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Abstract 

In this paper, the homotopy analysis method was used to solve nonlinear parabolic-hyperbolic 
partial differential equations. Examples are presented here to show the usability of the method for such 
equations. The results show that the HAM is very effective and convenient and that the obtained solutions 
of HAM have high accuracy. 
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Introduction 

In 1992, Liao [1] employed the basic ideas of homotopy in topology to propose a general analytic 
method for nonlinear problems, namely the homotopy analysis method (HAM) [2,3]. This method has 
been successfully applied to solve many types of nonlinear problems [4,5]. The HAM offers certain 
advantages over routine numerical methods. Numerical methods use discretization which gives rise to 
rounding off errors, causing loss of accuracy, and requires large amounts of computer power and time. 
HAM is better since it does not involve discretization of the variables; hence, it is free from rounding off 
errors and does not require large amounts of computer memory or time. Here, the HAM is applied to 
solve nonlinear parabolic-hyperbolic partial differential equations. The Cauchy problem is considered in 
the nonlinear parabolic-hyperbolic partial differential equation of the following type. 

 
� 𝜕
𝜕𝑡
− 𝛥� � 𝜕

2

𝜕𝑡2
− 𝛥� 𝑢 = 𝐹(𝑢),                                                                                                                     (1) 

 
with initial conditions; 
 
𝜕𝑘𝑢
𝜕𝑡𝑘

(0,𝑋) = 𝜓𝑘(𝑋),    𝑋 = (𝑥1, 𝑥2,⋯ , 𝑥𝑖), 𝑓𝑜𝑟  𝑘 = 0,1,2                                                                       (2)  
 

where the nonlinear term is represented by 𝐹(𝑢), and 𝛥 is the Laplace operator in 𝑅𝑛. 
 

Basic idea of HAM 

To illustrate the basic idea of the HAM, the following differential equation can be considered; 
 

𝑁[𝑢(𝜏)] = 0,                                                                                   (3) 
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where 𝑁 is a nonlinear operator, 𝜏 denotes  an independent variable, and 𝑢(𝜏) is an unknown function, 
respectively. For simplicity, all boundary or initial conditions are ignored. By means of generalizing the 
traditional homotopy method, Liao [2] constructs the so-called zero-order deformation equation. 
 
(1 − 𝑝)𝐿[𝜙(𝜏;𝑝) − 𝑢0(𝜏)] = 𝑝 ℏ𝐻(𝜏)𝑁[𝜙(𝜏; 𝑝)],              (4) 

   
where 𝑝 ∈ [0,1] is the embedding parameter, ℏ ≠ 0 is a non-zero auxiliary parameter, 𝐻(𝜏) ≠ 0 is an 
auxiliary function, 𝐿 is an auxiliary linear operator, 𝑢0(𝜏) is an initial guess of 𝑢(𝜏), and 𝑢(𝜏; 𝑝) is a 
unknown function, respectively. It is important that one has great freedom to choose auxiliary things in 
the HAM. Obviously, when 𝑝 = 0 and 𝑝 = 1, it holds that; 
 
𝜙(𝜏; 0) = 𝑢0(𝜏),       𝜙(𝜏; 1) = 𝑢(𝜏),                  (5) 
 
respectively. Thus, as p increases from 0 to 1, the solution 𝑢(𝜏; 𝑝) varies from the initial guess 𝑢0(𝜏) to 
the solution 𝑢(𝜏). Expanding 𝑢(𝜏; 𝑝) in Taylor series with respect to 𝑝; 
 
𝜙(𝜏; 𝑝) = 𝑢0(𝜏) + 𝛴𝑚=1

+∞ 𝑢𝑚(𝜏)𝑝𝑚,                                 (6) 
 
is obtained, where 
  
𝑢𝑚(𝜏) = 1

𝑚!
𝜕𝑚𝜙(𝜏;𝑝)
𝜕𝑝𝑚

|𝑝=0.                                       (7) 
 

If the auxiliary linear operator, the initial guess, the auxiliary parameter ℏ, and the auxiliary function 
are so properly chosen, the series (6) converges at 𝑝 = 1, then 
 
𝑢(𝜏) = 𝑢0(𝜏) + 𝛴𝑚=1

+∞ 𝑢𝑚(𝜏),                       (8) 
 

is obtained, which must be one of the solutions of the original nonlinear equation, as proved by [3]. As 
ℏ = −1 and 𝐻(𝜏) = 1, Eq. (4) becomes; 
 
(1 − 𝑝)𝐿[𝜙(𝜏;𝑝) − 𝑢0(𝜏)] + 𝑝𝑁[𝜙(𝜏; 𝑝)] = 0,              (9) 

 
which is used mostly in the HAM [6,7] as the solution obtained directly and without using Taylor series. 
According to the definition, the governing equation can be deduced from the zero-order deformation Eq. 
(4). Upon defining the vector; 
 
𝑢�⃗ 𝑛 = {𝑢0(𝜏),𝑢1(𝜏), … ,𝑢𝑛(𝜏)},                                                                                                                 (10) 
 
differentiating Eq. (4) 𝑚-times with respect to the embedding parameter 𝑝, and then setting 𝑝 = 0 and 
finally dividing them by 𝑚!, the so-called 𝑚th-order deformation equation is obtained; 
  
𝐿[𝑢𝑚(𝜏) − 𝜒𝑚𝑢𝑚−1(𝜏)] = ℏ 𝐻(𝜏)ℜ𝑚(𝑢�⃗ 𝑚−1),                                      (11) 
 
where 
 
ℜ𝑚(𝑢�⃗ 𝑚−1) = 1

(𝑚−1)!
𝜕𝑚−1𝑁[𝜙(𝜏;𝑝)]

𝜕𝑝𝑚−1 |𝑝=0,               (12) 
and 
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𝜒𝑚 = �0,    𝑚 ≤ 1,
1,     𝑚 > 1.

�                                         (13) 
 
It should be emphasized that 𝑢𝑚(𝜏) for 𝑚 ≥ 1 is governed by the linear Eq. (11) under the linear 
boundary conditions that come from the original problem, which can be easily solved by using symbolic 
computation software such as Matlab. For the convergence of the above method the reader is referred to 
Liao's work [2]. If Eq. (3) admits a unique solution, then this method will produce a unique solution. If 
Eq. (3) does not possess a unique solution, the HAM will give a solution among many other possible 
solutions. 
 
Test examples 

This section contains 4 examples of nonlinear parabolic-hyperbolic equations. 
 

Example 3.1 Consider the following nonlinear integro-differential equation; 
 

� 𝜕
𝜕𝑡
− 𝜕2

𝜕𝑥2
� � 𝜕

2

𝜕𝑡2
− 𝜕2

𝜕𝑥2
� 𝑢 = �𝜕

2𝑢
𝜕𝑡2

�
2
− �𝜕

2𝑢
𝜕𝑥2

�
2
 (11)            (14) 

                                                  −2𝑢2,                     
 
with the initial conditions; 
 
𝑢(0, 𝑥) = 𝑒𝑥 ,   𝜕𝑢

𝜕𝑡
(0, 𝑥) = 𝑒𝑥 ,    𝜕

2𝑢
𝜕𝑡2

(0, 𝑥) = 𝑒𝑥,9                                                                                  (15) 
 
where the exact solution is 𝑢(𝑡, 𝑥) = 𝑒𝑥+𝑡 . To solve Eq.(14) by means of the HAM, the linear operator is 
chosen as follows. 
 
ℒ[𝜙(𝑡, 𝑥; 𝑝)] = 𝜕3𝜙(𝑡,𝑥;𝑝)

𝜕𝑡3
,(                                                                                                                         (16) 

 
with the property ℒ[𝑐1 + 𝑐2𝑡 + 𝑐3𝑡2] = 0, where 𝑐1, 𝑐2, and 𝑐3 are integral constants. The inverse operator 
ℒ−1 is given by; 
 

ℒ−1(. ) = ∫  𝑡0 ∫  𝑡1
0 ∫  𝑡2

0 (. )𝑑𝑡3𝑑𝑡2𝑑𝑡1.(                                                                                                        (17) 
 
A nonlinear operator is now defined as; 
 

𝒩[𝜙(𝑡, 𝑥;𝑝)] = 𝜕3𝜙(𝑡,𝑥;𝑝)
𝜕𝑡3

− 𝜕3𝜙(𝑡,𝑥;𝑝)
𝜕𝑡𝜕𝑥2

(                            

                              −𝜕4𝜙(𝑡,𝑥;𝑝)
𝜕𝑥2𝜕𝑡2

+ 𝜕4𝜙(𝑡,𝑥;𝑝)
𝜕𝑥4

( 

                                          −�𝜕
2𝜙(𝑡,𝑥;𝑝)
𝜕𝑡2

�
2

+ �𝜕
2𝜙(𝑡,𝑥;𝑝)
𝜕𝑥2

�
2

+ 2𝜙2(𝑡,𝑥;𝑝).                                                                                               (18) 
 
Using the above definition, the zeroth-order deformation equation is constructed; 
 
(1 − 𝑝)ℒ[𝜙(𝑡, 𝑥; 𝑝) − 𝑢0(𝑡, 𝑥)] = 𝑝ℏℋ(𝑡, 𝑥)𝒩[𝜙(𝑡, 𝑥; 𝑝)].                                                         (19) 

 
For 𝑝 = 0 and 𝑝 = 1,  
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𝜙(𝑡, 𝑥; 0) = 𝑢0(𝑡, 𝑥),         𝜙(𝑡, 𝑥; 1) = 𝑢(𝑡, 𝑥),                                                                                       (20) 
 
can be written; thus, the 𝑚th-order deformation equations are obtained; 
 
ℒ[𝑢𝑚(𝑡, 𝑥) − 𝜒𝑚𝑢𝑚−1(𝑡, 𝑥)] = ℏℋ(𝑡, 𝑥)ℜ𝑚(𝑢�⃗ 𝑚−1),   (𝑚 ≥ 1),             (21) 
 
where 
 
ℜ𝑚(𝑢�⃗ 𝑚−1) = 𝜕3𝑢𝑚−1

𝜕𝑡3
− 𝜕3𝑢𝑚−1

𝜕𝑡𝜕𝑥2
− 𝜕4𝑢𝑚−1

𝜕𝑥2𝜕𝑡2
2 

                         + 𝜕4𝑢𝑚−1
𝜕𝑥4

+ ∑  𝑚−1
𝑘=0 [𝜕

2𝑢𝑘
𝜕𝑥2

𝜕2𝑢𝑚−1−𝑘
𝜕𝑥2

2 

                         −𝜕2𝑢𝑘
𝜕𝑡2

𝜕2𝑢𝑚−1−𝑘
𝜕𝑡2

+ 2𝑢𝑘𝑢𝑚−1−𝑘].2                                                                                       (22) 
 
Now, for 𝑚 ≥ 1, the solution of the 𝑚th-order deformation Eq. (21); 
 

𝑢𝑚(𝑡, 𝑥) = 𝜒𝑚𝑢𝑚−1(𝑡, 𝑥) + ℏℋ(𝑡, 𝑥)ℒ−1[ℜ𝑚(𝑢�⃗ 𝑚−1)].                 (23) 
 
Starting with an initial approximation 𝑢0(𝑡, 𝑥) = �1 + 𝑡 + 𝑡2

2
� 𝑒𝑥, by means of the above iteration 

formula (13) if ℋ(𝑡, 𝑥) = 1,ℏ = −1, the other components can be directly obtained as; 
 

𝑢1(𝑡, 𝑥) = 𝑡3

3!
𝑒𝑥,           𝑢2(𝑡, 𝑥) = 𝑡4

4!
𝑒𝑥,2 

𝑢3(𝑡, 𝑥) = 𝑡5

5!
𝑒𝑥,          𝑢4(𝑡, 𝑥) = 𝑡6

6!
𝑒𝑥,⋯2                                                                                               (24) 

 
Therefore, the solution of Example (3.1) can be readily obtained by; 
 

𝑢(𝑡, 𝑥) = ∑  +∞
𝑚=0 𝑢𝑚(𝑡, 𝑥) = �1 + 𝑡 + 𝑡2

2!
+ 𝑡3

3!
+ 𝑡4

4!
+ ⋯�𝑒𝑥 .2                                                                 (25) 

 
Continuing the expansion to the last term gives the solution of Eq. (14) as follows; 
 

𝑢(𝑡, 𝑥) = 𝑒𝑥+𝑡 ,                                                                                                                                          (26) 
 
which is the exact solution. 
 
Example 3.2 Consider the following nonlinear integro-differential equation; 
 

� 𝜕
𝜕𝑡
− 𝜕2

𝜕𝑥2
� � 𝜕

2

𝜕𝑡2
− 𝜕2

𝜕𝑥2
� 𝑢 = 𝑢 �𝜕𝑢

𝜕𝑡
� + �𝜕

2𝑢
𝜕𝑡2

� �𝜕𝑢
𝜕𝑥
�,2           (27) 

 
with the initial conditions; 
 
𝑢(0, 𝑥) = cos𝑥,          𝜕𝑢

𝜕𝑡
(0, 𝑥) = −sin𝑥, 2 

𝜕2𝑢
𝜕𝑡2

(0, 𝑥) = −cos𝑥.3                                                                                                                                 (28) 
To solve Eq. (27) by means of the HAM a nonlinear operator is defined as; 
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𝒩[𝜙(𝑡, 𝑥; 𝑝)] = 𝜕3𝜙(𝑡,𝑥;𝑝)
𝜕𝑡3

− 𝜕3𝜙(𝑡,𝑥;𝑝)
𝜕𝑡𝜕𝑥2

− 𝜕4𝜙(𝑡,𝑥;𝑝)
𝜕𝑥2𝜕𝑡2

2 

                              + 𝜕4𝜙(𝑡,𝑥;𝑝)
𝜕𝑥4

− 𝜙(𝑡, 𝑥; 𝑝) 𝜕𝜙(𝑡,𝑥;𝑝)
𝜕𝑡

3 

                              −𝜕2𝜙(𝑡,𝑥;𝑝)
𝜕𝑡2

𝜕𝜙(𝑡,𝑥;𝑝)
𝜕𝑥

.3                                                                                                       (29) 
 
Thus, the 𝑚th-order deformation equations are obtained; 
 

ℒ[𝑢𝑚(𝑡, 𝑥) − 𝜒𝑚𝑢𝑚−1(𝑡, 𝑥)] = ℏℋ(𝑡, 𝑥)ℛ𝑚(𝑢�⃗ 𝑚−1),    (𝑚 ≥ 1),             (30) 
 
where 
 
ℛ𝑚(𝑢�⃗ 𝑚−1)2 

= 𝜕3𝑢𝑚−1
𝜕𝑡3

− 𝜕3𝑢𝑚−1
𝜕𝑡𝜕𝑥2

− 𝜕4𝑢𝑚−1
𝜕𝑥2𝜕𝑡2

+ 𝜕4𝑢𝑚−1
𝜕𝑥4

3 

    −∑  𝑚−1
𝑘=0 �𝑢𝑘

𝜕𝑢𝑚−1−𝑘
𝜕𝑡

+ 𝜕2𝑢𝑘
𝜕𝑡2

𝜕𝑢𝑚−1−𝑘
𝜕𝑥

�.2                                                                                                (31) 

 
Now, for 𝑚 ≥ 1, the solution of the mth-order deformation Eq. (30); 
 
𝑢𝑚(𝑡, 𝑥) = 𝜒𝑚𝑢𝑚−1(𝑡, 𝑥) + ℏℋ(𝑡, 𝑥)ℒ−1[ℛ𝑚(𝑢�⃗ 𝑚−1)].                     (32) 
 
Starting with an initial approximation 𝑢0(𝑡, 𝑥) = cos𝑥 − 𝑡sin𝑥 − 𝑡2

2
cos𝑥, by means of the above iteration 

formula (32), if ℋ(𝑡, 𝑥) = 1,ℏ = −1 and after calculating the other terms, the results are obtained as 
follows. 
 
𝑢1(𝑡, 𝑥) = 𝑡3

3!
sin𝑥 + 𝑡4

4!
cos𝑥,2 

𝑢2(𝑡, 𝑥) = − 𝑡5

5!
sin𝑥 − 𝑡6

6!
cos𝑥, 2 

𝑢3(𝑡, 𝑥) = 𝑡7

7!
sin𝑥 + 𝑡8

8!
cos𝑥,   ⋯2                                                                                                            (33) 

 
Therefore, the solution of Example (3.2) can be readily obtained by; 
 

𝑢(𝑡, 𝑥) = ∑  +∞
𝑚=0 𝑢𝑚(𝑡, 𝑥) = 𝑐𝑜𝑠𝑥(1 − 𝑡2

2!
+ 𝑡4

4!
+ ⋯ ) − sin𝑥(𝑡 − 𝑡3

3!
+ 𝑡5

5!
+ ⋯ ).2                                   (34) 

 
Continuing the expansion to the last term gives the solution of Eq.(27) as; 
 

𝑢(𝑡, 𝑥) = 𝑐𝑜𝑠(𝑥 + 𝑡),                                                                                                                                (35) 
 
which is the exact solution. 
 
Example 3.3 Consider the following equation; 
 
� 𝜕
𝜕𝑡
− 𝜕2

𝜕𝑥2
− 𝜕2

𝜕𝑦2
� � 𝜕

2

𝜕𝑡2
− 𝜕2

𝜕𝑥2
− 𝜕2

𝜕𝑦2
� 𝑢 = 𝜕𝑢

𝜕𝑡
− 2𝑢,2           (36) 

with the initial conditions; 
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𝑢(0, 𝑥,𝑦) = sinh(𝑥 + 𝑦), 
𝜕𝑢
𝜕𝑡

(0, 𝑥, 𝑦) = 2sinh(𝑥 + 𝑦),2 

𝜕2𝑢
𝜕𝑡2

(0, 𝑥,𝑦) = 4sinh(𝑥 + 𝑦),2                                                                                                                  (37) 

 
subject to the exact solution 𝑢(𝑡, 𝑥,𝑦) = 𝑠𝑖𝑛ℎ(𝑥 + 𝑦)𝑒2𝑡 . To solve Eq.(36) by means of the HAM a 
nonlinear operator is defined as; 

 
𝒩[ϕ(t, x, y; p)] 

= 𝜕3𝜙(𝑡,𝑥,𝑦;𝑝)
𝜕𝑡3

− 𝜕3𝜙(𝑡,𝑥,𝑦;𝑝)
𝜕𝑡𝜕𝑥2

− 𝜕3𝜙(𝑡,𝑥,𝑦;𝑝)
𝜕𝑡𝜕𝑦2

2 

    − 𝜕4𝜙(𝑡,𝑥,𝑦;𝑝)
𝜕𝑥2𝜕𝑡2

+ 𝜕4𝜙(𝑡,𝑥,𝑦;𝑝)
𝜕𝑥4

+ 𝜕4𝜙(𝑡,𝑥,𝑦;𝑝)
𝜕𝑥2𝜕𝑦2

2 

    + 𝜕4𝜙(𝑡,𝑥,𝑦;𝑝)
𝜕𝑦2𝜕𝑥2

+ 𝜕4𝜙(𝑡,𝑥,𝑦;𝑝)
𝜕𝑦4

− 𝜕𝜙(𝑡,𝑥,𝑦;𝑝)
𝜕𝑡

2 

    +2𝜙(𝑡, 𝑥,𝑦; 𝑝).                                                                                                                                      (38) 
 
Thus, the 𝑚th-order deformation equations are obtained; 
 

ℒ[𝑢𝑚(𝑡, 𝑥, 𝑦) − 𝜒𝑚𝑢𝑚−1(𝑡, 𝑥, 𝑦)]  = ℏℋ(𝑡, 𝑥,𝑦)ℛ𝑚(𝑢�⃗ 𝑚−1),    (𝑚 ≥ 1),        (39) 
 
where 
 
ℛ𝑚(𝑢�⃗ 𝑚−1) 

= 𝜕3𝑢𝑚−1
𝜕𝑡3

− 𝜕3𝑢𝑚−1
𝜕𝑡𝜕𝑥2

− 𝜕3𝑢𝑚−1
𝜕𝑡𝜕𝑦2

− 𝜕4𝑢𝑚−1
𝜕𝑥2𝜕𝑡2

+ 𝜕4𝑢𝑚−1
𝜕𝑥4

2 

    + 𝜕4𝑢𝑚−1
𝜕𝑥2𝜕𝑦2

− 𝜕4𝑢𝑚−1
𝜕𝑦2𝜕𝑡2

+ 𝜕4𝑢𝑚−1
𝜕𝑦2𝜕𝑥2

+ 𝜕4𝑢𝑚−1
𝜕𝑦4

− 𝜕𝑢𝑚−1
𝜕𝑡

2 
    +2𝑢𝑚−1.                                                                                                                                                 (40) 

 
Now, for 𝑚 ≥ 1, the solution of the 𝑚th-order deformation Eq. (39) is; 
 

𝑢𝑚(𝑡, 𝑥, 𝑦) = 𝜒𝑚𝑢𝑚−1(𝑡, 𝑥, 𝑦) + ℏℋ(𝑡, 𝑥, 𝑦)ℒ−1[ℛ𝑚(𝑢�⃗ 𝑚−1)].             (41) 
 
Starting with an initial approximation 𝑢0(𝑡, 𝑥, 𝑦) = (1 + 2𝑡 + 2𝑡2) sinh(𝑥 + 𝑦), by means of the 

above iteration formula (41), if ℋ(𝑡, 𝑥,𝑦) = 1,ℏ = −1 and after calculating the other terms, the results 
are obtained as follows; 

 
𝑢1(𝑡, 𝑥,𝑦) = 4

3
𝑡3sinh(𝑥 + 𝑦), 2 

𝑢2(𝑡, 𝑥, 𝑦) = 2
3
𝑡4sinh(𝑥 + 𝑦),2 

𝑢3(𝑡, 𝑥, 𝑦) = 4
15
𝑡5sinh(𝑥 + 𝑦),⋯2                                                                                                           (42) 

 
Therefore, the solution of Example (3.3) can be readily obtained by; 
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𝑢(𝑡, 𝑥, 𝑦) = ∑  +∞
𝑚=0 𝑢𝑚(𝑡, 𝑥, 𝑦)3 

                  = (1 + 2𝑡 + 2𝑡2 + 4
3
𝑡3 + 2

3
𝑡4 + 4

15
𝑡59 

                     +⋯ )sinh(𝑥 + 𝑦) = (1 + 2t + (2t)2

2!
9 

                     + (2𝑡)3

3!
+ (2𝑡)4

4!
+ ⋯ )sinh(𝑥 + 𝑦).9                                                                                         (43) 

 
Continuing the expansion to the last term gives the solution of Eq. (36) as; 
 

𝑢(𝑡, 𝑥,𝑦) = 𝑒2𝑡sinh(𝑥 + 𝑦),                                                                                                                     (44) 
 
which is the exact solution. 
 
Example 3.4 Consider the following nonlinear partial differential equation; 
 

� 𝜕
𝜕𝑡
− 𝜕2

𝜕𝑥2
� � 𝜕

2

𝜕𝑡2
− 𝜕2

𝜕𝑥2
� 𝑢 = −�1

3
𝜕2𝑢
𝜕𝑥2

�
2

+ �1
6
𝜕2𝑢
𝜕𝑡2

�
3
3           (45) 

                                                  −16𝑢,                     
 
with the initial conditions; 
 
𝑢(0, 𝑥) = −𝑥4 ,    𝜕𝑢

𝜕𝑡
(0, 𝑥) = 0,    𝜕

2𝑢
𝜕𝑡2

(0, 𝑥) = 0..3                                                                                  (46) 
 
The exact solution for this example is 𝑢(𝑡, 𝑥) = −𝑥4 + 4𝑡3. To solve Eq. (45) by means of the HAM, a 
nonlinear operator is defined as; 
 
𝒩[𝜙(𝑡, 𝑥; 𝑝)] 

= 𝜕3𝜙(𝑡,𝑥;𝑝)
𝜕𝑡3

− 𝜕3𝜙(𝑡,𝑥;𝑝)
𝜕𝑡𝜕𝑥2

− 𝜕4𝜙(𝑡,𝑥;𝑝)
𝜕𝑥2𝜕𝑡2

+ 𝜕4𝜙(𝑡,𝑥;𝑝)
𝜕𝑥4

3 

  + �1
3
∂2𝜙(𝑡,𝑥;𝑝)

∂𝑥2
�
2
− �1

6
∂2𝜙(𝑡,𝑥;𝑝)

∂𝑡2
�
3

+ 16𝜙(𝑡, 𝑥; 𝑝).3                                                                                 (47) 
 
Thus, the mth-order deformation equations are obtained; 
 

ℒ[𝑢𝑚(𝑡, 𝑥) − 𝜒𝑚𝑢𝑚−1(𝑡, 𝑥)] = ℏℋ(𝑡, 𝑥)ℛ𝑚(𝑢�⃗ 𝑚−1),     (𝑚 ≥ 1),              (48) 
 
where 
 

ℛ𝑚(𝑢�⃗ 𝑚−1) = 𝜕3𝑢𝑚−1
𝜕𝑡3

− 𝜕3𝑢𝑚−1
𝜕𝑡𝜕𝑥2

− 𝜕4𝑢𝑚−1
𝜕𝑥2𝜕𝑡2

+ 𝜕4𝑢𝑚−1
𝜕𝑥4

3 

   + 1
9
∑  𝑚−1
𝑘=0 �𝜕

2𝑢𝑘
𝜕𝑥2

𝜕2𝑢𝑚−1−𝑘
𝜕𝑥2

�9 − 1
216

∑  𝑘
𝑛=0 �

𝜕2𝑢𝑘−𝑛
𝜕𝑡2

∑  𝑛
𝑖=0

𝜕2𝑢𝑖
𝜕𝑡2

𝜕2𝑢𝑛−𝑖
𝜕𝑡2

�9 
   +16𝑢𝑚−1.9                                                                                                                                             (49) 
 

Now, for 𝑚 ≥ 1, the solution of the mth-order deformation Eq. (48) is; 
 

𝑢𝑚(𝑡, 𝑥) = 𝜒𝑚𝑢𝑚−1(𝑡, 𝑥) + ℏℋ(𝑡, 𝑥)ℒ−1[ℛ𝑚(𝑢�⃗ 𝑚−1)].                  (50) 
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Starting with an initial approximation 𝑢0(𝑡, 𝑥) = −𝑥4, by means of the above iteration formula (50) 
if ℋ(𝑡, 𝑥) = 1,ℏ = −1, and after calculating the other terms, the results are obtained as follows. 

 
𝑢1(𝑡, 𝑥) = 0,            𝑢2(𝑡, 𝑥) = 0, 
𝑢3(𝑡, 𝑥) = 4𝑡3,        𝑢4(𝑡, 𝑥) = 0,     ⋯                                                                                                      (51) 

 
Therefore, the solution of Example (3.4) can be readily obtained by; 
 

𝑢(𝑡, 𝑥) = ∑  +∞
𝑚=0 𝑢𝑚(𝑡, 𝑥) = −𝑥4 + 4𝑡3,9                                                                                                 (52) 

 
which is the exact solution for this example. 
 
Conclusions 

In recent times, the HAM has been successfully applied to various linear and nonlinear problems in 
variant science. In this paper, the HAM was tested on some examples of special nonlinear partial 
differential equations to show the simplicity, effectiveness and straightforwardness of the method. Here, 
the HAM has been successfully applied in solving some nonlinear parabolic-hyperbolic partial 
differential equations. The examples used are further confirmation of the flexibility and potential of the 
HAM for complicated nonlinear problems in science and engineering. 
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