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Abstract  

The work presents an analysis of unsteady, two-dimensional, laminar, boundary-layer flow of a 
viscous, incompressible, electrically conducting and radiating fluid along a semi-infinite vertical 
permeable moving plate. Heat and mass transfer is analyzed by taking into account the effect of viscous 
dissipation. The dimensionless governing equations for this investigation are solved numerically by a 
finite element method. The effects of the various parameters on the velocity, temperature and 
concentration profiles are presented graphically and values of skin-friction, Nusselt number and 
Sherwood number for various values of physical parameters are presented in tables. 
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Introduction 

Simultaneous heat and mass transfer from different geometries embedded in porous media has many 
engineering and geophysical applications such as geothermal reservoirs, drying of porous solids, thermal 
insulation, and enhanced oil recovery, packed-bed catalytic reactors, cooling of nuclear reactors and 
underground energy transport. Bejan and Khair [1] treated one of the most fundamental cases, namely 
buoyancy- induced heat and mass transfer from a vertical plate embedded in a saturated porous medium. 
Cheng and Minkowycz [2] presented similarity solutions for free convection from a vertical plate in a 
fluid saturated porous medium. Lai and Kulacki [3] investigated coupled heat and mass transfer by mixed 
convection from an isothermal vertical plate in a porous medium. 

There has been a renewed interest in studying magnetohydrodynamic (MHD) flow and heat transfer 
in porous and non-porous media due to the effect of magnetic fields on the boundary layer flow control 
and on the performance of many systems using electrically conducting fluids. Raptis et al. [4] analyzed 
hydromagnetic free convection flow through a porous medium between two parallel plates. Gribben [5] 
presented the boundary layer flow over a semi-infinite plate with an aligned magnetic field in the 
presence of a pressure gradient. He obtained solutions for large and small magnetic Prandtl number using 
the method of matched asymptotic expansion. Helmy [6] presented an unsteady two-dimensional laminar 
free convection flow of an incompressible, electrically conducting (Newtonian or polar) fluid through a 
porous medium bounded by infinite vertical plane surface of constant temperature. Gregantopoulos et al. 
[7] studied two-dimensional unsteady free convection and mass transfer flow of an incompressible 
viscous dissipative and electrically conducting fluid past an infinite vertical porous plate. For some 
industrial applications such as glass production and furnace design, and in space technology applications 
such as cosmical flight aerodynamics rocket, propulsion systems, plasma physics and spacecraft re-entry 
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aerothermodynamics which operate at higher temperatures, radiation effects can be significant. Chambre 
and Young [8] have presented a first order chemical reaction in the neighborhood of a horizontal plate. 
Dekha et al. [9] investigated the effect of the first order homogeneous chemical reaction on the process of 
an unsteady flow past a vertical plate with a constant heat and mass transfer. Muthucumaraswamy [10] 
presented heat and mass transfer effects on a continuously moving isothermal vertical surface with 
uniform suction by taking into account the homogeneous first order chemical reaction. 
Muthucumaraswamy and Meenakshisundaram [11] investigated the theoretical study of chemical reaction 
effects on vertical oscillating plate with variable temperature and mass diffusion. 

In all these investigations, the viscous dissipation is neglected. The viscous dissipation heat in the 
natural convective flow is important, when the flow field is of extreme size or at low temperature or in a 
high gravitational field. Gebhar [12] showed the importance of viscous dissipative heat in free convection 
flow in the case of isothermal and constant heat flux in the plate. Soundalgekar [13] analyzed the effect of 
viscous dissipative heat on the two dimensional unsteady, free convective flow past a vertical porous 
plate when the temperature oscillates in time and there is constant suction at the plate. Cookey et al. [14] 
investigated the influence of viscous dissipation and radiation on unsteady MHD free convection flow 
past an infinite heated vertical plate in porous medium with time dependent suction. 

The role of thermal radiation on the flow and heat transfer process is of major importance in the 
design of many advanced energy conversion systems operating at higher temperatures. Thermal radiation 
within these systems is usually the result of emission by hot walls and the working fluid. Bakier and 
Gorla [15] studied thermal radiation effects on mixed convection from horizontal surfaces in porous 
medium. Bakier [16] reported the effect of radiation on the mixed convection flow on an isothermal 
vertical surface in a saturated porous medium and has obtained a self- similar solution. Hossain and 
Takhar [17] analyzed the effect of radiation on mixed convection along a vertical plate with uniform 
surface temperature. Kim and Fedorov [18] analyzed transient mixed radiative convective flow of a 
micropolar fluid past a moving semi-infinite vertical porous plate. Radiation effects on an unsteady MHD 
convective heat and mass transfer flow past a semi-infinite vertical permeable moving plate embedded in 
a porous medium was studied by Prasad and Reddy [19]. 

The objective of the present paper is to analyze the radiation effects on an unsteady two-
dimensional laminar mixed convective boundary layer flow of a viscous, incompressible, electrically 
conducting fluid, along a vertical moving semi-infinite permeable plate with suction, embedded in a 
uniform porous medium, in the presence of a transverse magnetic field, by taking into account the effects 
of viscous dissipation. The dimensionless governing equations for this investigation are solved 
numerically by a finite element method. The behaviors of the velocity, temperature, concentration, skin-
friction, Nusselt number and Sherwood number have been discussed for variations in the governing 
parameters. 
 

 
Figure 1 Physical model and coordinate system of the problem. 
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Formulation of the problem 

An unsteady two-dimensional free convection flow of a viscous incompressible electrically 
conducting, and radiating fluid in an optically thick fluid past a semi-infinite vertical permeable moving 
plate embedded in a uniform porous medium, in the presence of a transverse magnetic field, by taking 
into account the effects of viscous dissipation considered (Figure 1). The x′- axis is taken along the plate 
in the upward direction and the y ′ - axis is taken normal to the plate. A uniform magnetic field is applied 
in the direction perpendicular to the plate. The fluid is assumed to be slightly conducting, and hence the 
magnetic Reynolds number is much less than unity and the induced magnetic field is negligible in 
comparison with the applied magnetic field. The foreign mass present in the flow is assumed to be at low 
level and hence Soret and Dufour effects are negligible. Further, due to the semi-infinite plane surface 
assumption, the flow variables are functions of normal distance y ′  and the time t ′  only. Now, under the 
usual Boussinesq’s approximation, the governing boundary layer equations of the problem are;  
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where vu ′′,  are the velocity components in the yx ′′,  directions, respectively. t′ - the time,  ρ -the fluid 
density, p′ - the pressure, ν - the kinematic viscosity, σ - fluid electrical conductivity, sc - concentration 

susceptibility,
 pc - the specific heat at constant pressure, g - the acceleration due to gravity, β  and ∗β - 

the thermal and concentration expansion coefficient respectively, 0B - the magnetic induction, α - the 
fluid thermal diffusivity, K ′ - the permeability of the porous medium, T ′ - temperature of the fluid in the 
boundary layer, C ′ - species concentration in the boundary layer, k -the thermal conductivity, q′ - the 

radiative heat flux, ∗σ - the Stefan-Boltzmann constant, D - the mass diffusivity, rK ′ - the chemical 
reaction parameter. The third and fourth terms on the right hand side of the momentum Eq. (2) denote the 
thermal and concentration buoyancy effects, respectively. Also, the second and third terms on the right 
hand side of the energy Eq. (3) and represent the radiative heat flux and viscous dissipation, respectively. 

It is assumed that the permeable plate moves with a constant velocity in the direction of the fluid 
flow and the free stream velocity follows the exponentially increasing small perturbation law. In addition, 
it is assumed that the temperature and concentration at the wall as well as the suction velocity are 
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exponentially varying with time. Eq. (4) is the differential approximation for radiation under fairly broad 
realistic assumptions.  

The boundary conditions for the velocity, temperature and concentration fields are; 
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where pu′  

is the plate velocity, wT ′  and wC ′  are the wall dimensional temperature and concentration, 

respectively, ∞′T  and ∞′C  are the free stream dimensional temperature and concentration, respectively, 
∞′U  the free stream velocity, 0U  and n′ -the constant. From the Eq. (1), it is clear that suction velocity 

normal to the plate is either a constant or a function of time. Hence, it is assumed in the form; 

  
( )tnAeVv ′′+−=′ ε10                                     (7) 

 
where A is a real positive constant, ε  and Aε  are small values less than unity and 0V  is a scale of suction 
velocity which is a non-zero positive constant. Outside the boundary layer, Eq. (2) gives; 
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Since the medium is optically thin with relatively low density and ,1<<α  the radiative heat flux 

given by Eq. (3), in the spirit of Cogley et al. [20] becomes; 
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is the Planck’s function. 

In order to write the governing equations and the boundary conditions in dimensionless form, the 
following non-dimensional quantities are introduced. 
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In view of Eqs. (4) and (7 - 10), Eqs. (2), (3) and (5) reduce to the following dimensionless form; 
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MN 1  and ,,,, KMGmGr  ScEcR ,,Pr,  and rK  are the thermal Grashof number, solutal 

Grashof number, magnetic field parameter, permeability parameter, Prandtl number, radiation parameter, 
Eckert number, Schmidt number and chemical reaction parameter, respectively. 

 The corresponding boundary conditions are; 
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Solution of the problem 

By applying the Galerkin finite element method for Eq. (11) over the element )(e , ( )kj yyy ≤≤  
is; 
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Integrating the first term in equation by parts one obtains; 

 

( )
( )

( ) ( )

( )
( ) ( )

( )∫















=





















−+

∂
∂

+
∂
∂

−
∂
∂

∂
∂

−




∂
∂

k

j

T

T

k

j

T

y

y
e

ee
e

ee

y

y

e
e

dy
RuN

t
u

y
uPN

y
u

y
N

y
uN

0

11

 

                          (16)                                               

 
Neglecting the first term in Eq. (16) we get;  
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Simplifying we get; 
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where prime and dot denote differentiation w.r.t y  and time t , respectively. Assembling the element 
equations for two consecutive elements ii yyy ≤≤−1  and 1+≤≤ ii yyy  the following is obtained; 
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Now put row corresponding to the node i  to zero, from Eq. (17) the difference schemes with 

hl e =)( is; 
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Applying the Crank-Nicholson method to the above equation we get; 
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Applying a similar procedure to Eqs. (12) and (13) we get; 
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Here
2h

kr =  and kh,  are the mesh sizes along −y direction and time −t direction, respectively. 

Index i  refers to the space and j refers to the time. In Eqs. (19) and (20), taking ni )1(1=  and using 
initial and boundary conditions (14), the following system of equations are obtained. 
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where iA ’s are matrices of order n  and ii BX , ’s column matrices having −n components. The solutions 
of the above system of equations are obtained by using the Thomas algorithm for velocity, temperature 
and concentration. Also, numerical solutions for these equations are obtained by the C-program. In order 
to prove the convergence and stability of the finite element method, the same C-program was run with 
slightly changed values of h  and k  and no significant change was observed in the values of θ,u  and 
C. Hence, the finite element method is stable and convergent. 

The skin-friction, Nusselt number and Sherwood number are important physical parameters for this 
type of boundary layer flow. 

The skin-friction at the plate, which in the non-dimensional form is given by; 
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The rate of heat transfer coefficient, which in the non-dimensional form in terms of the Nusselt 
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The rate of the mass transfer coefficient, which in the non-dimensional form in terms of the 

Sherwood number, is given by; 
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where 

ν
xV

x
0Re =  is the local Reynolds number. 

 
Results and discussion 

The formulation of the problem that accounts for the radiation effects on an unsteady MHD 
convective heat and mass transfer flow past a semi-infinite vertical permeable moving plate embedded in 
a porous medium with viscous dissipation has been performed in the preceding sections. The governing 
equations of the flow field were solved analytically, using the finite element method, and the expressions 
for the velocity, temperature, concentration, skin-friction, Nusselt and Sherwood numbers were obtained. 
In order to get a physical insight into the problem, the above physical quantities are computed 
numerically for different values of the governing  parameters viz., thermal Grashof number Gr , solutal 
Grashof number Gm , magnetic parameter M , permeability parameter K , Prandtl number Pr , radiation 



Radiation Effects on an Unsteady MHD Murali GUNDAGANI et al. 
http://wjst.wu.ac.th 

Walailak J Sci & Tech 2013; 10(5) 
 

507 

parameter R , Eckert number Ec , Schmidt number Sc , chemical reaction parameter rK  and the plate 
velocity pU . In order to ascertain the accuracy of the numerical results, the present study is compared 
with the previous study. The velocity and temperature profiles are compared with the available solution of 
Prasad and Reddy [19] in Figures 2 and 3. It is observed that the present results are in good agreement 
with that of Prasad and Reddy [19]. 

 

 
Figure 2 Comparison of the velocity profiles for different values of R. 
 
 

 
 

Figure 3 Comparison of the temperature profiles for different values of R. 
 
 

For the case of different values of thermal Grashof number Gr , the velocity profiles in the boundary 
layer are shown in Figure 4. It is observed that an increase in Gr  leads to decrease in the values of 
velocity due to enhancement in the buoyancy force. Here the positive values of Gr  correspond to cooling 
of the surface. 
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In addition, the curve shows that the peak values of the velocity decrease rapidly near the wall of the 
porous plate as the Grashof number increases and then decays to the free stream velocity. Figure 5 
presents typical velocity profiles in the boundary layer for various values of the solutal Grashof number 
Gm , while all other parameters are kept at some fixed values. The velocity distribution attains a 
distinctive maximum value in the vicinity of the plate surface and then decreases properly to approach the 
free stream value. As expected, the fluid velocity increases and the peak value is more distinctive due to 
an increase in the concentration buoyancy effects represented by Gm . This is evident in the increase in 
the value of u as Gm  increases in Figure 5. The effect of magnetic field on velocity profiles in the 
boundary layer is depicted in Figure 6. From this figure it is seen that the velocity starts from a minimum 
value at the surface and increases till it attains a peak value and then starts decreasing until it reaches a 
minimum value at the end of the boundary layer for all the values of the magnetic field parameter. It is 
interesting to note that the effect of the magnetic field is to decrease the value of the velocity profiles 
throughout the boundary layer. The effect of the magnetic field is more prominent at the point of peak 
value. The peak value drastically decreases with an increase in the value of magnetic field, because the 
presence of a magnetic field in an electrically conducting fluid introduce a force called the Lorentz force. 
This force acts against the flow if the magnetic field is applied in the normal direction, as in the present 
problem. This type of resisting force slows down the fluid velocity as shown in this figure. Figure 7 
shows the velocity profiles for different values of the permeability parameter K, clearly as K increases the 
peak values of the velocity tend to increase. 

 
 

 
 
Figure 4 Effect of Gr on velocity. 
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Figure 5 Effect of Gm on velocity. 

 

 

 

Figure 6 Effect of M on velocity. 
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Figure 7 Effect of K on velocity. 
                                      
 
 

      
(a)                                                                                    (b) 

 
Figure 8 (a) Effect of Pr on velocity and (b) effect of Pr on temperature. 
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(a)                                                          (b) 

 
Figure 9 (a) Effect of R on velocity and (b) effect of R on temperature. 
                        
 
               

      
(a)                                                                         (b) 

 
Figure 10 (a) Effect of Ec on velocity and (b) effect of Ec on temperature. 
              
 

Figures 8(a)-8(b) illustrate the velocity and temperature profiles for different values of the Prandtl 
number, Pr . The numerical results show that the effect of increasing values of the Prandtl number result 
in an increasing velocity. The numerical results show that an increase in the Prandtl number results in a 
decrease of the thermal boundary layer and in general lower average temperature within the boundary 
layer. The reason is that smaller values of Pr  are equivalent to an increase in the thermal conductivity of 
the fluid and therefore heat is able to diffuse away from the heated surface more rapidly for higher values 
of Pr . Hence in the case of smaller Prandtl number the thermal boundary layer is thicker and the rate of 
heat transfer is reduced. For different values of the radiation parameter R, the velocity and temperature 
profiles are plotted in Figures 9(a)-9(b). It is obvious that an increase in the radiation parameter R  results in a decrease in the velocity and temperature within the boundary layer, as well as a decrease in 
the thickness of the velocity and temperature of the boundary layer. The effect of the viscous dissipation 
parameter i.e. the Eckert number Ec  on the velocity and temperature are shown in Figures 10(a)-10(b). 
Greater viscous dissipative heat causes a rise in temperature as well as the velocity. 
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Figures 11(a)-11(b) display the effects of the Schmidt number Sc  on the velocity and 
concentration profiles, respectively. As the Schmidt number increases the concentration decreases. This 
causes the concentration buoyancy effects to decrease yielding a reduction in the fluid velocity. The 
reductions and the velocity and concentration profiles are accompanied by simultaneous reductions in the 
velocity and concentration boundary layers. These behaviors are clearly shown in Figures 11(a)-11(b). 
Figure 12(a) shows the velocity distribution u against y for different values of rK . We noticed that the 
velocity decreases with increases rK . Figure 1(b) displays the effects of the chemical reaction rK  on 
concentration profiles C. We observe that concentration profile C decreases with an increase in rK . 
Figure 13 shows the velocity distribution across the boundary layer for several values of plate moving 
velocity pU  in the direction of the fluid flow. Although we have different initial plate moving velocities, 
the velocity decreases to a constant value for given material parameters. 
 
 

     
 
Figure 11 (a) Effect of Sc on velocity, (b) effect of Sc on concentration. 
                

   
 
Figure 12 (a) Effect of Kr on velocity, (b) effect of Kr on concentration. 
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Fig 13 Effect of Up on velocity. 

 
Tables 1 - 5 present the effects of the thermal Grashof number, solutal Grashof number, radiation 
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coefficient increases. However, from Table 3, it can be seen that as the radiation parameter increases, the 
skin-friction decreases and the Nusselt number increases. From Table 4, it is noticed that an increase in 
the Schmidt number reduces the skin-friction and increases the Sherwood number. Finally, it is observed 
from Table 5 that as the Eckert number increases the skin-friction increases, and the Nusselt number 
decreases. 
 
 
 
Table 1 Effects Gm  of on fC (Reference values as in Figure 5). 
 

Gm  fC  

0.0 1.9732 
1.0 2.5114 
2.0 3.0508 
3.0 3.5907 
4.0 4.1321 

                                                              
 

Table 2 Effects of Gr  on fC (Reference values as in Figure 4). 
 

Gr  fC  

0.0 1.6858 
1.0 2.0965 
2.0 2.5116 
3.0 2.09337 
4.0 3.03649 
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Table 3 Effects of R  on fC  and 1Re−
xNu  (Reference values as in Figures 9(a)-9(b)). 

 

R  fC  1Re−
xNu  

0.0 2.6868 0.6812 
0.5 2.5120 1.1179 
1.0 2.4321 1.3847 
2.0 2.3471 1.7586 

 
 
Table 4 Effects of Sc  on fC  

and 1Re−
xSh  (Reference values as in Figures 11(a)-11(b)). 

 

Sc  fC  1Re−
xSh  

0.30 2.6075 0.3001 
0.60 2.5116 0.6008 
0.78 2.4664 0.7807 
0.94 2.4331 0.9412 

 
 

Table 5 Effects of Ec  on fC  and 1Re−
xNu  (Reference values as in Figures 10(a)-10(b)). 

 

Ec  fC  1Re−
xNu  

0.0 2.5054 1.1486 
0.01 2.5690 0.8562 
0.02 2.6318 0.5634 
0.03 2.6952 0.2710 

 
 
Conclusions 

The governing equations for unsteady MHD convective heat and mass transfer flow fast a semi- 
infinite vertical permeable moving plate embedded in a porous medium with radiation was formulated. 
Viscous dissipation effects were also included in the present work. The plate velocity is maintained at a 
constant value and the flow was subjected to a transverse magnetic field. The dimensionless governing 
equations are solved numerically by a finite element method. Numerical evaluations of the closed form 
results were performed and graphical results were obtained to illustrate the details of the flow and heat 
and mass transfer characteristics and their dependence on some physical parameters. It was found that 
when thermal and solutal Grashof numbers were increased, the thermal and concentration buoyancy 
effects were enhanced and thus, the fluid velocity increased. However, the presence of radiation effects 
caused reductions in fluid temperature, which resulted in a decrease in fluid velocity. Also, when the 
Schmidt number was increased, the concentration level was decreased resulting in a decrease in fluid 
velocity. The velocity as well as concentration decreases with an increase in the chemical reaction 
parameter. In addition, it was found that the skin friction coefficient increased due to an increase in 
thermal and concentration buoyancy effects while it decreased due to an increase in either radiation 
parameter or the Schmidt number. However, the Nusselt number increased as the radiation parameter 
increased and the Sherwood number also increased as the Schmidt number increased. An increase in the 
Eckert number leads to an increase in the skin-friction and a decrease in the Nusselt number. 
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