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Abstract 

In this paper, a steady and incompressible Oseen’s flow past a sphere is calculated using the indirect 

boundary element method (IDBEM). The surface of the sphere is discretized into quadrilateral elements, 

over which the velocity distribution is calculated. The computed results are compared with analytical 

results. It is found that both these results are in good agreement. 
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Introduction 

In recent past, well-known computational methods such as the finite difference method (FDM), the 

finite element method (FEM), and the boundary element method (BEM), have been applied for flow field 

calculations around objects. Out of these methods, BEM is a modern numerical technique in which only 

the surface of the body under consideration is discretized into different types of boundary elements [1]. 

BEM is well-suited to problems where the domain is exterior to the boundary, as in the case of flow past 

bodies. The most important features of BEM are the much smaller system of equations and the 

considerable reduction in data, which are essential to run a computer program efficiently. That is why 

BEM is more accurate, efficient and economical than other competitive computational methods. The 

study of flow past a sphere is of great practical importance in fluid dynamics. In Stokes’ flow, the inertial 

effects become negligible, whereas the viscous effects become dominant, and in Oseen’s flow, the inertial 

effects are also partially taken into consideration. So, the general Navier-Stokes’ equations for steady 

Oseen’s flow are greatly simplified. The first work on calculations of flow field around bodies was 

probably done by Hess and Smith [2]. The direct boundary element method (DBEM) for potential flow 

calculations around objects was applied in the past by Morino et al. [3]. In the recent past, boundary 

element methods have been applied by the author for calculation of Stoke’s flow around the sphere [4]. 

 

Mathematical formulation of steady and incompressible Oseen’s flow 

The hydrodynamical equations governing the Oseen’s flow are given as [5]; 
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 u

 x
 + 
 v

 y
 + 
 w

 z
  = 0         (2) 

 


 2
   = 0         (3) 

 

    
  

  
               (4) 

 

and 

 


 2
 p  = 0.         (5) 

 

Steady Oseen’s flow past a sphere 

This problem was solved by Oseen and is often referred to as Oseen’s flow. Oseen was the first who 

solved this problem analytically. 

Let a solid sphere of radius ‘a’ be held fixed in a uniform stream U flowing steadily in the positive 

direction of the x-axis. Let the centre of the sphere be the origin of the coordinate system. Let the x-axis 

be in the direction of the uniform stream, as shown in Figure 1. 

 

 

 

                                                                                               

Figure 1 Oseen’s flow past a sphere. 

 

 

Velocity distribution 

The velocity components are as under [6]. 

 



u  =  – 
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 x
 + 
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 

 x
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2 k
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where    =  
C e

 – k ( r – x )

r
  

 

and 
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  =  – U x + 
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
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


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r
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For small values of k and r, 

 

  =  C 



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1

r
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k x

r
 + …….           (8) 

and  
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and 

 

         
1

2 k
  
 

 x
 –   = 

C

2 k
  




 



 x
 



 

1

r
  + k 



 

r
 2
 – x

 2

r
 3   + …….  – C 



 

1

r
 – k + 

k x

r
 + …….   

  = – 
C

2 k
  




 – 



 x
 



 

1

r
  – k 



 

1

r
  –  

x
 2

r
 3   + ……. + 



 

2 k

r
 – 2 k

 2
 + 

2 k
 2
 x

r
 + …….    

  = – 
C

2 k
  




 – 



 x
 



 

1

r
  – 

k

r
 + 

k x
 2

r
 3  + 

2 k

r
 + …….   

  = – 
C

2 k
  




 – 



 x
 



 

1

r
  + 

k

r
 + 

k x
 2

r
 3  + …….   

  = – 
C

2 k
  




 – 



 x
 



 

1

r
  + 



 

4 k

3 r
  –  

1

3
  

k

r
  + 

k x
 2

r
 3  + …….   

  = – 
C

2 k
  




 

4 k

3 r
  –  



 x
 



 

1

r
  + 

1

3
 k 



 

3 x
 2
 – r

 2

r
 3   + …….   

  = – 
C

2 k
  




 

4 k

3 r
  –  



 x
 



 

1

r
  + 

1

3
 k r

 2
 



 

3 x
 2
 – r

 2

r
 5   + …….   



Calculation of Oseen’s Flow Past a Sphere using IDBEM Ghulam MUHAMMAD et al. 

http://wjst.wu.ac.th 

Walailak J Sci & Tech 2014; 11(4) 
 

382 

  = – 
C

2 k
  




 

4 k

3 r
  –  



 x
 



 

1

r
  + 

1

3
 k r

 2
 


 2

 x
 2 



 

x

r
  + …….   

  

 u = U – A 0 


 x
 



 

1

r
  – A 1 


 2

 x
 2 



 

1

r
  – A 2 


 3

 x
 3 



 

1

r
  …….  

    – 
C

2 k
  








 
4

3
  
k

r
 – 



 x
 



 

1

r
  + 

1

3
 k r

 2
 


 2

 x
 2 



 

1

r
  + ……   

  = U – A 0 


 x
 



 

1

r
  – A 1 


 2

 x
 2 



 

1

r
  – A 2 


 3

 x
 3 



 

1

r
  – …….  

    – 
2

3
  

C

r
 + 

C

2 k
  


 x
  



 

1

r
  – 

1

6
  C r

 2
 


 2

 x
 2 



 

1

r
  – ……  

  = 



 U – 

2

3
  

C

r
  + 



 – A 0 + 

C

2 k
  



 x
 



 

1

r
  + 



 – A 1 – 

1

6
 C r

 2
  


 2

 x
 2 



 

1

r
  – …….        (10) 

 

Similarly, 
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Boundary conditions [7] 

 u = 0,     v = 0,     w = 0     for    r = a 

 

and  
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Using above boundary conditions; 
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Substituting the values of above constants in Eqs. (10) - (12),  
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The velocity components in this case are truncated, so the analytical solution is taken 

approximately. 
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Equation of indirect boundary element method 

For three-dimensional exterior flow problems, the equation of indirect boundary element method 

over the surface ‘S’ of the body is given by; 

 
1

2
  i    + 

 

 

S–i
  



 n
 




 

1

4  r
  d S = xi       (17) 

 

where        is velocity potential 

         is velocity potential at infinity  

      i    is velocity potential at the fixed point ‘i’ 

         is total velocity potential 

     S–i  is signifies that the point ‘i’ is excluded from the surface integral 

     r      is distance of any point in the flow field from the centre of the sphere 

     x i    is the direction of flow 

 

Discretization of sphere 

The surface of the sphere is discretized into quadrilateral elements. The scheme of discretization is 

as shown in the Figure 2. 

The indirect boundary element method is applied to calculate the slow flow solution around the 

sphere for which the analytical solution is available. 

 Consider the surface of the sphere in one octant to be divided into 3 quadrilateral elements by 

joining the centroid of the surface with the mid points of the curves in the coordinate planes as shown in 

Figure 2 [8]. 

Then each element is divided further into 4 elements by joining the centroid of that element with the 

mid-point of each side of the element. Thus, one octant of the surface of the sphere is divided into 12 

elements, and the whole surface of the body is divided into 96 boundary elements. The above mentioned 

method is adopted in order to produce a uniform distribution of element over the surface of the body.  

 

 

 
 

                                 

Figure 2 One octant of the surface of a sphere. 

 

 

Figure 3 shows the method for finding the coordinate (xp, yp, zp) of any point P on the surface of the 

sphere. 
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Figure 3 Method for Finding the Point P on the Surface of a Sphere. 

 

 

From Figure 3 the following equation is obtained. 

 

   
                (18) 

 

  
     

    
    

           

   
     

     
          (19) 

 

or in Cartesian form; 

 

x
2

p
 + y

2

p
 + z

2

p
 = 1 

xp (x1 – x2) + yp (y1 – y2) + zp (z1 – z2) = 0 

xp (y1 z2 – z1 y2) + yp (x2 z1 – x1 z2) + zp (x1 y2 – x2 y1) = 0       (20) 

 

As the body possesses planes of symmetry, this fact may be used in the input to the program, and 

only the non-redundant portion needs to be specified by the input points. The other portions are 

automatically taken into account. The planes of symmetry are taken to be the coordinate planes of the 

reference coordinate system. The advantage of the use of symmetry is that it reduces the order of the 

resulting system of equations and consequently reduces the computing time in running a program. As a 

sphere is symmetric with respect to all 3 coordinate planes of the reference coordinate system, only one 

eighth of the body surface needs to be specified by the input points, while the other seven-eighths can be 

accounted for by symmetry. 

The sphere is discretized into 96 and 384 boundary elements as shown below [9]; 
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                                              (a)                                                           (b) 

 

Figure 4 Discretization of sphere into 96 boundary elements. The point of observation is (a) on the  

z-axis; (b) at 45 to all axes. 

 

 

 

 
 

                                        (a)                                                                     (b) 

 

Figure 5 Discretization of sphere into 384 boundary elements. The point of observation is (a) on the z-

axis; (b) at 45 to all axes. 

 

 

The sphere is discretized into 96 and 384 boundary elements and the computed results are compared 

with analytical solutions for the sphere using Fortran programming. 

 

 



Calculation of Oseen’s Flow Past a Sphere using IDBEM Ghulam MUHAMMAD et al. 

http://wjst.wu.ac.th 

Walailak J Sci & Tech 2014; 11(4) 
 

387 

 
Figure 6 Comparison of computed and analytical velocity distributions over the surface of the sphere 

using 96 boundary elements. 

 

 

 
Figure 7 Comparison of computed and analytical velocity distributions over the surface of the sphere 

using 384 boundary elements. 

 

 

Since the streamlines are symmetrical around the sphere, the Figures 6 and 7 shown above are 

symmetrical on both sides. At the top of Figure 7, the computed results are convergent with the 

approximate analytical results and as can be seen, the computed results are slightly different with the 

analytical ones due to increase of viscous effects and truncation velocity components. 
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Conclusions 

The indirect boundary element method has been used to calculate Oseen’s flow past a sphere using 

different numbers of boundary elements. The computed velocities obtained in this way were compared 

with approximate analytical velocities for this flow over the boundary of the sphere. From the above 

figures, it is concluded that the computed values are in good agreement with the approximate analytical 

values for the sphere. 
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