 
Putting 𝑋 = 1 in Eq. (19) and using the second boundary condition, the value of 𝜃′(0) = 𝜆2 − 𝑎1 is 
obtained. 
 
Now, Eq. (19) can be written as; 
 
𝜃′(𝑋) = (𝜆2 − 𝑎1) + ∑ 𝑎𝑖𝑝𝑖 ,1(𝑋)2𝑀

𝑖=1 .              (20) 
 
Now, again integrating Eq. (20) from 0 to X and using the first boundary condition; 
 
𝜃(𝑋) = 𝜆1 + (𝜆2 − 𝑎1)𝑋 + ∑ 𝑎𝑖𝑝𝑖,2(𝑋)2𝑀

𝑖=1              (21) 
 
is obtained. Substituting the values of 𝜃(𝑋), 𝜃′(𝑋) and 𝜃′′(𝑋) in Eq. (16) and applying discretization 
using collocation points given in Eq. (15), a nonlinear system is obtained; 
 
∑ 𝑎𝑖ℎ𝑖(𝑋𝑗)2𝑀
𝑖=1 = �𝑓(𝑋𝑗 , 𝜆1 + (𝜆2 − 𝑎1)𝑋𝑗 + ∑ 𝑎𝑖𝑝𝑖,2�𝑋𝑗�2𝑀

𝑖=1 ,� �(𝜆2 − 𝑎1) + ∑ 𝑎𝑖𝑝𝑖,1�𝑋𝑗�2𝑀
𝑖=1 �       (22) 

 
Solving the above 2𝑀 × 2𝑀 system using Newton’s method the unknown Haar coefficients 𝑎𝑖 ’𝑠, i = 1, 
2,…, 2M are obtained, which are eventually used to find the approximate solution. 
 
Theorem: Let 𝑓(𝑥) ∈ 𝐿2(𝑅) be a continuous function defined on (0, 1). Then, the error norm at Jth level 
satisfies the following inequality; 
 
�𝐸𝑗� ≤

𝐾2

12
2−2𝐽, 

 
where |𝑓′(𝑥)| ≤ 𝐾, ∀𝑥 ∈ (0,1) and 𝐾 > 0 and M is a positive number related to the Jth level resolution of 
the wavelet given by 𝑀 = 2𝐽. 
 
Proof. See ref. [25]. It is observed that the error norm at Jth level is inversely proportional to the level of 
resolution of the Haar wavelet, which ensures convergence of the method. 
 
Results and discussion 

In this section numerical results for temperature distribution in the fin, fin-tip temperature and fin-
base heat transfer for various values of significant parameters involved in the problem are provided. Also, 
the behavior of parameters and its effect on the temperature distribution, heat transfer characteristics has 
been studied. In particular, the effect of thermal conductivity parameter (a), sink temperature (𝜃a), 
convection-conduction parameter (Nc), radiation-conduction parameter (Nr), and Peclet number (Pe) are 
examined and are shown graphically in Figures 2 - 6. 
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Table 1 presents the comparison of temperature distribution in the fin for a = 0.6, θa = 0.2, Nc = 4, 
Nr = 4 and Pe = 3. It can be clearly seen that the Haar solution (HS) matches with the numerical solution 
(NS). Moreover, the accuracy of the solution can be increased by increasing the level of resolution of the 
wavelets. 
 
 
Table 1 Temperature distribution in the fin for a = 0.6, θa = 0.2, Nc = 4, Nr = 4 and Pe = 3. 
 

X 𝜃 (X) 
HS NS 

0.0 1 1 
0.1 0.902371 0.902372 
0.2 0.821278 0.821279 
0.3 0.752982 0.752984 
0.4 0.695052 0.695055 
0.5 0.645945 0.645947 
0.6 0.604781 0.604783 
0.7 0.571260 0.571262 
0.8 0.545663 0.545664 
0.9 0.528930 0.528928 
1.0 0.522806 0.522800 

 
 
The tables for fin-tip temperature and fin-base heat transfer are so constructed that the individual 

effect of each parameter on the temperature and heat characteristics can be clearly seen in the absence of 
other parameters. The comparison of fin-tip temperature (1) for a stationary fin (i.e. Pe = 0) is provided 
in Table 2a for different values of a, θa, Nc, Nr. In Table 2b the same data of fin-tip temperature is 
provided, but for the case of a moving fin (i.e. Pe = 3). 
 
 
Table 2a Comparison of fin-tip temperature for a stationary fin (Pe = 0). 
 

𝜃a a Nc Nr 
𝜃(1) 

HS NS 
0 0 0 0 1 1 

0 0 1 0.779145 0.779148 
0 2 0 0.459098 0.459098 
0 2 1 0.435646 0.435694 

0.6 0 0 1 1 
0.6 0 1 0.826746 0.826747 
0.6 2 0 0.566285 0.566280 
0.6 2 1 0.531579 0.531575 

0.8 0 0 0 1 1 
0 0 1 0.879763 0.879766 
0 2 0 0.891820 0.891820 
0 2 1 0.848914 0.848917 

0.6 0 0 1 1 
0.6 0 1 0.883882 0.883888 
0.6 2 0 0.896590 0.896591 
0.6 2 1 0.852071 0.852073 
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Table 2b Comparison of fin-tip temperature for a moving fin (Pe = 3). 
 

𝜃a a Nc Nr 
𝜃(1) 

HS NS 
0 0 0 0 1 1 

0 0 1 0.854452 0.854452 
0 2 0 0.658564 0.658560 
0 2 1 0.612390 0.612391 

0.6 0 0 1 1 
0.6 0 1 0.875709 0.875710 
0.6 2 0 0.708550 0.708548 
0.6 2 1 0.661585 0.661583 

0.8 0 0 0 1 1 
0 0 1 0.916623 0.916624 
0 2 0 0.931713 0.931713 
0 2 1 0.884040 0.884043 

0.6 0 0 1 1 
0.6 0 1 0.918933 0.918932 
0.6 2 0 0.933931 0.933927 
0.6 2 1 0.886516 0.886515 

 
 
The amount of the energy transferred from the fin base (i.e.,𝜃′(0)) is of major interest in 

engineering applications. Table 3a is tabulated for comparing the temperature gradient at the fin-base of a 
stationary fin (i.e. Pe = 0) for various values of a , θa , Nc , Nr . Further, the same data for a moving fin 
(i.e. Pe = 3) case is provided in Table 3b. 

 
 

Table 3a Comparison of temperature gradient at the fin-base for a stationary fin (Pe = 0). 
 

𝜃a a Nc Nr 
𝜃’(0) 

HS NS 
0 0 0 0 0 0 

0 0 1 -0.533989 -0.533986 
0 2 0 -1.256366 -1.256367 
0 2 1 -1.419205 -1.419141 

0.6 0 0 0 0 
0.6 0 1 -0.386105 -0.386104 
0.6 2 0 -0.886832 -0.886849 
0.6 2 1 -1.025683 -1.025685 

0.8 0 0 0 0 0 
0 0 1 -0.301153 -0.301149 
0 2 0 -0.251273 -0.251273 
0 2 1 -0.418442 -0.418439 

0.6 0 0 0 0 
0.6 0 1 -0.278361 -0.278358 
0.6 2 0 -0.231145 -0.231142 
0.6 2 1 -0.387706 -0.387706 
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Table 3b Comparison of temperature gradient at the fin-base for a moving fin (Pe = 3). 
 

𝜃a a Nc Nr 
𝜃’(0) 

HS NS 
0 0 0 0 0 0 

0 0 1 -0.253258 -0.253258 
0 2 0 -0.551052 -0.551030 
0 2 1 -0.712695 -0.712696 

0.6 0 0 0 0 
0.6 0 1 -0.220383 -0.220383 
0.6 2 0 -0.475111 -0.475115 
0.6 2 1 -0.606611 -0.606609 

0.8 0 0 0 0 0 
0 0 1 -0.148200 -0.148199 
0 2 0 -0.110210 -0.110211 
0 2 1 -0.228720 -0.228719 

0.6 0 0 0 0 
0.6 0 1 -0.142904 -0.142903 
0.6 2 0 -0.106692 -0.106697 
0.6 2 1 -0.219308 -0.219307 

 
 
The influence of the thermal conductivity parameter a on the temperature distribution along the fin 

for 𝜃𝑎 = 0.2, 𝑁𝑐 = 4, 𝑁𝑟 = 4 and 𝑃𝑒 = 3 is presented in Figure 2a. It is clear from the figure that as the 
thermal conductivity parameter is increased, the temperature distribution along the fin increases. 
Physically speaking, the effect of increase in thermal conductivity parameter enhances the heat 
conduction process, and results in an increase in the local temperature of the fin. It is further observed that 
the fin-tip temperature increases with an increase in thermal conductivity parameter. 

 

 
Figure 2a Temperature distribution along a fin for different values of a, with 𝜃𝑎 = 0.2,𝑁𝑐 = 4,𝑁𝑟 = 4 
and 𝑃𝑒 = 3. 
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In Figure 2b the temperature gradient along the fin for different values of a, with 𝜃𝑎 = 0.2,𝑁𝑐 =
4,𝑁𝑟 = 4 and 𝑃𝑒 = 3 has been plotted. It is observed from the figure that the heat transfer is more 
prominent for lower values of thermal conductivity parameter. The negative values of the derivative 
indicate the cooling process of the fin due to heat loss to the surroundings. 

 

 
Figure 2b Temperature gradient along the fin for different values of a, with 𝜃𝑎 = 0.2,𝑁𝑐 = 4,𝑁𝑟 = 4 and 
𝑃𝑒 = 3. 
 
 

Figure 3a depicts the effect of sink temperature 𝜃𝑎 on the temperature profile of the fin for 𝑎 = 0.2, 
𝑁𝑐 = 1, 𝑁𝑟 = 2 and 𝑃𝑒 = 3. From the figure it is observed that temperature distribution in the fin 
increases with increasing values of the sink temperature. The role of this effect can be understood due to 
increased conduction in the fin. 

 

 
Figure 3a Temperature distribution along the fin for different values of 𝜃𝑎, with 𝑎 = 0.2,𝑁𝑐 = 1,𝑁𝑟 = 2 
and 𝑃𝑒 = 3. 
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The graph of temperature gradient in the fin for different values of 𝜃𝑎, with 𝑎 = 0.2, 𝑁𝑐 = 1, 
𝑁𝑟 = 2 and 𝑃𝑒 = 3 has been plotted in Figure 3b. It is apparent from the figure that the heat transfer is 
higher at lower values of the sink temperature. The cause for this effect can be due to the augmented 
convection and radiation process which results in more heat loss. 

 

 
Figure 3b Temperature gradient along the fin for different values of 𝜃𝑎, with 𝑎 = 0.2,𝑁𝑐 = 1,𝑁𝑟 = 2 
and 𝑃𝑒 = 3. 
 
 

The effect of convection-conduction parameter 𝑁𝑐 on the temperature distribution for 𝑎 = 1, 
𝜃𝑎 = 0.8,𝑁𝑟 = 0.25 and 𝑃𝑒 = 2 is described in Figure 4a. It is evident that as the convection-conduction 
parameter is increased, it attributes to more heat loss from the fin, and hence cooling of the fin occurs, 
which shows a decrease in the temperature profile. The graph of temperature gradient for 𝑎 = 1, 𝜃𝑎 =
0.8,𝑁𝑟 = 0.25 and 𝑃𝑒 = 2 is plotted in Figure 4b. It is noticed from the figure that the heat transfer 
increases with an increase in convection-conduction parameter. 

 

  
Figure 4a Temperature distribution along the fin for different values of 𝑁𝑐, with 𝑎 = 1, 𝜃𝑎 = 0.8,𝑁𝑟 =
0.25 and 𝑃𝑒 = 2. 
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Figure 4b Temperature gradient along the fin for different values of 𝑁𝑐, with 𝑎 = 1, 𝜃𝑎 = 0.8,𝑁𝑟 = 0.25 
and 𝑃𝑒 = 2. 
 
 

The variation of temperature distribution for different values of radiation-conduction parameter 𝑁𝑟 
with 𝑎 = 0.6, 𝜃𝑎 = 0.4, 𝑁𝑐 = 1 and 𝑃𝑒 = 2.5 is illustrated in Figure 5a. As anticipated, the increase of 
radiation-conduction parameter amplifies the heat loss rate, which in turn lowers the temperature 
distribution. Figure 5b depicts the temperature gradient for 𝑎 = 0.6, 𝜃𝑎 = 0.4, 𝑁𝑐 = 1 and 𝑃𝑒 = 2.5 for 
different values of the radiation-conduction parameter. Clearly, the figure demonstrates that the heat 
transfer increases with increasing radiation-conduction parameter. The heat loss due to radiation will be 
more prevalent if the forced convection is weak or absent or when only natural convection occurs. 
 

 
Figure 5a Temperature distribution along the fin for different values of 𝑁𝑟, with 𝑎 = 0.6, 𝜃𝑎 = 0.4,𝑁𝑐 =
1 and 𝑃𝑒 = 2.5. 
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Figure 5b Temperature gradient along the fin for different values of 𝑁𝑟, with 𝑎 = 0.6, 𝜃𝑎 = 0.4,𝑁𝑐 = 1 
and 𝑃𝑒 = 2.5. 
 
 

The effect of a dimensionless speed parameter (i.e. the Peclet number) on the temperature profile is 
elucidated for 𝑎 = 0.8, 𝜃𝑎 = 0.6, 𝑁𝑐 = 0.25 and 𝑁𝑟 = 1 in Figure 6a. It is evident that the temperature 
distribution increases with an increase in the Peclet number. This is because as the fin moves more 
rapidly the exposure time to the surroundings reduces, which results in higher temperature variation. 
Figure 6b is plotted to show the effect of Pe on the heat transfer rate for fixed 𝑎 = 0.8, 𝜃𝑎 = 0.6, 
𝑁𝑐 = 0.25 and 𝑁𝑟 = 1. Similar results are noticed from the figure that the heat transfer increases as the 
Peclet number increases. 

 

 
Figure 6a Temperature distribution along the fin for different values of Pe, with 𝑎 = 0.8, 𝜃𝑎 = 0.6,𝑁𝑐 =
0.25 and 𝑁𝑟 = 1. 
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Figure 6b Temperature gradient along the fin for different values of Pe, with 𝑎 = 0.8, 𝜃𝑎 = 0.6,𝑁𝑐 =
0.25 and 𝑁𝑟 = 1. 
 
 
Conclusions 

In this paper, the effects of the significant parameters i.e. the thermal conductivity parameter (a), 
sink temperature (𝜃a), convection-conduction parameter (Nc), radiation-conduction parameter (Nr), Peclet 
number (Pe) on the temperature distribution and heat transfer characteristics of continuously moving 
convective-radiative fin with temperature-dependent thermal conductivity have been studied. The 
governing equations are expressed in non-dimensional form and are solved using Haar wavelets. The 
effects of the relevant parameters on the temperature distribution and heat transfer characteristics have 
been investigated both numerically and graphically. The Haar wavelet method provides highly accurate 
and stable results. Also, the method is computationally efficient and the algorithm can be easily 
implemented on the computer. This ensures that the Haar wavelet method can be used as an alternative 
tool for solving varied kinds of linear and nonlinear problems arising in science and engineering. 
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