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Abstract

In this paper, we apply Modified Homotopy Analysis Method (MHAM) to find appropriate
solutions to Zakharov-Kuznetsov equations, which are of utmost importance in applied and engineering
sciences. The proposed modification is an elegant coupling of the Homotopy Analysis Method (HAM)
and Taylor’s series. Numerical results, coupled with graphical representation, explicitly reveal the
complete reliability of the proposed algorithm.

Keywords: Homotopy analysis method, Taylor’s series, exact solutions, MAPLE, Zakharov-Kuznetsov
equations

Introduction

The rapid development of nonlinear sciences witnesses a wide range of analytical and numerical
techniques by various scientists [1-19]. Most of the developed schemes have their limitations, like limited
convergence, divergent results, linearization, discretization, unrealistic assumptions and non-
compatibility with the versatility of physical problems [1-11]. In a similar context, Liao [7-9] developed
the Homotopy Analysis Method (HAM) which has been applied to a wide range of nonlinear problems of
a physical nature; see [1-19] and the references therein. The basic motivation of the present study is the
modification of the traditional HAM to tackle Zakharov-Kuznetsov equations. The proposed modification
is made by combining the traditional HAM with Taylor’s series. It is observed that the proposed
modification is highly effective and absorbs some of the basic deficiencies of the original version of
HAM. Moreover, this modified approach (MHAM) is more user-friendly and overcomes the complexities
of selection of initial value. Several examples are given which reveal the efficiency and reliability of the
proposed algorithm.

Analysis of homotopy analysis method (HAM)

The following differential equation
N[u(®] =0 (1

is considered where N is a nonlinear operator, T denotes independent variables, and w(7) is an unknown
function, respectively. For simplicity, we ignore all boundary or initial conditions, which can be treated in
a similar way. By means of generalizing the traditional Homotopy method, Liao constructs a so called
zero - order deformation equation.
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(1 -p)Lle(T;p) — uy(v)] = phH(T)N[@(7; p)], ()

where p € [0,1] is the embedding parameter, h # 0 is a nonzero parameter, H(7) # 0 is an auxiliary
function, L is an auxiliary linear operator, u,(7) is an initial guess of u(7), and u(t;p) is an unknown
function, respectively. It is important, that one has great freedom to choose auxiliary components in
HAM. Obviously, when, p = 0 and p = 1, it holds;

@(7;0) = u(7), 9(r;1) = u(0). (3)

Thus, as p increases from 0 to 1, the solution ¢@(z;p) varies from the initial guesses uy(7) to the
solution u(t). Expanding in the Taylor series with respect to p,

0T p) = up(7) + Lp=1 um (DP™, (4)
" (Tp)
where u,, (1) = %% atp =0, %)

is obtained. If the auxiliary linear operator, the initial guess, the auxiliary h, and the auxiliary function are
so properly chosen, the above series converges at p = 1.

u(7) = uo(7) + L= U (0), (6)

is then obtained. The vector is defined as;

U = {uo(), ur (1), uz (1), -, U (1)} (7)

Differentiating Eq. (2) m times with respect to the embedding parameter p and then setting p = 0 and
finally dividing them by m!, the mth-order deformation equation is obtained;

L[um(T) - Xmum—l(‘[)] = hH(T)Rm(ﬁm—l) (8)

where

. 1 ™ le(r;p)
Rm(um—l) = (m—l)!w at p = 0

and
Xm=0m<1,
=1,m>1,
Applying L™ both sides of (8),

um(T) = Xmum—l(f) + hL_l[H(T)Rm(ﬁm—l)]

is obtained. This way, it is easy to obtain u,, for m > 1, at mth- order;
u(t) = Y=o Um (D) ©)

when M — oo, an accurate approximation of the original Eq. (1) is considered. For the convergence of the
above method the reader is refered to is referred to Liao’s work. If Eq. (1) admits a unique solution, then
this method will produce a unique solution. If Eq. (1) does not possess a unique solution, the HAM will
give a solution among many other (possible) solutions.
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Numerical application

In this section, MHAM is applied to find appropriate solutions of Zakharov-Kuznetsov equations.
The numerical results are very encouraging.

Example 1 Consider the ZK(2,2,2) equation;

U+ (U + = (U e +3 (W) = 0, (10a)
u(x,y,0) = %/’l sinh?(x + ), (10b)

To solve the given Equation by HAM the linear operator;

LlpCe,y, 6l = 5 (p(x,y,6:9), (11
is chosen, with the property;

Llc; + tc,] =0, (12)
where ¢, and c, are the integral constants. The inverse operator L™! is given by;

L™t = [()dt, (13)
and a nonlinear operator is defined as;

Nlp(x,y,t; )] = o(x,y,t; @) + (9(x, ¥, t;9)*)x +§(<P(x. Vot; @) xx +§(<P(x,y, ED)yye  (14)
Using the above definition, the zeroth-order deformation equation is constructed.
(1 - Llpxy. t;q) —uo(x,y, )] = qhH (x,y,)N[9(x, y, t; g)]. (15)
Forg=0andqg =1,
p(x,y,6:0) =u(x,y,0), @y t1) =ulxy,t). (16)
can be written. Thus, the mth-order deformation equation is obtained.
Llum (%, 5,8) = XmUm-1(x, ¥, 0] = hH(x, y, )Ry (lim-1), (17)
with initial condition u,,(x,y,0) = 0.
(U106 y,0), + (CF e (6, Y, ) Uy (2,7, )
where Ry (i) = h 5 (X (6, O g (6, 0)) . (18)
| O ey Dt @y0),,

After applying Taylor’s series, the result is;
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Rm (ﬁm—l) =h [(um—l(xt Y t) + fm)t + (Z?:?)l(ur(x' Y t) + fr+1) (um—l—r(x' Y t) + fm—r))x +
%(Z:’n:_()l(ur (x: Y t) + fr+1)(um—1—r (x! Y t) + fm—r))xxx + % ( ;’“n=_01(ur (X, Y, t) + fr+1)(um—1—r (x' Y t) +
FnerDyys | (19)

Now the solutions of the mth-order deformation equation are;
U (6,9, 8) = Ymtm-1(x,y,6) + LT [RH(x, ¥, )Ry (U -1)l m = 1, (20)

an initial approximation is used at the start;
ug(x, t) = gsinhz O, (21)

and by means of the iteration formula as discussed above, if h = —1, H = 1, the others components can
be directly as;

u; = —%/12 (—14xcosh?(y) + 2x + 10xsinh(y) cosh(y) sinh(x + y) cosh(x + y) —

8sinh(x + y) cosh(x + y) — 5sinh(y) cosh(y) — 2xcosh?(x + y) +
10 sinh(x + y) cosh3(x + y) + 12xcosh*(x + y) + 7 sinh(y) cosh(y) cosh?(x +
sy) + 2 sinh(x + y) cosh(x + y) cosh®(y) + 4xcosh?(y)cosh?(x + y)t), (22)

16
U, = ﬁ/lzt(—84xcosh2 (y)cosh?(x + y) — 18sinh(x + y) cosh(x + y) cosh?(y)
— 24xsinh(y) cosh(y) sinh(x + y) coh(x +y) + -+,

The series form solution is given by;

u(x,t) = gsinh2 O+ - %/12 (—14xcosh?(y) + 2x + 10xsinh(y) cosh(y) sinh(x +

¥) cosh(x +y) — 8sinh(x + y) cosh(x + y) — 5sinh(y) cosh(y) —
2xcosh?(x + y) + 10 sinh(x + y) cosh®(x +y) + - (23)

The rest of the components of the iteration formulae can be obtained using MAPLE.
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ZK Equation , x= 01lt=001
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Figure 1 Graphical representation of exact and approximate solutions of Eq. (10) for different values of x
and .

Example 2 Consider the following ZK nonlinear PDE;

1 1
Uy + (uz)x + g(uz)xxx + 8 (uz)yyx =0, (24a)
u(x,v,0) = — gl cosh?(x +y), (24b)

To solve the given Equation by HAM the linear operator;

Llp(e,y, 6l = 5 (p(x,y,t:0)), (25)
is chosen, with the property;

Llc; + tc,] =0, (26)
where ¢; and ¢, are the integral constants. The inverse operator L™! is given by;

L' = [()dt, 27)
A nonlinear operator can now be defined as;

Np@,y 6] = 00y, 6@ + (01, 6DDx + 2 (0@ Y, 6 DD aax +3 (061 6D yyes (28
Using the above definition, zeroth-order deformation equation can be constructed;

A - Llekx,y.t;q9) —ue(x,y,t)] = qhH(x,y, t)N[p(x, ¥, t; q)]. (29)
forq=0and g =1,

o, y,t0) =uy(xyt), okyt1)=ulyt). (30)
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can be written. Thus, the mth-order deformation equation is obtained;
Llum(x, ¥, 6) = XmUm-1(x, ¥, O] = hH(x,, )R (tim-1). €20
with initial condition u,,(x,y,0) = 0

[(um—l(x' Z t))t + (Z;n:_ol ur(x' Z t) um—l—r(xr Y t))x

1 -
where Ry (Tim_1) = h +5 Er w (Y, Dt (1 3,1) . (32)

l +§( 1731:—01 ur(x,}’: t) um—l—r(x'y' t))yyx J

After applying Taylor’s series, the result is;

Run 1) = B (0,3, + fu)e + (TG (63,8 + frn) Winmar (63, 8) + frnsy D) +
SO W 6y, ) + fre) U (90 + foe e + 5 B0 @ (63,6 + fr) U (1,3,8) +
FnerDyys | (33)

Now the solutions of the mth-order deformation equation are;
U (6,9, 8) = Ymtm-1(x,y,6) + LT [RH(x, ¥, )Ry (U -1)l m = 1, (34)

an initial approximation is used at the start;

ug(x,t) = —g)lcoshz(y), (35)

and by means of the iteration formula as discuss above, if h = —1, H = 1, the others components can be
directly obtained as;

U = —%/12 (=3 cosh(y) sinh(y) + 12cosh3(y) sinh(y) + 2x

+24cosh*(y)x — 24cosh®(y)x)t), (36)
u, =
—%/121:(—9 cosh(y) sinh(y) + 18cosh?®(y) sinh(y) + 3x + 72cosh*(y)x —
54cosh?(y)x + 3364 cosh(y) sinh(y) tx + -+, 37)

The series form solution is given by;

[—Scosh2 ) - %AZ (=3 cosh(y) sinh(y) + 12cosh3(y) sinh(y) + 2x]|
u(x,t) = +24cosh*(y)x — 24cosh?(y)x)t) — : (38)
;—j/lzt(—9 cosh(y) sinh(y) — ;—j/lzt(—9 cosh(y) sinh(y) + -

The rest of the components of the iteration formulae can be obtained using MAPLE.
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Figure 2 Graphical representation of exact and approximate solutions of Eq. (24) for different values of x
and .

Example 3 Consider the following nonlinear PDE;

U+ (u3)x + 2(u3)xxx + Z(ug)yyx =0, (398.)
u(x,y,0) = SA sinh (% (x+ y)), (39b)

To solve the given equation by HAM the linear operator;

Loyt )] == (p(x,y, £ ), (40)
is chosen with the property;

Llc; + tc,] =0, (41)
where c; and ¢, are the integral constants. The inverse operator L1 is given by;

L™t = [()dt, (42)
a nonlinear operator can be defined as;

Nlp@,y,t: )] = oy, t; )¢ + (0%, ¥, 0)*)x + 2(0(%, ¥, 5 )P + 200, Y, 6 D)D) yyx,  (43)

using the above definition, the zeroth-order deformation equation is constructed;

A =Ll y,t;q) —uelx,y,t)] = qhH(x,y,t)N[p(x,y, t; @)]. (44)

forq=0andq =1,

o, y,60) =uy(x,y,t), @yt =ulxyt). (45)
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can be written. Thus, we obtain the mth —order deformation equation;

Ll (%, Y, ) = XmUm—1(x, ¥, )] = RH(x, Y, )Ry (n—1)- (46)
with the initial condition u,,(x,y,0) = 0
(a3, D), + (I 10 (57, U (5,7, s
Where Rm(ﬁm—l) = h | +2(Z7721:_01 uT('xl y: t) um—l—r (x' y: t))xxx I (47)
+2(Z75 e (6, Y, ) Uy (1, 7, 1)) J

yyx

After applying Taylor’s series the result is;

(um—l(x' Y, t) + fm)t + (2;'1:_01(ur(x' '’z t) + fr+1) (um—l—‘r(x' Y, t) + fm—‘r))x
Rm(ﬁm—l) = h + Z(Z;n:_ol(ur(x' 8z t) + fr+1) (um—l—r(xr Y t) + fm—r))xxx . (48)
+2(Z;n:_01(ur(x' Y t) + fr+1)(um—1—r(x' Y t) + fm—r))yyx

Now the solutions of the mth —order deformation equation are;

U (6,9, 8) = Ymtm-1(x,y,6) + LT [RH(x, ¥, )Ry (U -1)l m = 1, (49)
an initial approximation can be used at the start;

uy(x, t) = zlsinh (% y), (50)

by means of the iteration formula as discuss above, if h = —1,H = 1, the other components can be
directly obtained as;

L s —8sinh (%y) x + 108 sinh (%y) xcosh? (iy)x

s T —300cosh (%Y) +9x? cos h? (%y) + 348cosh3 (%y) — 2cosh (%y) x2 | Gh
u, = —— 213t (6048 sinh (3 y) x — 11232 sinh (3 ) xcosh? (3y) + 10368 cosh (5 y) — 36882 -
10368cosh? (3 y) + 3600cosh (5y) x? + - ). (52)

The series form solution is given by;

u(x, t) = %Asinh (%y) - é/ﬁ (—8 sinh (%y) x + 108 sinh (%y) xcosh? (%y) — 300 cosh (%y) +

9x2 cos h3 (%y) + 348cosh3 (%y) — 2cosh (%y) x2) + 18132 23t(6048 sinh (%y) X — (53)
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The rest of the components of the iteration formulae can be obtained using MAPLE.
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Figure 3 Graphical representation of exact and approximate solutions of Eq. (39) for different values of x
and .

Example 4 Consider the following nonlinear PDE;

U+ (U F = (U e +3 (U, = 0, (542)
u(x,y,0) = SA cosh (% (x+ y)), (54b)

To solve the given Equation by HAM the linear operator;

Loyt )] == (p(x,y, £ ), (55)
is chosen with the property;

Llc; + tc,] =0, (56)
where c; and ¢, are the integral constants. The inverse operator L1 is given by;

L™t = [()dt, (57)
a nonlinear operator can be defined as;

Np@y )] = 00y, 6@ + (01, 6D x + 2 (0@ Y, 6 DD aax +3 (01 EDDyyns (58)
using the above definition, the zeroth-order deformation equation can be constructed;

A =Ll y, t;q) —uelx,y,t)] = qghH(x,y,t)N[p(x,y, t; @)]. (59)

forq=0and g =1,
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o(x,y,t;0) =ug(x,y,t), oy t;1) =ulxy,t). (60)
can be written. Thus, we obtain the mth —order deformation equation;
Llum (x,, ) = XmUm-1(x,y, )] = hH (%, ¥, )R (Uip—1)- (61)

with the initial condition u,,(x,y,0) =0

where
(um—l (x' Y t))t + (Z;n=_01 Uy (x' Z t) Un-1-r (x' 8z t))x
1 -
Ry (1) = h +5 O w0y, Oy (0, 0) I' (62)
| Oy ), @y ), ]

After applying Taylor’s series the result is;

[WUn-100Y,0) + frn)e + T wr (6,3, + fri1) Wme1—r (61,6 + finr))x]

1 _
Ry (fy_y) = h| + 2 (O 1t (0,8 + fr) W1 (6 9,8 + fines)D e | 63)

1 -

l +§(Z;r"n:01(ur(x' Y, t) + fr+1)(um—1—r(x' Y, t) + fm—r))yyx J
Now the solutions of the mth —order deformation equation are;
U (6,9, 8) = Ymtm-1(x,y,6) + LT [RH(x, ¥, )Ry (U -1)l m = 1, (64)
an initial approximation can be used at the start;
uy(x, t) = S/lcosh (% y), (65)
by means of the iteration formula as discuss above, if h = —1,H = 1, the other components can be
directly obtained can be directly obtained as;
1 ; 1 1 ; 1 . 1
u = —M/P (3588 sinh (gy) cosh? (gy) — 97 sinh (gy) x% — 48 sinh (gy) +
. 1 1 1 1

99x2sinh (gy) cos h? (g y) —1180cos h (g y) x + 1188cosh3 (gy) x), (66)
Uy = S A3t(~165888 sinh (5 ) cosh? (¢ y) + 4608 sinh (3y) x? = -+, (67)

The series form solution is given by;
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2048
99x2sinh (%y) cos h? (%y) — 1180cos h (%y) x + 1188cosh® (%y) x) +
471;592

u(x,t) = %Acosh (%y) S E (3588 sinh (%y) cosh? (%y) — 97 sinh (% y) x? — 48 sinh (%y) +

23t(~165888 sinh (3 y) cosh? (3 y) 4o, (68)

The rest of the components of the iteration formulae can be obtained using MAPLE.
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Figure 4 Graphical representation of exact and approximate solutions of Eq. (4) for different values of x
and ¢.

Conclusions

MHAM is applied to find appropriate solutions of nonlinear partial differential equations (PDEs).
The proposed modified version is fully capable to cope with the nonlinearity of the physical problems.
The suggested technique can be a nice addition in the existing techniques of solving nonlinear problems
of a versatile physical nature.
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