WALAILAK JOURNAL

http://wjst.wu.ac.th

Mathematics

On the Convergence of the Homotopy Analysis Method for Solving
Fredholm Integral Equations

Behzad GHANBARI'

Department of Basic Sciences, Kermanshah University of Technology, Kermanshah, Iran
(‘Corresponding author’s e-mail: b.ghanbary@yahoo.com)

Received: 29 March 2012, Revised: 2 May 2012, Accepted: 29 April 2013

Abstract

The aim of this paper is to study the convergence of the Homotopy analysis method (HAM) for
solving Fredholm integral equations. A sufficient condition for convergence of the method is illustrated.
The validity of the presented condition for convergence of the HAM is studied for two examples. The
comparison of the obtained results by the method with an exact solution shows that the method is reliable

and capable of providing analytic treatment for solving such equations.
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Introduction

The Homotopy analysis method (HAM) [1]
has been proved to be one of the most useful
techniques to solve numerous linear and non-linear
functional equations. As mentioned in [2,3], unlike
all previous analytic techniques [4-10], the HAM
provides great freedom to express solutions of a
given non-linear problem by means of different
base functions. Furthermore, this method provides
us with a way to adjust and control the
convergence region and rate of convergence of
solution series by introducing the auxiliary
parameter, 7 . Finally, the HAM is independent of
any small or large parameters. So, the method can
be applied no matter if governing equations and
boundary or initial conditions of a given non-linear
problem depend on small or large quantities or not.
By properly choosing the base functions, initial

approximations, auxiliary linear  operators,
auxiliary functions, and auxiliary parameter, 7,
HAM gives rapidly convergent successive

approximations of the exact solution.

We aim in this work to study convergence of
the HAM, for solving integral equations of the
Fredholm type, of the form;

u(x):f(x)+yjl:k(x,t)(u(t))pdt, as<x<b,peN, (1)

subject to the initial condition;

u(0)=a, 2)

where 4 is a real number, the kernel k(x,¢) is a
continuous function over [a,b]x[a,b], and f(x)is
a given continuous function defined over [a,b] .

Since the integral equations appear
frequently in modeling of physical phenomena,
they have a major role in the fields of science and
engineering and a considerable amount of research
work has been investigated [11-15].

In Section 2, we illustrate the main idea of
the Homotopy perturbation method. In Section 3,
the convergence analysis of the method is
discussed. Then 2 numerical examples are
presented in Section 4. Finally, conclusions are
stated in the last section.
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Basic ideas of HAM

Let us consider a non-linear equation in the following form;
Nlu(x)]=0, 3)

where N is a non-linear operator, u(x) is an unknown function of the independent variable x .
Let u,(x) denote an initial guess of the solution u(x), #=0 is an auxiliary parameter, H(0)=0 is an
auxiliary function, and L is an auxiliary linear operator with the property;

L[ f(x)]=0 when f(x)=0. (4)

Then, using g [0,1] as an embedding parameter, the following homotopy can be constructed.

QLD(x;9);10(x), H (x),71,] = (1 = ) {L[DP(x;9) — 1y (x)]} — ghH (x) N[D(x; 0)]. ®)

It should be emphasized that we have great freedom to choose the initial guess u,(x), auxiliary linear
operator L, non-zero auxiliary parameter 7 , and auxiliary function H (x) .
Enforcing the homotopy (5) to be zero, i.c.;

Q[D(x;q);uy(x), H (x),7:9] = 0.
We have the so-called zero-order deformation equation.
(A= {L[D(x3q) —uy (r, )]} = ghH (x)N[D(x; 9)], (6)

where ®(x;q) is the solution which depends upon not only on the initial guess u,(x), auxiliary linear
operator L, auxiliary function H(r,f) and auxiliary parameter 7 , but also the embedding parameter g .
When ¢ =0, the zero-order deformation Eq. (6), turns into;

L[®(x;0) — uy (x)] = 0. (7
Property (4), leads to;

D(x;0) = 1, ().

When ¢ =1, since 7= 0and H(x) =0, the zero-order deformation Eq. (6) is equivalent to

N[®(x;1)] =0,

which is exactly the same as the original Eq. (3), provided [2];

D(x;1) = u(x). 3

Thus, according to (7) and (8), as the embedding parameter ¢ increases from 0 to 1, ®(x;q) varies
continuously from the initial approximation u,(x) to the exact solution u(x) of the original Eq. (3).
Under the assumption that the Taylor series of ®(x;¢q) with respectto ¢ ;
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» i ©)
D(x;9) = () + D 4,(¥)q",
m=1
be convergent at ¢ =1, the solution series will be presented as;
(10)

u() = D) = () + Y, ().

This expression provides us with a relationship between the exact solution u(x) and the initial
approximation u,(x) by means of the terms ¢, (x) that are determined as follows.
Differentiating the zero-order deformation Eq. (6) m(m>1) times with respective to the embedding
parameter ¢ and then dividing it by m! and finally setting ¢=0, we have the so-called m th-order
deformation equation.

LI, (x) = £, (X)] = RH ()R, (B, ., %), (11)
subject to the initial condition;
4,(0)=0, (12)

where y, is defined by;

[0, m<1 (13)
An = 1, Otherwise.
Also;
B = 1(0).4,(0).4,(x).....4, ()} (14)
and

p 1 9"N[®(x;9)] (15)
Rm(¢”"l7x)_ (m—l)! aqm—l ‘6120'

Substituting (10) into (15), gives;

, Lo e (16)
R,($,.1s%) = (m_l)!{ s N{;mx)q }}
According to Eq. (1), we consider the non-linear operator.
N[®] = O()~ () - ] k(o) @)’ dr a7

Also, we can choose the initial guess u,(x) , in such a way that it satisfies the initial condition (2), i.e.;

1,(0) = u(0) = a. (18)
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Using Eqgs. (16) and (17), we have;

R,[$,.1(0)] =, ()~ (1-2,)f (x) (19)

R I TE0 I MNE ) S NE) 3 INES N0 S SR CO D Y € AN CoT 2

= Tp-2 =0

From (15), it should be noted that the right-hand side of Eq. (11) is only dependent upon 4, ,. Thus,
we recursively gain ¢,(r,t),4,(7,1),4,(r,t),... by means of solving the linear high-order deformation Eq. (11)
subject to (12). The m th-order approximation of u(x) is given by;

u (x)= i(/ﬁk (x).

Convergence analysis

In this section, some conditions of convergence of the Homotopy analysis method are stated and
addressed briefly.
Theorem 1. The following series;

A0+ 24,()

where ¢, (x) ’s result from Eqs. (11), (12) and (19), is an exact solution of the Eq. (1) and (2).

Proof. The series is convergent, i.e.;
s(x)= D ¢, (x).
m=0

So, by necessary condition for the convergence of the Series, it holds;

lim ¢, (x) = 0. (20)

Using (11) and (20), we have;

WY R,[§_ ()] =lim Y L[, (1)~ 2,4, (9]

m=1 m=1

- L{mi[@@)—m%&ﬂ]}

i
=0.

Since 70 and H(x)=0, we have;

< @

SR, [;5 . (x)] =0.

m=1
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On the other hand, we have;

ACNE]

m=1

—Z{mm =200~ [ k(x, r){zqﬁml,luzqﬁ,, <>z¢,2 L (0)... Z¢, m()zqﬁ“ P,()%,(x)}dz}

m=1 =0

=306, ()~ #Z{I k(. r>{2¢ml,,< )2@ D (0 "quﬁ,,,‘,,z(x)”zzqﬁ,,zn,,(x)qﬁ,,,l(x)}dt}

m=0 r=0

=34, £ () ) k(xr){Zqﬁ,](x) ) ¢” . () > g . Z¢, ,l(x)2¢,, (x)Zm,](x)}

m=0 0 Ty =r,_ Iy 3=r, m=p

—z¢ ()= f(x) - ﬂ_[ k(x, t){z# (X)z¢ (X)Zés(X) z ¢, Z(X)Z ¢, 1(X)Z¢ (x)}

m=0 i =0 = ip2=0

=s5(x)— f(x) - yja k(x,0)(s(1))” dt.
So, from Eq. (21), we obtain;
S0 = /() [ kG0 (s)) dr =0, (22)

From the initial conditions (12) and (18), the following holds;

» 23
S(O)=Z¢i(0)=¢o(0)=u<.(0)=a, @)

Since, s(x) satisfies Egs. (22) and (23), so it is an exact solution of Eq. (1) with the initial condition (2).
This ends the proof.

Theorem 2. Suppose that I c R be a Banach space with a suitable norm, sayl||| , over which the sequence
@, (x) of (9) is defined for a prescribed value of 7. Assume also that the initial approximation ¢,(x)
remains inside the ball of the solution u(x) . Taking re R as a constant, the following statements hold.
(i) If there exists some r€[0,1], such that for all k € R we have |¢,,,(x)| > 7|, (x)] , then the series solution

u(x)= Z¢k(x)qk , converges absolutely to (10), at ¢ =1, over the domain of definition of x,
k=0

(ii) If there exists some r >1, such that for all k € R we have

¢k+1 (X)H <r

¢,(x)|, then the series solution

u(x)= Z¢k(x)qk diverges, at ¢ =1, over the domain of definition of x .
k=0

Proof. Indeed, this is a special case of the Banach fixed-point theorem, which can be found in standard
texts on real analysis such as in [16].

Theorems 1 and 2 state that the homotopy series solution iqﬁk (x), of the non-linear problem (1),
k=0

converges to an exact solution u(x), under the condition that 3y,0<y<1 such that
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Vk > k,,
p.’s, as defined in [17].

¢ ()] < 7|¢.(x)| , for some k, € R. In other words, if for every i > k,, we consider the parameters

24
M' ¢! 750, ( )

¢
¢

s>

ﬂi+] =

0; =0.

For € R U{0}, then the series solution z¢k(x) of problem (1) converges to an exact solution u(x) , when
k=0

Vizk, 0<pB <1.
Numerical examples

In this section, 2 examples are presented to illustrate the convergence study.
Example 1. Consider the following linear Fredholm integral equation [15];

u(x)=e' ~2sin(x)+ [ & sin(u(n)dr,

u(0)=1.

with the exact solution u(x)=e".
According to HAM, the following homotopy is constructed.

(1-9)L [(D(x) -, (x)] = qhH(x)((D(x) —e" +2sin(x) — EI e’ sin(x)(D(t)dt).

By taking H =1,L¢=¢, and substituting (9) into the above homotopy, the following deformation
equations are obtained.

4 = h(¢0 ()~ +2sin(x) - [ sin(x)¢0(t)dt) ‘c, 05

b=+ 100 [ & sin( 0|+ C.p k21

where the constants C,, k>1, are determined from the condition (12). Starting with ¢, =1 in (25), we
recursively obtain the approximations. In this example;

$(x)=h(—e"+e ' sin(x) +1),

#,(x) = %h((—2e"' + 2)( -+ 1)+ sin(x)[ he * sin(1) + fie > cos(1) + 2¢”' + 3he”" ])

Table 1 shows some values of f’s, defined as in (24), for the truncated series solution

7
u,(x) =Y ¢(x), which was obtained from the iterative scheme (25) by using different values of 7 . From
i=0

Table 1, since B <1 fori=-1.1, a=-1 and #=-0.9, we can conclude that the HAM approach
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converges to the exact solution of problem for 7=-1.1, 7=-1 and 7#=-0.9. Also, we observe that S ’s
are not less than one for 7=1. So, the HAM approach may be divergent when 7 =1.

Table 1 Numerical values of g, ’s for different values of 7 in Example 1.

h=-1.1 h=-1 h=-09 h=1
yia 0.1064777183 0.0273588205 1.9470005312 2.005888808
B 0.1225203824 0.1394710424 0.07293168915 2.004620076
yin 0.1665256283 0.1772552582 0.1048370531 2.003192583
B, 0.1887994255 0.0728215595 0.2171489807 2.001605553
Bs 0.2262985828 0.1434132848 0.2128619930 1.999857309
B 0.1143905693 0.1543150838 0.1933299028 1.997944868
In Table 2, relative errors &, of the n terms approximation of HAM, defined as;
5.(x) = u(x;)—u,(x;) , (26)
u(x;)

for different values of 7 at different x, ’s are presented. It is evident that the auxiliary parameter # can
also be effectively implemented to adjust and control the rate of convergence of series solutions by HAM.

Table 2 Comparison of relative errors 8, for Example 1.

h=-1.1 h=-1 h=-09 h=1
x,=0.1 9.41E-7 1.65E-7 3.55E-7 2.597236983
x,=0.2 2.60E-6 7.28E-7 7.02E-7 9.554876418
x,=0.3 7.65E-7 1.67E-7 4.49E-7 33.19152096
x, =04 6.15E-5 9.03E-7 2.67E-6 68.22084816
x,=0.5 6.12E-7 4.21E-6 7.00E-8 114.6188038
x,=0.6 7.16E-6 9.72E-7 1.74E-7 172.3762215
x,=0.7 3.44E-7 6.14E-6 2.20E-6 241.4889172
x,=0.8 1.12E-6 4.17E-6 1.84E-6 321.9545818
x,=0.9 2.52E-6 7.27E-7 1.31E-6 413.7719315
X,=1.0 9.14E-6 9.91E-6 4.83E-6 516.9401309

Example 2. In this example, we consider the following non-linear Fredholm integral equation with the
exact solution xIn(1+x) [14].

241 27

53 1 8 1 2
u(x)=xIn(x+1)——+—-In2| —x+2—xIn2 |———+—| (x—1)(u(x)) dt, x|0,1],
x) ( ) 108 3 [3 } 576 ZJ.“( )( ( )) [ ]

u(0)=0.
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To obtain the approximate solution of (27), by taking H =1, Lg =¢ in (6), we have;

241 (28)

(l—q)L[CI)(x) ¢0(x)] qhH(x)[(D(x) xln(x+1)+—38—fln2(§x+2 xln2j+——fjl( —1) (I)(x)) dt}

Substituting (9) into (28) and starting with the initial guess ¢,(x)=xIn(x+1)+ x(—% + glnz - %(ln 2)zjx,

the following deformation equations are obtained.

53 1, (8 241
¢ = (%(x) xln(x)+&—§l (§x+2—xln2j+%—aj( ~1)(¢y () dt]

b=+ h[@(x) e —t){ﬁﬁ(xmim}dt} +Cpk 21

where the constants C,, £ >1, can be determined by the initial condition (12).
Table 3 shows the values of g, ’s for different values of 7. Moreover, Table 4 shows the relative
error (26), of the truncated series u,, for different values of 7. Clearly, one can observe that the

approximate solution for #=-1.25, is more accurate than the approximate solutions obtained when
h=-1.1, i=-1 and 7=-0.9. So, one can claim that the auxiliary parameter # plays an important role in
adjusting and controlling the convergence of the series solution. It seems that the more accurate
approximations will be obtained for smaller values of g, .

Table 3 Numerical values of g, ’s for different values of 7 in Example 2.

h=-125 h=-1.1 h=-1 h=-0.9
B 0.41799351 0.08321659 0.16656051 0.249904473
b 0.31550415 0.18968116 0.21052058 0.27363689
Jia 0.11432698 0.17663097 0.23611584 0.27363689
B 0.25497653 0.20555668 0.25311880 0.30883061
Bs 0.16748886 0.20770612 0.26565744 0.32097967
B 0.18793950 0.22965814 0.27066721 0.33114110

Table 4 Comparison of relative errors 8, for Example 2.

h=-125 n=-1.1 h=-1.0 h=-0.9
% =0.1 2.09E-8 9.59E-7 471E-6 1.94E-5
x, =02 1.39E-7 1.75E-7 6.74E-6 3.28E-5
X, =03 1.60E-7 3.46E-6 9.49E-6 4.62E-5
x, =04 7.20E-8 3.13E-6 1.22E-5 5.96E-5
X, =05 2.99E-7 3.86E-6 1.49E-5 7.29E-5
x, =06 4.86E-7 4.61E-6 1.77E-5 8.63E-5
X, =0.7 1.96E-8 5.37E-6 2.04E-5 9.96E-5
% =08 1.37E-7 6.07E-6 2.32E-5 1.12E-4
x, =09 1.23E-7 6.92E-6 2.58E-5 1.26E-4
X, =10 2.67E-7 7.50E-6 2.86E-5 1.39E-4
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Conclusions

In this study, the problem of convergence of
the Homotopy analysis method, when it used for
solving a special form of the Fredholm integral
equation has been studied. The sufficient condition
for convergence of the method has been illustrated,
and verified for 2 examples. The obtained
approximations of the solutions confirm the power
and ability of the HAM as a reliable device for
computing the solutions to the Fredholm integral
equation. This is mainly due to the fact that the
method provides a way to ensure the convergence
of series solutions. The study of convergence
conditions in applying HAM for other equations
and systems of differential equations, integral
equations and integro-differential equations, are
also under investigation by our research team.
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