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Abstract  

In this paper, we apply Homotopy Perturbation Transformation Method (HPM) using the Laplace 
transformation to tackle time-fractional systems of Partial Differential equations. The proposed technique 
is fully compatible with the complexity of these problems and obtained results are highly encouraging. 
Numerical results coupled with graphical representations explicitly reveal the complete reliability and 
efficiency of the suggested algorithm. 

Keywords: Fractional partial differential equations, homotopy perturbation method, Laplace transform, 
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Introduction 

Nonlinear partial differential equations [1-21] are of extreme importance in applied and engineering 
sciences. The thorough study of the literature reveals that most of the physical phenomena are nonlinear 
in nature and hence there is a dire need to find their appropriate solutions, see [1-21] and the references 
therein. It is to be highlighted that the expansion idea was also used to obtain exact solutions around an 
integrable ODE [22], and exact solutions of traveling wave type can be generated through the transformed 
rational function method, see [23]. Furthermore, multiple wave solutions can be computed by using the 
multiple exp-function method [24] and a new kind of exact solution with generalized separation of 
variables can be recognized through the invariant subspace method [25]. On the other hand, the linear 
superposition [22,23] principle has been used to solve Hirota bilinear differential equations. Recently, 
scientists have observed that the number of real time problems is modeled by fractional nonlinear 
differential equations, which are very hard to tackle. We apply the Homotopy Perturbation 
Transformation Method (HPTM) to solve a time-fractional system of partial differential equations. 
 
Dt
αu + R1(u, v, w) + N1(u, v, w) = g1, 

Dt
αv + R2(u, v, w) + N2(u, v, w) = g2,              (1) 

Dt
αw + R3(u, v, w) + N3(u, v, w) = g3,  

 
with initial conditions; 
 
u(x, 0) = f1(x),  
v(x, 0) = f2(x),                  (2) 
w(x, 0) = f3(x).  
 
Dt
α  is the time-fractional derivative with 0 < α ≤ 1, Rj, 1 ≤ j ≤ 3 and Nj, 1 ≤ j ≤ 3 are the linear and 

non-linear operators and g1, g2 and g3 are source terms. The fractional derivative is considered in the 
Caputo sense. It is to be highlighted that such equations arise frequently in applied, physical and 
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engineering sciences. The proposed algorithm is fully synchronized with the complexity of fractional 
differential equations. Numerical results coupled with graphical representations explicitly reveal the 
complete reliability and efficiency of the proposed algorithm. 
 
Definitions: [13-17] 

Definition 1 A real function f(x), x > 0, is said to be in the space Cµ, μ ∈  ℝ if there exists a real number 
 p(> µ), such that f(x) = xpf1(x), where f1(x) ∈ C[0, ∞)  , and it is said to be in the space Cµ∞ if and only 
if fm ∈ Cµ µ ≥ 1 m ∈ N. 
 
Definition 2 The Riemann-Liouville fractional integral operator of order ≥ 0 , of a function  f ∈ Cµ, µ ≥
−1, is defined as; 
 
Jαf(x) = 1

Γ(α)∫ (x − t)α−1f(t)dtx
0 ,         α > 0, x > 0 ,  

J0f(x) = f(x).  
 
Properties of the operator jα can be found in [13-17], we mention only the following.  

For f ∈  Cµ, µ ≥ −1,α, β ≥ 0 and γ > −1; 
 
1. JαJβf(t) = Jα+βf(t), 
2. JαJβf(t) = JβJαf(t),  
3. Jαxγ = Γ(γ+1)

Γ(α+γ+1)
xα+γ.  

 
Definition 3 The fractional derivative of f(x) in the Caputo sense is defined as; 
 
D∗
αf(x) = Jm−αDαf(x) = 1

Γ(m−α)∫ (x − t)m−α−1f (m)(t)dt,α
0    

for m − 1 < α ≤ m, m ∈ Z, x > 0, f ∈ C−1m . 
 
also, we need here two of its basic properties. 
 
Lemma 1 if m − 1 < α ≤ m, m ∈ N and f ∈ Cµm, µ ≥  −1 , then 
 
D∗
αJαf(x) = f(x),  

and 

JαD∗
αf(x) = f(x) − ∑ f(k)�0+� .xk

k!
 , x > 0 .m−1

k=0   
 
Analysis of Modified HPTM [13-17] 

To illustrate the basic idea of this method, we consider a general fractional nonlinear non-
homogeneous partial differential equation with initial conditions of the form. 

 
Dt
αu(x, t) + Ru(x, t) + Nu(x, t) = g(x, t),              (3)  

u(x, 0) = h(x),       ut(x, 0) = f(x).               (4) 
 
where g(x, t) is the source term, N represents the general non-linear differential operator and R is the 
linear differential operator, Dt

αu(x, t) is the Caputo fractional derivative of function u(x, t) which is 
defined as; 
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0Dt
αu(x, t) = 1

Γ(n−α)∫
u(n)(x,τ)dτ
(t−τ)α+1−n

,           (n − 1 < 𝑅𝑒(α) ≤ n, n ∈ N)   t
0            (5) 

 
where Γ(. ) denotes the Gamma function. The properties of the fractional derivative can be found in 
[1,2,4,6]. Laplace transform (denoted throughout this paper by L) of the Caputo operator is an important 
property which will be used in this paper. 
 
L�0Dt

αu(x, t)� = sαu(x, s) − ∑ uk(x, 0+)sα−1−k, (n − 1 < α ≤ n) n−1
k=0            (6) 

 
Taking the Laplace transform on both sides; 
 
L[Dt

αu(x, t)] + L[Ru(x, t)] + L[Nu(x, t)] = L[g(x, t)],             (7) 
 
Using the property of the Laplace transform, we have; 
 
L[u(x, t)] = h(x)

s
+ f(x)

s2
− 1

sα
 L[Ru(x, t)] − 1

sα
L[Nu(x, t)] + 1

sα
 L[g(x, t)],           (8) 

 
Operating with the Laplace inverse on both sides;  
 
u(x, t) = G(x, t) − L−1[ 1

sα
 L[Ru(x, t)] + 1

sα
L[Nu(x, t)]],             (9) 

 
where G(x, t) represents the term arising from the source term and the prescribed initial conditions. Then 
we apply the homotopy perturbation method, the basic assumption is that the solutions can be written as a 
power series in p. 
 
u(x, t) = ∑ pnun(x, t) = u0 + p∞

n=0 u1 + p2u2 + p3u3 + ⋯,            (10) 
 
and the nonlinear term can be decomposed as;  
 
Nu(x, t) = ∑ pnHn(u),∞

n=0               (11) 
 
where pϵ[0,1] is an embedding parameter. Hn(u) is He’s polynomials which can be generated by;  
 
Hn(u0, … , u0) = 1

n!
∂n

∂pn
[N(∑ piui)]p=0,  n = 0,1,2, …∞

i=0           (12) 
 
Substituting Eqs. (11) and (12) in Eq. (9) we get;  
 
∑ pnun(x, t) = G(x, t) − p(L−1[∞
n=0   1

sα
 L[R∑ pn∞

n=0 un(x, t)] + 1
sα

 L[∑ pn∞
n=0 Hn(u)]]),        (13) 

 
Equating the terms with identical powers in p, we obtain the following approximations; 
 
p0 ∶                u0(x, t) = G(x, t),                           (14) 
p1 ∶                u1(x, t) = −L−1[ 1

sα
 L[Ru0(x, t)] + 1

sα
 L[H0(u)]]),                     (15) 

p2 ∶                u2(x, t) = −L−1[ 1
sα

 L[Ru1(x, t)] + 1
sα

 L[H1(u)]]),                                                                (16) 
. 
. 
., 
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The best approximations for the solution are; 
 
u(x, t) = u0 + u1 + u2 + u3 + ⋯                                                                                                             (17) 
 

This method does not resort to linearization or assumptions of weak nonlinearity. The solution 
generated in the form of a general solution and it is more realistic compared to the method of simplifying 
the physical problems. 

 
Numerical examples 

Example 1 We first consider the homogenous linear system; 
 

�Dt
αu − vx + (u + v) = 0,

Dt
αv − ux + (u + v) = 0,

�              (18) 

 
with initial conditions; 
 
u(x, 0) = sinh(x) , v(x, 0) = cosh(x).            (19) 
 
Taking the Laplace transform on both sides; 
 

�
L[Dt

αu] = L[vx − (u + v)],
L[Dt

αv] = L[ux − (u + v)],
�  

 
Using the property of Laplace transform, we have; 
 

�
L[u(x, t)] =

sinh(x)
s

+
1
sα

 L[vx − (u + v)],

L[v(x, t)] =
cosh(x)

s
+

1
sα

 L[ux − (u + v)],
� 

 
Operating with the Laplace inverse on both sides; 
 

�
u(x, t) = sinh(x) + L−1[ 1

sα
 L[(vx − (u + v))]],

v(x, t) = cosh(x) + L−1[ 1
sα

 L[(ux − (u + v))]],
�  

 
Then, we apply the homotopy perturbation method. 
 
∑ pnun(x, t)∞
n=0 = sinh(x) + pL−1[ 1

sα
 L[(∑ pnvnx(x, t)∞

n=0 ) − (∑ pnun(x, t)∞
n=0 ) − (∑ pnvn(x, t)∞

n=0 ]], 
∑ pnun(x, t)∞
n=0 = cosh(x) + pL−1[ 1

sα
 L[(∑ pnunx(x, t)∞

n=0 ) − (∑ pnun(x, t)∞
n=0 ) − (∑ pnvn(x, t)∞

n=0 ]], 
 
Comparing the coefficient of like power of p, we have; 
 

p0: � u0(x, t) = sinh(x),
   v0(x, t) = cosh(x) ,

�  

p1:�
u1(x, t) = −cosh(x)  tα

Γ(α+1)
  ,

  v1(x, t) = −sinh(x)  tα

Γ(α+1)
  ,
�  
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p2:�
u2(x, t) = sinh(x)  t2α

Γ(2α+1)
  ,

  v2(x, t) = cosh(x)  t2α

Γ(2α+1)
  ,
�  

p3:�
u3(x, t) =  −sinh(x)  t3α

Γ(3α+1)
  ,

  v3(x, t) = −sinh(x)  t3α

Γ(3α+1)
  ,
�  

⋮.  
 
The solution in the series form is given by; 
 
u(x, t) = ∑ pnun(x, t) = u0 + p∞

n=0 u1 + p2u2 + p3u3 + ⋯, 
v(x, t) = ∑ pnvn(x, t) = v0 + p∞

n=0 v1 + p2v2 + p3v3 + ⋯, 

�
u(x, t) = sinh(x) �1 +  t2α

Γ(2α+1)
+  t4α

Γ(4α+1)
+ … � − cosh(x) �t +  tα

Γ(α+1)
+  t3α

Γ(3α+1)
+  … � ,

v(x, t) = cosh(x) �1 +  t2α

Γ(2α+1)
+  t4α

Γ(4α+1)
+ … � − sinh(x) �t +  tα

Γ(α+1)
+  t3α

Γ(3α+1)
+  … � ,

�         (20) 

 
For the special case α = 1, we obtain the from; 
 

�u(x, t) = sinh(x − t) .
v(x, t) = cosh(x − t) .

�                (21) 

 
which are the exact solutions. The results for the exact solution Eq. (21) and the approximate solution Eq. 
(20) are obtained using HPTM, for = 0.50 and 1, are shown in Figure 1. 
 
 

a. b. c.  

d. e. f.  
 

Figure 1 The surface shows solutions u(x, t) and v(x, t) for the Eq. (4.3) (a) u(x, t) when α = 0.5, (b) 
v(x, t) when α = 0.5, (c) u(x, t) when α = 1, (d) v(x, t) when α = 1, (e) exact solution u(x, t), (f) exact 
solution v(x, t). 
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Example 2 Consider the following inhomogeneous linear system; 
 

�Dt
αu − vx − (u − v) = −2,

Dt
αv − ux − (u − v) = −2,

�             (22) 

 
with initial conditions; 
 
u(x, 0) = 1 + ex , v(x, 0) = −1 + ex. 
 
Taking the Laplace transform on both sides; 
 

� 
L[Dt

αu] = L[−2 + vx + (u − v)],
L[Dt

αv] = L[−2 + ux − (u − v)],
�  

 
Using the property of Laplace transform, we have; 
 

�
L[u(x, t)] =

1 + ex

s
+

1
sα  L[−2 + vx − (u − v)],

L[v(x, t)] =
−1 + ex

s
+

1
sα  L[−2 + ux − (u − v)],

� 

 
Operating with the Laplace inverse on both sides; 
 

�
u(x, t) = 1 + ex + L−1[ 1

sα  L[(−2 + vx − (u − v))]],

v(x, t) = −1 + ex + L−1[ 1
sα  L[−2 + ux − (u − v))]],

�  

 
Then, we apply the homotopy perturbation method; 
 
∑ pnun(x, t) =∞
n=0 1 + ex + pL−1[ 1

sα  L[−2 + (∑ pnvnx(x, t)∞
n=0 ) − (∑ pnun(x, t)∞

n=0 ) +  (∑ pnvn(x, t)∞
n=0 ]], 

∑ pnun(x, t)∞
n=0 = −1 + ex + pL−1[ 1

sα  L[−2 + (∑ pnvnx(x, t)∞
n=0 ) − (∑ pnun(x, t)∞

n=0 ) +  (∑ pnvn(x, t)∞
n=0 ]], 

 
Comparing the coefficient of like power of p, we have; 
  

p0: �  u0(x, t) = 1 + ex,
v0(x, t) = −1 + ex ,

�  

p1:�
u1(x, t) = ex  tα

Γ(α+1)
  ,

  v1(x, t) = ex  tα

Γ(α+1)
  ,
�  

p2:�
u2(x, t) = ex  t2α

Γ(2α+1)
  ,

 
v2(x, t) = ex  t2α

Γ(2α+1)
  ,
�  

p3:�
u3(x, t) = ex  t3α

Γ(3α+1)
  ,

  v3(x, t) = −ex  t3α

Γ(3α+1)
  ,
�  

 
⋮.  
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The solution in the series form is given by; 
 

�
u(x, t) = −1 + ex �1 +  tα

Γ(α+1)
+  t2α

Γ(2α+1)
+  t3α

Γ(3α+1)
+  t4α

Γ(4α+1)
+ … � ,

v(x, t) =    1 + ex �1 −  tα

Γ(α+1)
+  t2α

Γ(2α+1)
−  t3α

Γ(3α+1)
+  t4α

Γ(4α+1)
+ … � ,

�         (23) 

 

�u(x, t) = −1 + ex+t,
v(x, t) =    1 + ex−t,

�              (24) 

 
which is the exact solution of the system. The results for the exact solution Eq. (24) and the approximate 
solution Eq. (23) obtained using HPTM, for α = 0.5 and 1, are shown in Figure 2. 
 
 

a. b. c.  

d. e. f.  
 

Figure 2 The surface shows solutions u(x, t) and v(x, t) for the Eq. (4.6) (a) u(x, t) when α = 0.5, (b) 
v(x, t) when α = 0.5, (c) u(x, t) when α = 1, (d) v(x, t) when α = 1, (e) exact solution u(x, t), (f) exact 
solution v(x, t). 
 
 
Example 3 Consider the following homogenous nonlinear system; 
 

�Dt
αu − uxx − 2uux + (uv)x = 0,

Dt
αv − vxx − 2vvx + (uv)x = 0,

�             (25) 

 
with initial conditions; 
 
u(x, 0) = sin(x) , v(x, 0) = sin(x).            (26) 
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Applying the method defined above, we get; 
 

p0: � u0(x, t) = sin(x) ,
   v0(x, t) = sin(x) ,

�  

p1:�
u1(x, t) = −sin(x)  tα

Γ(α+1)
  ,

  v1(x, t) = −sin(x)  tα

Γ(α+1)
  ,
�  

p2:�
u2(x, t) = sin(x)  t2α

Γ(2α+1)
  ,

  v2(x, t) = sin(x)  t2α

Γ(2α+1)
  ,
�  

p3:�
u3(x, t) =  −sin(x)  t3α

Γ(3α+1)
  ,

  v3(x, t) = −sin(x)  t3α

Γ(3α+1)
  ,
�  

⋮.  
 
The solution in the series form is given by; 
 
u(x, t) = ∑ pnun(x, t) = u0 + p∞

n=0 u1 + p2u2 + p3u3 + ⋯, 
v(x, t) = ∑ pnvn(x, t) = v0 + p∞

n=0 v1 + p2v2 + p3v3 + ⋯, 

�
u(x, t) = sin(x) �1 −  tα

Γ(α+1)
+  t2α

Γ(2α+1)
−  t3α

Γ(3α+1)
+  t4α

Γ(4α+1)
+ … � ,

v(x, t) = sin(x) �1 −  tα

Γ(α+1)
+  t2α

Γ(2α+1)
−  t3α

Γ(3α+1)
+  t4α

Γ(4α+1)
+ … � ,

�         (27)

  
 
For the special case α = 1, we obtain the form; 
 

�u(x, t) = sin(x)e−t .
v(x, t) = sin(x)e−t .

�              (28) 

 
which is the exact solution of the system. The results for the exact solution Eq. (28) and the approximate 
solution Eq. (27) obtained using HPTM, for α = 0.50 and 1, are shown in Figure 3. 
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a. b. c.  
 

d. e. f.  
 

Figure 3 The surface shows solutions u(x, t) and v(x, t) for the Eq. (4.11) (a) u(x, t) when α = 0.5, (b) 
v(x, t) when α = 0.5, (c) u(x, t) when α = 1, (d) v(x, t) when α = 1, (e) exact solution u(x, t), (f) exact 
solution v(x, t). 
 

 
Example 4 Consider the following homogenous nonlinear time-fractional system; 
 

�
Dt
αu + uxvx + uyvy + u = 0  ,

Dt
αv+vxwx − vywy − v = 0    ,

Dt
αw + wxux + wyuy − w = 0,

�             (29) 

 
with initial conditions; 
 
u(x, , y, 0) = ex+y , v(x, y, 0) = ex−y, w(x, y, 0) = e−x+y.          (30) 
 
applying the method defined above (3) - (17), we get; 
 

p0:�
u0(x, y, t) = ex+y,

v0(x, y, t) = ex−y,   
u0(x, t) = e−x+y,

�  

p1:

⎩
⎪
⎨

⎪
⎧ u1(x, t) = ex+y  tα

Γ(α+1)
  ,

v1(x, t) = ex−y  tα

Γ(α+1)
  ,

w1(x, t) = e−x+y  tα

Γ(α+1)
  , 

�  
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𝑝2:

⎩
⎪
⎨

⎪
⎧𝑢2(𝑥, 𝑡) = 𝑒𝑥+𝑦  𝑡2𝛼

𝛤(2𝛼+1)
  ,

𝑣2(𝑥, 𝑡) = 𝑒𝑥−𝑦  𝑡2𝛼

𝛤(2𝛼+1)
  ,

𝑤2(𝑥, 𝑡) = 𝑒−𝑥+𝑦  𝑡2𝛼

𝛤(2𝛼+1)
,

�  

𝑝3:

⎩
⎪
⎨

⎪
⎧𝑢3(𝑥, 𝑡) =  −𝑒𝑥+𝑦  𝑡3𝛼

𝛤(3𝛼+1)
  ,

𝑣3(𝑥, 𝑡) = 𝑒𝑥−𝑦  𝑡3𝛼

𝛤(3𝛼+1)
       ,

𝑤3(𝑥, 𝑡) =  𝑒−𝑥+𝑦  𝑡3𝛼

𝛤(3𝛼+1)
  ,

�  

 
⋮.  
 
The solution in the series form is given by; 
 

⎩
⎪
⎨

⎪
⎧ 𝑢(𝑥,𝑦, 𝑡) = 𝑒𝑥+𝑦 �1 −  𝑡𝛼

𝛤(𝛼+1)
+  𝑡2𝛼

𝛤(2𝛼+1)
−  𝑡3𝛼

𝛤(3𝛼+1)
+  𝑡4𝛼

𝛤(4𝛼+1)
+  … � ,

𝑣(𝑥,𝑦, 𝑡) = 𝑒𝑥−𝑦 �1 +  𝑡𝛼

𝛤(𝛼+1)
+  𝑡2𝛼

𝛤(2𝛼+1)
+  𝑡3𝛼

𝛤(3𝛼+1)
+  𝑡4𝛼

𝛤(4𝛼+1)
+  … � ,

𝑤(𝑥,𝑦, 𝑡) = 𝑒−𝑥+𝑦 �1 +  𝑡𝛼

𝛤(𝛼+1)
+  𝑡2𝛼

𝛤(2𝛼+1)
+  𝑡3𝛼

𝛤(3𝛼+1)
+  𝑡4𝛼

𝛤(4𝛼+1)
+  … � ,

�         (31)  

 
For the special case 𝛼 = 1, we obtain the form (32). 
 

�
𝑢(𝑥, 𝑡) = 𝑒𝑥+𝑦−𝑡 ,   
𝑣(𝑥, 𝑡) = 𝑒𝑥−𝑦+𝑡 ,   
𝑤(𝑥, 𝑡) = 𝑒−𝑥+𝑦+𝑡 .

�              (32)  

 
which is the exact solution of the system. The results for the exact solution Eq. (32) and the approximate 
solution Eq. (31) obtained using HPTM, for 𝛼 = 0.50 and 1, are shown in Figure 4. 
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a. b. c.  

d. e. f.  

g. h. i.  
 

Figure 4 The surface shows solutions u(x, y, t), v(x, y, t) and w(x, y, t) for the Eq. (4.14) (a) 
u(x, y, t) when α = 0.5, (b) v(x, y, t) when α = 0.5, (c) w(x, y, t) when α = 1, (d) u(x, y, t) when α = 1, 
(e) v(x, y, t) when α = 1, (f) w(x, y, t) when α = 1 (g) exact solution u(x, y, t), (h) exact solution 
v(x, y, t), (i) exact solution w(x, y, t). 
 
 
Conclusions 

HPTM has been implemented to find appropriate solutions of time-fractional linear and non-linear 
system of partial differential equations. Numerical results coupled with graphical representations 
explicitly reveal the complete reliability and efficiency of the proposed algorithm. 
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