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Abstract 

This paper investigates the magnetohydrodynamic (MHD) mixed convective heat and mass transfer 
flow in a vertical wavy porous space in the presence of a heat source with the combined effects of 
chemical reaction and wall slip condition. The dimensionless governing equations are perturbed into: 
mean (zeroth-order) part and a perturbed part, using amplitude as a small parameter. The perturbed 
quantities are obtained by perturbation series expansion for small wavelength in which terms of 
exponential order arise. The results obtained show that the velocity, temperature and concentration fields 
are appreciably influenced by the presence of chemical reaction, magnetic field, porous medium, heat 
source/sink parameter and wall slip condition. Further, the results of the skin friction and rate of heat and 
mass transfer at the wall are presented for various values of parameters entering into the problem and 
discussed with the help of graphs. 
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Introduction 

The study of combined free and forced 
convection flow in vertical channels has received 
considerable attention because of its wide range of 
applications, from cooling of electronic devices to 
that of solar energy collectors. Further, convection 
problems associated with heat sources within fluid 
saturated porous media are of great practical 
significance, for there are a number of practical 
applications in geophysics and energy related 
problems, such as recovery of petroleum resources, 
geophysical flows, cooling of underground electric 
cables, etc. A comprehensive review of the work 
on mixed convection can be found in [1-10]. 
Eldabe et al. [8] discussed the problem of mixed 
convective heat and mass transfer in a non-
Newtonian fluid at a peristaltic surface with 
temperature dependent viscosity. They considered 
the peristaltic flow between 2 vertical walls, one of 
which is deformed in the shape of traveling 
transversal waves exactly like peristaltic pumping, 

and the other of which is parallel flat plate wall. 
Recently, Srinivas and Muthuraj [9] have 
discussed the effects of thermal radiation and 
space porosity on magnetohydrodynamic (MHD) 
mixed convection flow in a vertical channel using 
homotopy analysis method. More recently, Prathap 
Kumar et al. [10] have studied the problem of fully 
developed free convective flow of micropolar and 
viscous fluids in a vertical channel. The analyses 
of laminar heat transfer in slip-flow regime were 
first undertaken by Sparrow et al. [11] and Inman 
[12] for tubes with uniform heat flux and a parallel 
plate channel or a circular tube with uniform wall 
temperature using continuum theory subject to 
slip-velocity and temperature-jump boundary 
conditions. Their works show the Nusselt number 
decrease in the presence of slip. Lately, there has 
been an increase of interest in studying fluid 
problems with slip boundary conditions [13-21]. 
Ebaid [19] studied the effects of magnetic field and 
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wall slip conditions on the peristaltic transport of a 
Newtonian fluid in an asymmetric channel. More 
recently, Srinivas et al. [20] have examined the 
influence of slip conditions, wall properties and 
heat transfer on MHD peristaltic transport. 
Srinivas and Muthuraj [21] also analyzed the 
MHD flow with slip effects and temperature 
dependent heat source in a vertical wavy porous 
space. 

Mixed convection flows with simultaneous 
heat and mass transfer under the influence of a 
magnetic field and chemical reaction arise in many 
transport processes, both naturally and in many 
branches of science and engineering applications. 
They play an important role in many industries viz. 
in the chemical industry, and the power and 
cooling industry for drying, chemical vapor 
deposition on surfaces, cooling of nuclear reactors 
and MHD power generators [22-26]. Hayat et al. 
[27] have studied the laminar flow problem of 
convective heat transfer for a second grade fluid 
over a semi-infinite plate in the presence of species 
concentration and chemical reaction. Mohamed 
and Abo-Dahab [28] have presented the effects of 
chemical reaction and thermal radiation on 
hydromagnetic free convection heat and mass 
transfer for a micropolar fluid via a porous 
medium bounded by a semi-infinite vertical porous 
plate in the presence of heat generation. Pal and 
Talukdar [29] have analyzed the unsteady MHD 
convective heat and mass transfer in a boundary 
layer slip flow past a vertical permeable plate with 
thermal radiation and chemical reaction using 
perturbation technique. More recently, Zueco and 
Ahmed [30] have presented an exact and a 
numerical solution to the problem of a steady 
mixed convective MHD flow of an incompressible 
viscous electrically conducting fluid past an 
infinite vertical porous plate with combined heat 
and mass transfer. Several investigators are now 
engaged in finding the analytical or numerical 
solutions for highly non-linear equations using 
different methods [31-37]. 

The information available indicates that no 
investigation has been made to analyze the 
influence of chemical reaction and wall slip on 
MHD flow with heat and mass transfer in a 
vertical channel. With the above discussion in 
mind and motivated by the earlier studies, an 
attempt has been made to understand the combined 
effects of chemical reaction and wall slip on MHD 
flow in a vertical wavy porous space with traveling 
thermal waves. As the problem is highly nonlinear, 
it is solved by a perturbation technique wherein the 
solution is assumed to be made up of 2 parts: a 
mean part corresponding to the fully developed 
mean flow, and a small perturbed part. The mean 
part, the perturbed part, and the total solution of 
the problem are evaluated numerically for various 
values of the pertinent parameters entering into the 
problem. The paper has been organized as follows: 
in Section 2, the mathematical formulation of the 
problem is developed. The solution of the problem 
is presented in the Section 3. In Section 4, the 
numerical results and discussion are presented, 
while  the concluding remarks are found in Section 
5. 
 
Formulation of the problem 

Consider the unsteady, mixed convective 
heat and mass transfer MHD flow in a viscous 
fluid confined to the vertical wavy walls embedded 
in a porous medium.  We consider the wavy wall 
in which the x

 

axis is taken vertically upward, 
and parallel to the direction of buoyancy, and the
y axis is normal to it (Figure 1). A uniform 

magnetic field is applied normal to the flow 
direction. The wavy walls are represented by

 y d a cos λx   and y = -d + a cos(x + ). The 

governing equations for this problem are based on 
the balance laws of mass, linear momentum and 
energy modified to account for the presence of the 
magnetic field, thermal buoyancy and heat 
generation or absorbing effects. These can be 
written as; 

  
u v

0
x y

 
 

 
.                                                                                                                       (1) 

 
2 2

2 ' '

0 t 1 c 12 2

u u u p u u
u v u B u g (T T ) g (C C )

x x y kt x y

        
                                                (2)            
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2 2

2 2

p v vv v v
u v v

t x y y x y k

     
        

     

  
                                                                        (3) 

 
 

 
Figure 1 Flow geometry of the problem. 
 

 
2 2

p 2 2

T TT T T
C u v K Q

t x y x y

   
     

    

  
                                                                                              (4) 

2 2

m 12 2

C CC C C
u v D K C

t x y x y

   
    

    

  
      

.                                                                                      (5) 

 
The boundary conditions of the problem are [16,21]; 

 

1

u
u L

y






 
 
 

, v 0 ,  '
1T T , '

1C C ,  at  y d a cos λx                                                      (6) 

1

u
u L

y


 



 
 
 

, v 0 ,  '
2T T , '

2C C ,   at y d a cos(λx θ)                                             (7) 
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where   '

1 1T 1 cos(λx ωt) T   ,   '

2 2T 1 cos(λx ωt) T   ,   '

1 1C 1 cos(λx ωt) C   , 

  '

2 2C 1 cos(λx ωt) C   , 1
1

1

2 m
L L

m




 
 
 

, L is the mean free path, 1m is the Maxwell’s reflexion 

coefficient, 0B  is the transverse magnetic field, mD  is the coefficient of mass diffusivity, u, v are 

velocity components, C is the concentration, K is the thermal conductivity of the fluid, Q is the heat 
source/sink, T  is the temperature, p  is the pressure, ρ  is the density,  is the dynamic viscosity,   is the 

kinematic viscosity, k  is the permeability of the medium,  is the coefficient of electric conductivity, c  

is the concentration expansion coefficient, t  is the thermal expansion coefficient, g is the gravitational 

acceleration,   is the frequency, 1T  and 2T  are the wall temperatures,  T  is the mean value of 1T  and 

2T , 1C  and 2C  are the wall concentrations. 

We introduce the non-dimensional variables  

1
(x*, y*) (x, y)

d
 , 

t
t* 2d


 , 

d
(u*, v*) (u, v)


, 

2

p
p*

d


  

 

,  *

'T T1T
' 'T T2 1





,  

'C C1
' 'C C2 1


 


.              (8) 

 
Invoking the above non-dimensional variables, the basic field Eqs. (1) - (7) can be expressed in the 

non-dimensional form, dropping the asterisks, 
 

u v
0

x y

 
 

                                                                                      (9) 

2 2
2

c r2 2

u u u p u u
u v H u G G T

t x y x x y

      
                                                                               (10) 

2 2

2 2

a

1v v v p v v
u v v

t x y y x y D

      
                                                                              (11) 

2 2

2 2
r

T T T 1 T T
u v

x yt x y P

      
                

                                                                                            (12) 

2 2
*
12 2

c

1
u v C

x yt x y S

        
                

.                                                                                      (13) 

 
The corresponding boundary conditions are 

  
'u hu , v 0 , T 0 , 0      at     y 1 cosλx                                                                   (14) 

 
'u hu  , v 0 , T 1 , 1      at       y 1 cos λx θ                                                                    (15) 
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where 2 2

a

1
H M

D
  , 

2 '
* 1 1
1 ' '

2 1

K d C
C

C C



, 

3 ' '
t 2 1

r 2

d g(T T )
G

 



 is the Grashof number, 

3 ' '
c 2 1

c 2

d g(C C )
G

 



 

is the local mass Grashof number, 
2 2

2 0σB d
M

ρ



 is the Hartmann number, p

r

C
P

K


  is the Prandtl 

number,
μ

ρ
   is the kinematic viscosity, *λ(= λ ) λd  is the non dimensional wave number, λx  is the 

wall waviness parameter, 
a

d
  ( 1)   is the non-dimensional amplitude parameter, c

m

μ

ρD
S   is the 

Schmidt number, a 2

k
D

d



 is the porosity parameter, 
2

' '
2 1

Qd

K(T T )
 


 is the heat source/sink parameter, 

1K d
 


 is the chemical reaction parameter, 1L

h
d

  is the  slip parameter. 

Let us introduce the stream function ψ defined by 
ψ

u
y


 


 and 

ψ
v

x





                                    (16) 

Using Eq. (16), Eqs. (10) - (13) become  
 

3 3 3 3 3 3

2 2 3 2 2 3

ψ ψ ψ ψ ψ ψ ψ ψ

x t y t y x x y x x y y

          
                        

 

4 4 4 2 2
2

r c4 2 2 4 2

a

ψ ψ ψ ψ 1 ψ T
2 M G G

2x x y y y D y yy

              
        

                                             (17) 

2 2

2 2
r

T ψ T ψ T T T1

Pt y x x y x y

       
              

                                                                                      (18) 

2 2
*
12 2

c

ψ ψ 1
C

St y x x y x y

         
               

                                                                (19) 

 
and the boundary conditions (14) - (15) become  
 

y yyψ h  ,   xψ 0 , T 0 ,          0    at          y 1 cosλx                                                       (20) 

y yyψ h   , xψ 0 , T 1 ,  1    at y 1 cos(λx )      .                                        (21) 

 
Solution of the problem 

In order to solve Eqs. (17) - (19), we assume that the solution consists of a mean part and perturbed 
part so that the stream function, temperature and concentration distributions are [3,7,8] 

0 1ψ(x, y, t) ψ (y) ψ (x, y, t)                                                        (22) 

0 1T(x, y, t) T (y) T (x, y, t)                                                        (23) 

0 1(x, y, t) (y) (x, y, t)                                                          (24) 

where 0ψ , 0T , 0 are the mean parts and 1ψ , 1T , 1 are the perturbed parts also, we introduce 
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i( x t )
1 1ψ (x, y, t) e ψ (y)                                                                             (25) 

i( x t )
1 1T (x, y, t) e T (y)                                                                            (26) 

i( x t )
11(x, y, t) e (y)    .                                                     (27) 

 
With the help of Eqs. (22) - (27) the Eqs. (17) - (21) yield 
 

iv 2 '' ' '
0 0 r 0 c 0ψ H ψ G T G 0                                                                       (28) 
''
0T 0                                                                                    (29) 

'' *
0 0 1

c

1
C 0

S
     ,                                                                                                                              (30) 

 
together with the boundary conditions  
 

' ''
0 0h   , 0ψ 0 ,  0T 0 ,  0 0     at   y 1                                      (31) 
' ''
0 0ψ h   , 0ψ 0 ,  0T 1 ,   0 1    at  y 1                                                          (32) 

 
to the zeroth-order, and 
 

iv '' 2 ' '' 2 ''' 2 '' 4
1 1 1 0 1 1 1 0 1 1ψ iω (ψ λ ψ ) iλ (ψ λ ψ ) iλψ ψ 2λ ψ λ ψ         

'2 '' '' '
11 1 r 1 c

a

1
M ψ ψ G T G 0

D
                                                                   (33) 

'' ' ' 2
1 r 1 r 0 1 1 0 1T iP ωT iP λ(ψ T ψ T ) λ T 0                                                                          (34) 
'' ' ' 2

11 1 1 1c c 0 1 0 ciS ω iS λ (ψ ψ ) λ S 0            ,                                     (35) 

 
together with the boundary conditions 
 

' '' i t ''' ''
1 1 0 0ψ h e (h ψ )      ,    1ψ 0 ,  i t '

1 0T e T   ,     i t '
1 0e         at    y 1                            (36)  

' '' i ( t ) ''' ''
1 1 0 0ψ h e (h ψ )      , 1ψ 0 , i( t ) '

1 0T e T  , i( t ) '
1 0e        at   y 1                        (37) 

 
to the first-order, where a prime denotes differentiation with respect to y. 

For small values of λ , we can expand 1ψ , 1T and 1 in terms of λ  so that 

 
r

1 1r
r 0

ψ (λ , y) λ ψ



  , r

1 1r
r 0

T (λ , y) λ T



  ,   r

1 1r
r 0

(λ , y) λ



                                      (38) 

 
Substituting (38) into (33) - (37), we get the following sets of ordinary differential equations and 
boundary conditions, to the order of 2λ  
 

'iv '' 2 '' '
1010 10 10 r 10ψ i ψ H ψ G T G 0c                                             (39) 
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''
10 r 10T P iωT 0                                          (40) 
''

10 10c c 10S iω S 0                                                            (41) 
'iv '' ' '' ''' 2 '' '
1111 11 0 10 10 0 11 r 11 cψ i ψ i( ψ ψ ψ ) H ψ G T G 0                                                           (42) 

'' ' '
11 r 11 r 0 10 10 0T P iωT P i(ψ T ψ T ) 0                                          (43) 
'' ' '
11 11 10c c 0 10 0 c 11S iω S i(ψ ψ ) S 0                                                                           (44) 

' '' i t ''' ''
10 10 0 0ψ h e (h ψ )      ,   10ψ 0 , i t '

10 0T e T    ,   
-i t '

10 0-e         at   y 1                     (45) 
' '' i t ''' ''
10 10 0 0ψ h e (h + ψ )      , 10ψ 0 , i( t) '

10 0T e T  , i( t) '
10 0e      at    y 1                      (46) 

'
1r1r 1r 1r

'
1r1r 1r 1r

ψ 0, ψ 0 T 0, 0, at y 1
r 1

ψ 0, ψ 0 T 0, 0, at y 1

       
       

.                                  (47) 

 
Zeroth-order solution 

Eqs. (28) - (30) subject to the boundary conditions (31) - (32) the solution are 
 

2 3
0 3 3 3 3 5 6 7 8ψ (y) A B y C cosh Hy D sinh Hy T y T y T sinh y T cosh y                                  (48) 

2
0 1 1T (y) A B y y

2

     
 

                                                                                                                     (49) 

0 2 2 2

c
(y) A cosh y - B sinh y -   


                                                                                                       (50) 

where, cS   ; *
1 cc C S ; 2

a

1
H M +

D
 ; 1

1
A

2

 
 ; 1

1
B

2
  ; 2 2

c 1
A

cosh 2 cosh
 
  

;

2

1
B

2 sinh
 


; 14 15

3 3

T T
A = C cosh H

2




 
 
 

;  3 14 15 3

1
B = T T 2D sinh H

2
  ; 11 13

3
9 12

T T
C

T T





;

 11 13 14 15 3 9 12
3

10

T T T T C T T
D

2(T sinh H)

    



; 1 1 rT B G ; 2 rT - G ;  3 2 cT A G  ; 4 2 cT B G  ; 

2
1

5 2

T
T

2H
  ; 2

6 2

T
T

6H
  ; 3

7 2 2 2

T
T

( H )

  

; 4
8 2 2 2

T
T

( H )

  

; 2
9T H sinh H - hH cosh H;

2
10T H cosh H - hH sinh H;  

11 5 6 7 8T 2T (h -1) 3T (2h -1) T (h sinh - cosh ) T (h cosh - sinh )            ;
2

12T -H sinh H hH cosh H;   

13 5 6 7 8T 2T (1- h) 3T (2h -1) T (h sinh - cosh ) T (sinh - h cosh );             

14 5 6 7 8T =-T -T -T sinh -T cosh ;  15 5 6 7 8T -T T T sinh - T cosh ;      
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First order solution 

The solutions of Eqs. (39) - (41), subject to the conditions (45) and (46), are 
 

10 6 6 6 1 6 1 20 1 21 1A B y C cosh H y D sinh H y T sinh y T cosh y          

           22 1 23 1T sinh y T cosh y                                                                                                              (51) 

10 4 1 4 1T A cosh y B sinh y                                                                                                                 (52) 

10 5 1 5 1A cosh y B sinh y                                                                                                                    (53) 

where, 1 riP ;   (1 cS i );    2
1H i H  ; i

4
1

-i te 1 1
A - e -

2 cosh 2 2




   


    
        

;

i t
i

4
1

-e

2sinh

1 1
B e -

2 2





    

    
        

; 24 25
5

1

T T
A

2 cosh





; 24 25

5
1

T T
B

2 sinh





; 27 29 6 1

6

T T 2C cosh H
A

2

 


; 27 29 6 1
6

T T 2D sinh H
B

2

 
 ; 26 28

6
30 32

T - T
C

T - T
 ;

 
 

26 28 27 29 6 30 32
6

31 1

T T T T C T T
D

2 T sinh H

    



;

16 1 r 4T G A  ; 17 1 r 4T G B  ; 18 1 c 5T G A  ; 19 1 c 5T G B  ; 16
20 2 2 2

1 1 1

T
T

( - H )

 

; 17
21 2 2 2

1 1 1

T
T

( - H )

 

;

18
22 2 2 2

1 1 1

T
T

( - H )

 

; 19
23 2 2 2

1 1 1

T
T

( - H )

 

;
-i t

24

c sinh sinh cosh
T -e

cosh 2 cosh sinh

    
  

   

  
  

  
;

 i t
25

c sinh sinh cosh
T -e

cosh 2 cosh sinh

    
    

   

  
  

  
; 

2 2 2
26 20 1 1 1 1 21 1 1 1 1 22 1 1 1 1T T ( cosh h sinh ) T ( sinh h cosh ) T ( cosh h sinh )                    

    2 -i t 3 2
23 1 1 1 1 3T sinh h cosh C e hH sinh H H cosh H       

  -i t 3 2 -i t -i t
3 6 5 6D e hH cosh H H sinh H e (6T h - 2T ) 6e T     

 
-i t 3 2 -i t 3 2

8 7 7e sinh ( T h - T ) e cosh ( T h - T )8
         ;

27 20 1 21 1 22 1 23 1T -T sinh - T cosh - T sinh - T cosh ;      
2 2 2

28 20 1 1 1 1 21 1 1 1 1 22 1 1 1 1T T ( cosh h sinh ) T ( sinh h cosh ) T ( cosh h sinh )                    

   2 -i t 3 2
23 1 1 1 1 3T sinh h cosh C e hH sinh H H cosh H        

  -i t 3 2 -i t -i t
3 6 5 6D e hH cosh H H sinh H e (6T h 2T ) 6e T      

 
-i t 3 2 -i t 3 2

8 7 7e sinh ( T h T ) e cosh ( T h T )8
          ;

29 20 1 21 1 22 1 23 1T T sinh - T cosh T sinh - T cosh ;      2
30 1 1 1 1T H sinh H - hH cosh H ;

2
31 1 1 1 1T H cosh H - hH sinh H ; 2

32 1 1 1 1T H sinh H hH cosh H   . 

The shear stress at any point in the fluid is given by  xy

u v
τ

y x

 
  

 

 
 
 

.                                  (54) 
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In non dimensionless form 
2

xy2

d u v
τ , τ

y x

 
  

  

 
 
 

.                                                        (55) 

 
The heat transfer coefficient, characterized by Nusselt number (Nu) on the tube boundary is   
 

T
h K

y


 


.                                                                                         (56) 

 
The dimensionless mass transfer number corresponding to the Nusselt number is the Sherwood 

number, written as 
 

Sh
y





.                                                                                   (57) 

 
 

Results and discussion 

Graphical representation of results is very 
useful to discuss the physical features presented by 
the solution. Therefore, the non dimensional 
velocity, temperature and concentration fields are 
plotted and carried out for several values of 
Hartmann number (M), frequency parameter (ω ), 
permeability parameter ( aD ), Prandtl number (Pr), 

Grashof number ( rG ), local Grashof number (Gc), 

chemical reaction parameter (  ), slip parameter 

(h), heat source/sink parameter (α ) and Schmidt 
number ( cS ). Figure 2 describes the behavior of 

the velocity for various values of M,  , aD , α  and 

rG . The effect of magnetic field on velocity is 

depicted in Figure 2a. It is observed that the effect 
of magnetic field is to decrease the value of 
velocity, because the presence of magnetic field in 
an electrically conducting fluid introduces a force 
called the Lorentz force, which acts against the 
flow if the magnetic field is applied in the normal 
direction, as in the present problem.  Also, it is 
noted that when h increases from 0 to 0.1 there is a 
nearly 13 % increase in the velocity value [21]. 
Figure 2b displays the influence of chemical 
reaction parameter with fixed values of other 
parameters. It shows that the effect of increasing   

leads to a decrease in fluid velocity. The effect of 
the permeability parameter on u is illustrated in 
Figure 2c. As anticipated, the increase of 
permeability parameter reduces the drag force and 
hence causes the flow velocity to increase. Figure 

2d displays that with increasing α  there is an 
increase in velocity field. Figure 2e displays the 
effect of the Grashof number ( rG ) on the velocity 

u. It is found that the effect of increasing rG  is to 

enhance the velocity field as expected. An increase 
in the Grashof number physically means an 
increase of the buoyancy force, which supports the 
flow. The cross velocity v is plotted in Figure 3 
for different values of h and α . It shows that cross 
velocity increases with an increase of h and α . In 
Figure 4 the temperature profile is drawn for 
different values of α. It is clear that in the presence 
of heat sources/sinks the temperature profiles are 
parabolic in nature and also note that the fluid 
temperature increases with increasing α . Figure 5 
illustrates the behavior of fluid concentration for 
different values of cS and  . Figure 5a depicts the 

behavior of the concentration distribution ( ) 

against y for various values of cS  ( = 0.5, 0.6, 

0.78, 1 and 2, which corresponds to Hydrogen gas, 
water vapor, ammonia, carbon dioxide at 25 C, 
and ethyl benzene in air, respectively). We find 
that   is positive and decreases significantly with 

both  cS  and y. The opposite result can be 

observed in Figure 5b, if cS is replaced by  . 

Figure 6 shows the skin friction profile for 
different values of cS ,  and h at both the walls. 

Figure 6a displays the effects of Schmidt number 
for 2 different values of slip parameter (h = 0 and 
0.1). 
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Figure 2 Velocity distribution  ( 1C = 1, cG = 1, cS = 2, h = 0.1, / 2   , = 0.2, rP = 0.71, x = 1,   = 

1, t = 1,  = 0.001) 

a: _M = 0, *_M = 0.5, o_M = 1, ^_M = 2,  = 5, aD = 2,  = 0.5, rG = 1 

b: _   = 2, *_   = 0, o_   = 5, ^_   = 20, M = 1, aD = 2,  = 0.5, rG = 1 

c: _ aD   , *_ aD = 0.5, o_ aD = 1, ^_ aD = 1.5,  = 5, M = 1,  = 0.5, rG = 1 

d:  _ = 0, *_ = 5, o_ = 10, ^_ = 15,  = 5, M = 1, aD = 2, rG = 1 

e: _ rG  = 0, *_ rG = 2, o_ rG = 4, ^_ rG = 6,  = 5, M= 1, aD = 2,  = 0.5 
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Figure 3 Cross velocity distribution (  = 0.1, 1C = 1; aD = 0.5, cG = 5; rG = 5, M = 1, cS = 2, / 2   , 

=0, rP = 0.71, x = 1,   = 1, t = 1,  = 0.1) 

a: _h = 0, *_h =0.05, o_h = 0.1, ^_h = 0.15,  = 2 
b: _ = 5, *_ = 0, o_ = 5, ^_ = 10, h = 0.01. 
 
 

 
Figure 4 Temperature distribution ( / 2   ,= 0.2, rP = 0.71, x = 1,   = 1, t = 1,  = 0.001) 

+_ = 5, _ = 0, *_ = 2, o_ = 4, ^_ = 6. 
 

 
From this figure, it is clear that skin friction 

enhances with an increase of the Schmidt number, 
while it decreases with an increase of α at the wall 
y = 1 but is reversed at the other wall. Further, it 
is observed that there is a nearly 45 % increase in 
skin friction when h rises from 0 to 0.1. The 
opposite trend is observed for the case of 
increasing the value of chemical reaction 

parameter, as shown in Figure 6b. Figure 6c 
illustrates the influence of different values of slip 
parameter. It shows that skin friction decreases by 
increasing α  up to a value (at a constant value of 
α= 5) after which it increases at the wall y = 1. 
The opposite effect can be noticed at the other 
wall.
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Figure 5 Concentration distribution ( 1C = 1, 0  , = 0.2, rP = 0.71, x = 1,   = 1, t = 1,  = 0.001) 

a: _ cS  = 0.5, *_ cS = 0.6, o_ cS = 0.78, ^_ cS = 1,+_ cS = 2 

b: _  = 0.5, *_  = 0, o_  =0.5, ^_  = 1. 

 

 

 
Figure 6 Skin friction distribution ( 1C = 1; aD = 2, cG = 1, rG = 1, M = 2, / 2   , = 0.2, rP = 0.71, 

x = 1,   = 1, t = 1,  = 0.001) 

a:_ cS = 0.2,*_ cS = 0.78, o_ cS = 1,^_ cS = 2,  = 0.5, h = 0.1 

b:_  = 0.5,*_  = 0, o_  = 0.5,^_  = 1.5, cS = 2, h = 0.1 

c:_h = 0, *_h = 0.02, o_h = 0.04, ^_h = 0.06. 
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Figure 7 Nusselt number distribution ( / 2   , = 0.02, x = 1,   = 5, t = 1,  = 0.1) 

_ rP  = 0.044, *_ rP = 0.71, o_ rP = 7, ^_ rP = 11.4. 
 
 

 
Figure 8 Sherwood number distribution ( / 2   ,= 0.2, rP = 0.71, x = 1,   = 1, t = 1,  = 0.001) 

_  = 0.5,*_  = 0, o_  = 0.5, ^_  = 1. 
 
 

Figure 7 depicts the effect various values of 

rP  (i.e., = 0.044, 0.71, 7 and 11.4, which 

corresponds to mercury, air, water and water at 4 
C, respectively) on the Nusselt number 
distribution. It shows that the Nusselt number 

enhances with an increase in value of rP  on the 

wall y = 1 while it decreases at wall y = 1. Also 
we observe from the same figure that the Nusselt 
number enhances in the presence of a heat source  
( 0  ) but the opposite is true presence of a heat 
sink ( 0  ) [3]. The reverse trend can be 
observed in the Sherwood number distribution if 

rP  is replaced by  (see Figure 8). 

Conclusions 

The problem of MHD mixed convective heat 
and mass transfer flow in a vertical wavy porous 
space in the presence of chemical reaction and wall 
slip with traveling thermal waves has been studied. 
The dimensionless governing equations are 
perturbed into a mean (zeroth-order) part and a 
perturbed part, using amplitude as a small 
parameter. The perturbed quantities are obtained 
by perturbation series expansion for small 
wavelength in which terms of exponential order 
arise. Analytical solutions have been developed for 
velocity, temperature and concentration field. The 
features of the flow characteristics are analyzed by 
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plotting graphs and discussed in detail. The main 
findings are summarized as follows. 

1. The velocity of the fluid increases with an 
increase of h, aD , rG , α  while it decreases with 

cS , M and  .  

2. Temperature enhances with increasing 
values of α . 

3. Increasing cS leads to a decrease in the 

fluid concentration, whereas   leads to an increase 

in the fluid concentration. 
4. Increasing chemical reaction leads to an 

increase in the skin friction at the wall y = 1 but 
the opposite is true at the other wall.  

5. The Sherwood number decreases with an 
increase of cS  at the wall y = 1 while it increases 

at the other wall. 
6. The results of a hydrodynamics case for a 

non porous space in the absence of chemical 
reaction can be captured as a limiting case of our 

analyses by taking M, 0   and aD  . 
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