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Abstract 

In this paper, a matrix method for the approximate solution of high order fractional differential 

equations (FDEs) in terms of a truncated Legendre series is presented. The FDEs and its initial or 

boundary conditions are transformed to matrix equations, which correspond to a system of algebraic 

equations with unknown Legendre coefficients. The solution of this system yields the Legendre 

coefficients of the solution formula. Several numerical examples, such as Cauchy and Bagley-Torvik 

fractional differential equations, are provided to confirm the accuracy and the effectiveness of the 

proposed method. 

Keywords: Ordinary fractional differential equations, shifted Legendre polynomials, Caputo derivatives, 

computational matrix method, cauchy equations, Bagley-Torvik equations 

 

Introduction 

FDEs have been the focus of many studies, due to their frequent appearance in various applications 

in fluid mechanics, biology, physics and engineering [1]. Consequently, considerable attention has been 

given to the solutions of fractional differential equations and integral equations of physical interest. Most 

FDEs do not have exact analytic solutions, so approximate and numerical techniques [2-13] must be used. 

Representation of a function in terms of a series expansion using orthogonal polynomials is a 

fundamental concept in approximation theory, and forms the basis of solutions of differential equations 

[14,15]. In [16] Khader introduced an efficient numerical method for solving fractional diffusion 

equations using shifted Chebyshev polynomials, and also introduced in [17] an operational matrix method 

for solving nonlinear multi-order fractional differential equations. In [18] a spectral method for solving 

multi-term fractional orders differential equations was introduced. In [19] the Chebyshev collocation 

method was used to solve high order nonlinear ordinary differential equations. In [20], Bharawy et al. 

introduced a quadrature Tau method for solving fractional differential equations with variable 

coefficients.Collocation methods have become increasingly popular for solving differential equations. 

They are also very useful in providing highly accurate solutions to nonlinear differential equations [21-

25]. A nonlinear fractional Langevin equation with three-point boundary conditions was solved in [26] 

using the Jacobi-Gauss-Lobatto collocation method. In [27], Doha et al. derived the Jacobi operational 

matrix of fractional derivatives, which was applied together with spectral tau and collocation methods to 

obtain the numerical solutions of general linear and nonlinear multi-term FDEs, respectively, which may 

be considered a generalization of  [28,29]. More recently, a shifted Legendre tau method was introduced 

to get a direct solution technique for solving multi-order FDEs subject to multi-point boundary conditions 

in [30]. Yuzbasi [31] proposed a new collocation method based on Bessel functions of the first kind to 

introduce an approximate solution of the Bagley-Torvik equation, which is a class of FDEs. Recent 

papers [32,33] are referred to, where the Haar wavelet operational matrix of fractional integration, 

Chebyshev wavelets, the generalized block pulse operational matrix of fractional integration, and the 

operational Chebyshev matrix of fractional integration, were developed for solving linear and nonlinear 

FDEs. 
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In this study, a computational matrix method is presented to find the approximate solutions of high 

order FDEs with variable coefficients in terms of shifted Legendre polynomials, via Legendre collocation 

points in the interval      . The main characteristic of this new technique is that it gives a straightforward 

algorithm in converting FDEs to a system of algebraic equations. This algorithm has several advantages, 

such as being non-differentiable, non-integral, and easily implemented on a computer, because its 

structure is dependent on matrix operations only. 

The aim of the present paper is concerned with the application of this approach to obtain the 

approximate solution of FDEs of the following linear form; 

 

            
         

                                      (1) 

 

and the more complex non-linearity form; 

 

          
           

                    
                      (2) 

 

subject to the multi-point boundary conditions; 

 

     
       

                                                (3) 

 

where      is an unknown function from         , the known functions             are defined on the 

interval      ,                       and                           
    , the parameter   refers to the fractional order of spatial derivative,      and       are the source 

functions and        are constants. The existence and uniqueness of the solutions of FDEs (1) - (2) have 

been studied in [34]. 

The structure of this paper is arranged in the following way. In section  , some basic definitions 

about Caputo fractional derivatives and properties of the shifted Legendre polynomials are introduced. In 

section  , the fundamental relations for the new operational matrix method are introduced. In section  , 

the procedure of solution for FDEs of linear form is clarified. In section  , the procedure of solution for 

FDEs of non-linear form is clarified. In section  , numerical examples are given to show the accuracy of 

the presented method. Finally, in section  , the report ends with a brief conclusion and some remarks. 

 

Preliminaries and notations  

The fractional derivative in the Caputo sense  
In this subsection, some necessary definitions and mathematical preliminaries of the fractional 

calculus theory that will be required in the present paper are presented. 

 

Definition 1  

The Caputo fractional derivative    of order   is defined in the following form; 

 

        
 

      
   

 

 

       

          
                         

 

where               
 

Similar to integer-order differentiation, the Caputo fractional derivative operator is a linear operation: 

 

                                                                                                                              (4)  

where   and   are constants.  The Caputo derivative is obtained as; 

 

                                     (5) 
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                                              (6) 

 

The ceiling function     is used to denote the smallest integer greater than or equal to   and    
         . Recall that for    , the Caputo differential operator coincides with the usual differential 

operator of the integer order. 

For more details on fractional derivatives definitions and its properties, see [35,36]. 

 

Some properties of the shifted Legendre polynomials 

The well known Legendre polynomials      , defined on the interval       , have the following 

properties; 

 

                                                    
 

It is well known that the weight function is         and the weighted space   
        is equipped with 

the following inner product and norm; 

 

        
 

  

                            
 
    

 

The set of Legendre polynomials forms a complete orthogonal system           and; 

 

       
     

 

    
   

 

is obtained. In order to use these polynomials on the interval       the so-called shifted Legendre 

polynomials are defined by introducing the change of variable   
  

 
  . 

 

The shifted Legendre polynomials are defined as; 

 

  
        

  

 
                 

            

 

The analytic form of the shifted Legendre polynomial   
     of degree   is given by; 

 

  
        

       
     

      

             
      (7) 

 

Let        , and the weighted space    
       is defined with the following inner product and norm; 

 

          
 

 

                                 

 
   

 

The set of the shifted Legendre polynomials forms a complete    
       orthogonal system and;  

 

   
       

  
 

 
   

 

    
. 
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is obtained. The function      which is square integrable in      , may be expressed in terms of shifted 

Legendre polynomials as; 

 

       

 

   

     
      

 

where the coefficients    are given by; 

  

   
 

   
       

   
 

 
      

                               (8) 

 

Fundamental relations  

It is suggested that the solution               can be approximated in terms of the first      -
terms of shifted Legendre polynomials only as: 

 

         
         

       (9)      

 

To express the fractional derivative of the function      in terms of shifted Legendre polynomials, the 

following theorem is introduced.  

 

Theorem 1  

Let      be approximated by shifted Legendre polynomials (9) and also    ; then, its Caputo 

fractional derivative can be written in the following form; 

 

              
      

         
     

                                   

                                
    

      (10) 

 

where                    and      is the pochhammer symbol. 

 

Proof. Since the Caputo's fractional differentiation is a linear operation; 

 

             
       

   
      (11) 

 

is obtained. Employing Eqs. (4) - (6) in Eq. (7); 

 

     
                                        (12) 

 

is obtained. Therefore, for                    and by using Eqs. (4) - (6) in Eq. (7);  

     
       

 

   

       
      

               
       

      
         

         

                      
                    (13) 

 

is obtained. From Eqs. (11) - (13); 

 

             
         

         
            

                      
     (14) 

 

is obtained. Now,      can be expressed approximately in terms of shifted Legendre series, so;  
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      (15) 

 

is obtained, where,     is obtained from (8) with           [11]. 

A combination of Eqs. (13)-(15) leads to the desired result.  

The function       defined in (9) can be written in the following matrix form; 

 

              (16) 

 

where         
         

          
                               

    
 

Theorem 2  

Let      be a shifted Legendre vector defined in (16) and also    ; then, the matrix 

representation of          has the following form; 

 

                      (17) 

 

where      is the             computational matrix of fractional derivatives of order   in the 

Caputo sense, and is defined as follows; 

 

      
 
      (18) 

where 

 

 
 
 

 
 
 
 
 
 
 
    

       
 

         
  

     

    
       

 
         

  
     

    
       

 
         

  
     

       
    

       
 

         
  

      
 
 
 
 
 
 

           

  (19) 

 

such that; 

 

 
     

   

 

     

  
                                
                               

                            

 

Proof. Using Eq. (10), the following relation can be written; 
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Making use of the previous relation gives             operational matrix of fractional derivative 

of order   (18). 

Now, (18) and Legendre collocation points      (i.e. the roots of     
    ) are substituted into (17)  

to get; 

 

                 
 
                      

 

or in the compact form; 

 

        
 
     (20) 

 

where            and; 

 

                    
                            

   
 

To obtain the matrix representation of       using Legendre collocation points; 
 

 

      

      
 
      

   

        
        
    
        

 

   

 

     
     
 
     

     

 

is obtained, which can be written in the following compact form (21); 
 

                                                                                                                                                      (21)   
 

where        such that; 
 

   

        
        
    
        

         

    
    
    
    

   

 

To obtain the matrix representation of               using Legendre collocation points   ; 
 

 
 
 
 
           

        

           
        

 
           

         
 
 
 

 

 
 
 
 
            

            
    
             

 
 
 

 
 
 
 
         

         
 
          

 
 
 

  

 

is obtained, which can be written in the following compact form; 

 

               
  
      

  
                    (22) 

where  
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The operational matrices of fractional derivatives for Chebyshev, Legendre and Jacobi polynomials are 

given in detail in [17,27,28] and are used with spectral methods for solving linear and nonlinear FDEs. 

 

Procedure of solution for the linear form of FDEs  
To obtain the shifted Legendre solution of Eq. (1) under the mixed conditions (3), the following 

matrix method, based on computing Legendre coefficients, is used. Firstly, Legendre collocation points 

   are substituted into Eq. (1); 

 

             
          

                                         ; (23) 

 

this system (23) can be written in the following matrix form; 

 

    
 
      

        
  
           (24) 

 

where 

 

    

         
         
    
         

         

     
     
 
     

   

 

Eq.(24) is the main matrix equation for the solution of Eq. (1) and takes the following compact form: 

 

                
 
   

   

   

     
  
      

 

which corresponds to a system of       linear algebraic equations with unknown Legendre coefficients 

              . In addition, the matrix representation of the mixed conditions (3) has the following 

form; 

 

     
               

 
                                                           

 

which can be written in the following compact form; 

 

                  

   

   

            
 
  

 

Replacing   rows of the augmented matrix       by rows of the matrix        , and getting       

or       which is a linear algebraic system, the unknown Legendre coefficients are obtained after 
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solving it, and so the solution of Eq. (1) can be expressed as a truncated series from the shifted Legendre 

polynomials (9). 

 

Procedure of solution for the non-linear form of FDEs  
To obtain the shifted Legendre solution of Eq. (2) under the mixed conditions (3), the following 

matrix method, based on computing Legendre coefficients, is used. Firstly, Legendre collocation points 

are substituted into Eq. (2); 

 

           
            

      
                 

        
                               (25) 

 

this system (25) can be written in the following matrix form; 

 

        
        

                
                (26) 

 

and substituted by Eqs. (20), (22) into Eq. (26); 

 

    
 
    

            
           

  
       

  
      

  
       (27) 

 

is obtained, where  

 

    

              
              
            
              

         

     
     
    
     

   

 

Eq.(27) is the main matrix equation for the solution of Eq. (2), and can be written in the following 

compact form; 

 

                
 
   

 

   

         
           

  
       

  
      

  
   

 

which corresponds to a system of       non-linear algebraic equations with unknown Legendre 

coefficients               . In addition, the matrix representation of the mixed conditions (3) has the 

following form; 

 

     
              

 
                                             

 

which can be written in the following compact form; 

 

                  

   

   

           
 
  

 

Replacing   rows of the augmented matrix       by rows of the matrix        , and getting       or 

      which is a system of non-linear algebraic equations, the unknown Legendre coefficients are 

obtained after solving it, and so the solution of Eq. (2) can be expressed as a truncated series from the 

shifted Legendre polynomials (9). 
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Numerical simulation  

In order to illustrate the effectiveness of the proposed method, it is implemented to solve the 

following examples of ordinary fractional differential equations. 

 

Example 1:  
 

Consider the non-homogenous fractional Bagley-Torvik equation of the linear form; 

 

        
 

                             (28) 

 

with the following initial conditions                   . 

 

The exact solution to the example (28) is             

The suggested method is applied with    , and the solution      is approximated as follows; 

 

         
        

       (29) 

 

For    , a system of 3 linear algebraic equations is obtained, two of them from the initial conditions 

and the other from the main equation using the collocation point        which is the root of     
     

 . Eq. (29) can be written in the following matrix form; 

  

              

 

where         
                

                
                                    

   
 

Using the procedure in section 4, the main matrix equation for this problem is; 

 

    
   
    

     
         (30) 

 

where  

                              
   

  

    
   
   

          
     

  

        
        
         

                

The main matrices for the initial conditions are; 

  

                      
   
        (31) 

where                             
   

  

   
   
   

    

From Eqs. (30) - (31), the following system of linear algebraic equations;  

 

                    (32) 

  

             (33) 

  

              (34) 

are obtained. Therefore, after solving this system (32)-(34),                    are obtained. So, 

the approximate solution; 
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is obtained, which coincides with the exact solution of this example. 

 

Example 2:  
 

Consider the following fractional Cauchy problem with variable coefficients of the linear form on 
     ; 
 

                                         
 

      
          

 

      
             (35) 

 

with the following initial conditions                   . 

 

The exact solution to the problem (35) is           
 

The suggested method is applied with    , and the solution      is approximated as follows; 

 

         
        

       (36) 

 

For    , a system of 4 linear algebraic equations is obtained, two of them from the initial conditions 

and the other from the main equation using the 2 collocation points                          

which are the roots of   
      . Eq. (36) can be written in the following matrix form; 

  

              

 

where         
              

              
             

                                          
   

 

Using the procedure in section 4, the main matrix equation for this problem is; 

 

    
     

      
   
      

     
           (37) 

 

where  

   
                 
                        

     
 

 

 
 

                 
                 
                 
                 

 

 
 
  

 
   

 

 

 
 

    
    
     
    

 

 
 
               

     
 

 

 
 

                        
                         
                        
                      

 

 
 
  

 

   
        
                    

        
                    

       
       

   

 

The main matrices for the initial conditions are; 

  

                       
   
        (38) 
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where                             
 

From Eqs. (37) - (38), the following system of linear algebraic equations is obtained; 

  

                                                 (39) 

  

                                                  (40) 

  

                (41) 

  

                 (42) 

Therefore, after solving the system (39)-(42); 

 

                                                         
are obtained. So, the approximate solution for this problem; 

 

           
          

          
          

                               
 

is obtained. In Figure 1, the behavior of the obtained approximate solution with the exact solution is 

presented. Also, in Table 1, the absolute error between the exact solution and the obtained approximate 

solution with different values of m (m = 5, 7) is presented. From Figure 1, it can be seen that the 

approximate solution is in excellent agreement with the exact solution. From Table 1, it can also be 

confirmed that if m is increased, a more accurate approximate solution will be obtained. 

 

 
Figure 1 Comparison between the exact solution and the approximate solution with    . 
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Table 1 The absolute error between the exact solution and the obtained approximate solution with 

different values of m. 

 

x Absolute error at m = 5 Absolute error at m = 7 

0.0 

1.0 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

0.53741×     

0.95347×     

0.03245×     

0.74185×     

0.12365×     

0.01548×     

0.12355×     

0.51597×     

0.36985×     

0.76841×     

0.36587×     

0.53741×     

0.12458×     

0.22400×     

0.55879×     

0.12254×     

0.15670×     

0.75346×     

0.75398×     

0.15975×     

0.12578×     

0.12358×     

 

 

Example 3:  

Consider the following fractional Bagley-Torvik equation of the non-linear form on        
 

                           (43) 

 

with the following initial conditions                       and            . 

The exact solution to the problem (43) is            

The suggested method is applied with    , and the solution      is approximated as follows; 

 

         
        

       (44) 

 

For    , a system of 4 non-linear algebraic equations is obtained, three of them from the initial 

conditions and the other from the main equation using the collocation point       . Eq. (44) can be 

written in the matrix form; 

  

              

 

where         
                

                
                

                                    
   

 

Using the procedure in section 5, the main matrix equation for this problem is; 

 

    
   
     

     
               (45) 

 

where                                                               
 

 
   

 

 

 
 

      
    
    
    

 

 
 
      

     
 

 

 
 

           
           
           
           

 

 
 
  

 

The main matrices for the initial conditions are; 
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        (46) 

 

where  

                                     
   

 

 

 
 

    
    
     
    

 

 
 
          

   
 

 

 
 

     
     
    
    

 

 
 
  

From Eqs. (45) - (46),  four non-linear algebraic equations; 

  

                                                   (47) 

  

                (48) 

  

                 (49) 

  

              (50) 

 

are obtained. Therefore, after solving the system of Eqs. (47) - (50); 

                                               
 

are obtained. So, the approximate solution; 

  

          
          

          
          

         
 

is obtained, which is the exact solution for this example. 

 

Example 4:  
 

Consider the following fractional problem of the non-linear form on         
 

                           (51) 

 

with the following initial conditions                                    and             . 

 

The exact solution to the problem (51) is            

 

The suggested method is applied with    , and the solution      is approximated as follows; 

  

         
        

       (52) 

 

For    , a system of 5 non-linear algebraic equations is obtained, four of them from the initial 

conditions and the other from the main equation using the collocation point        which is the root of 

  
      . Eq. (52) can be written in the matrix form; 

  

              

 

where         
           

             
           

           
                                                  

   
 

Using the procedure in section 5, the main matrix equation for this problem is; 
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                (53) 

 

where  
   
        

     
can be obtained by formula (19) as in the preceding examples; 

 

                                                          
 

The main matrix relations for initial conditions are; 

  

                         
   
                     

   
                     

   
       (54) 

 

where                                        
 

 
   

 

 

  
 

     
     
      
      
     

 

  
 
   

   
 

 

  
 

       
      
       
     
     

 

  
 
       

 
   

 

 

  
 

       
       
     
     
     

 

  
 
  

 

From Eqs. (53) - (54), a system of 5 non-linear algebraic equations is obtained. Therefore, after solving 

this system; 

  

                                                         
 

are obtained. So, the approximate solution; 

  

          
          

          
          

          
         

 

is obtained, which is the exact solution for this example. 

 

Example 5:  
 

Consider the following fractional problem of the non-linear form on        
 

                                    (55) 

 

where      
 

      
     

  

            
         ,                                with the 

following initial conditions                    . The exact solution to the problem (55) is 

         
The suggested method is applied with    , and the solution      is approximated as follows; 

 

         
        

       (56) 
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For    , a system of 4 non-linear algebraic equations is obtained, three of them from the initial 

conditions and the other from the main equation using the collocation point        which is the root of 

  
      . Eq. (56) can be written in the matrix form; 

              

 

where         
           

             
           

                                          
   

Using the procedure in section 5, the main matrix equation for this problem is; 

 

    
      

   
      

    
      

               (57) 

 

where  
      

  
      

       
      

 can be obtained by formula (19) as in the preceding examples; 

                                              
 

The main matrix relations for initial conditions are; 

 

                         
   
                     

   
        (58) 

 

where                               
From Eqs. (57) - (58), a system of 5 non-linear algebraic equations is obtained. Therefore, after solving 

this system; 

                                                                      , 
are obtained. So, the approximate solution; 

           
          

          
          

                
is obtained, which is the exact solution for this example. 

 

 
Figure 2 The behavior of the obtained approximate solution at (                         ) with 

the exact solution. 
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In Figure 2, the behavior of the obtained approximate solution at (                     
    ) is presented with the exact solution. From this figure, it can be seen that the approximate solution is 

in excellent agreement with the exact solution. 

From the introduced examples in this section, it is obvious that when   increased, the approximate 

solution improved, as the errors are decreased, which is the main advantage of the proposed matrix 

method. This approach can also reformulated using the general Jacobi polynomials. 

 

Conclusions and remarks  

In this paper, a new Legendre approximation method for the solution of higher order fractional 

differential equations has been presented. These equations are transformed to a system of algebraic 

equations which provided a matrix representation. This new proposed method is non-differentiable, non-

integral, straightforward, and well adapted to computer implementation. The solution is expressed as a 

truncated Legendre series, and so it can be easily evaluated for arbitrary values of   using any computer 

program without any computational effort. From illustrative examples, it can be seen that this matrix 

approach can obtain very accurate and satisfactory results. An important feature of this method is that an 

analytical solution can be obtained, such as has been demonstrated in examples 1, 3 and 4, when the exact 

solution is a polynomial and the errors are decreased when   is increased. All computational results are 

made using Mathematica program. 
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