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Abstract

In this paper, the Homotopy Perturbation Method (HPM) is applied to find exact solutions of time-
fractional Schrodinger equations. Numerical results coupled with graphical representations explicitly
reveal the complete reliability and efficiency of the proposed algorithm.
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Introduction

Nonlinear partial differential equations [1-
21] are of extreme importance in applied and
engineering sciences. The through study of
literature reveals that most physical phenomena are
nonlinear in nature and hence there is a dire need
to find their appropriate solutions; see [1-21] and
the references therein. Recently, scientists have
observed that a number of real time problems are
modeled by fractional nonlinear differential
equations [1,6-8,12,13,16,19,20] which are very
hard to tackle. In the similar context, the
Homotopy perturbation method (HPM) is applied

to solve time-fractional Schrodinger partial
differential equations [13,20].

Dfu(x, t) + iuy, (x, t) =0

u(x,0) = f(x), i2=-1 (1.1)
or

iDPu(x,t) + u(x, £) — ylu(x, )|?ulx, t) = 0,(1.2)
u(x,0) = f(x) 2=-1

where 0 < a < 1. The fractional derivatives are
considered in the Caputo sense. It is to be
highlighted that such equations arise frequently in

applied, physical and engineering sciences. The
basic motivation of this paper is the extension of
the Homotopy Perturbation Method (HPM) to find
approximate  solutions  of  time-fractional
Schrodinger partial differential equations; see
[13,20] and the references therein. It is observed
that the proposed algorithm is fully synchronized
with the complexity of fractional differential
equations. Numerical results coupled with
graphical representations explicitly reveal the
complete reliability and efficiency of the proposed
algorithm.

Definitions [9,16-19]

Definition 2.1 A real-valued function f{x), x > 0,
is said to be in the space C,, n € R if there exists a
real number p(> w), such that f(x) = xPf;(x),
wheref; (x) € C[0,) , and it is said to be in the
space C° if f"€C,u=1meN.

Definition 2.2 The Riemann-Liouville fractional
integral operator of order = 0 , of a function f €
Cuy it = —1, is defined as;
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)% 1f(t)dt. a > 0,x > 0,
(2.1

JOF Q) = —— [ (x -

I'(a)
Jof () = f(x).
Properties of the operator j¢ can be found in
[12-14]; only the following is mentioned.
Forfe C,u=—-1,a,f=0andy > —1:

L JYEf@) =] f (D),
2. J"‘Jﬁf(t):lﬁl“f(t),
3. ny:r(a(ﬁ)n o

Definition 2.3 The fractional derivative of f(x) in
the Caputo sense is defined as;

DIf(x) =]""“Df(x) =
Jy e = ym=e=t (),

rr— 2.2)

form—1<a<mmeZx>0fecCm.
Also, two of its basic properties are needed here.

Lemma 2.1 if m—1<a<mmeN and
fe C[L”,MZ —1, then;

DI*f(x) = f (), (23)

and

JEDEf(x) = f(x) LR 1M°—_“, x>0, (24)

Homotopy perturbation method (HPM) [4-6,10-
12,21]

The essential idea of this method is to
introduce a Homotopy parameter, say p, which
takes a value from 0 to 1. When p = 0, the system
of equations is in a sufficiently simplified form,
which normally admits a rather simple solution. As
p gradually increases to 1, the system goes through
a sequence of “deformation”. Eventually at p = 1,
the system takes the original form of the equation
and the final stage of “deformation” gives the
desired solution. To illustrate the basic concept of
HPM, consider the following nonlinear system of
differential equations.

The nonlinear differential Eq. (1.1) can be
expressed in the operator form as;
Dfu+Rw)+Nw) =0 3.1
subject to the initial conditions u(x,0) = f(x),
where Df is the time-fractional differential
operator, N(u)is the nonlinear operator and R (u)
is some linear operator. Rearranging Eq. (3.1) and
applying the operators /%, inverse of the operator
D%, to both sides of Eq. (3.1) yields;
ulx,t) = f(x) —J*[RW + NW]. (32)

Assume the solution of Eq. (3.2) to be in the
form.

u = uy + pu; +p%u, +pdus + (3.3)
Substituting (3.3) into (3.2);

Ug + puy + pPu, + pius + - = f(x) — pJ*[R(uo + puy + p*uy + p3uz + ) (3.4)

+N (uo + puy + p?u, + piuz + ).
Now equating the coefficients of like powers of p, the following forms are obtained.

P’ u(xt) = f(x)

pt w(xt) = —J“[R(u,) + N(uo)],

% up(x,t) = —J*[R(uy) + N(uy)], (3.5)

P us(x, t) = —J*[R(uy) + N(uy)]

Finally, the solution u(x, t)is approximated.
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u(x, t) = ug + puy + pu, + pdug + -

u=limp;u=uy+u +u; +uz+--

Solution procedure

Example 4.1 Consider the following linear time-fractional Schrodinger equation;

Dfu+iu,, =0 4.1)
where0 < a <1,

with initial conditions;

u(x,0) = 1 + cosh(2x).
u(x,t) =1+ cosh (2x) — iJ*(Uyy)
. 0%u 0%u 0%u 0%u
Up +urp’ + upp? + usp® + - = f(x) — ipJ® ( R e e e +>

Consequently, the following approximants are obtained.

P uy(x,t) =1+ cosh(2x),

pt uy(x,t) = —4i cosh(Zx)F(;—jl) ,

p% uy(x,t) = (4i)%cosh(2x) r(zt;:) ,
P () = ~(4)7cosh(20) i

The solution in the series form is given by;

u=1uy+upt +up? +upd+ -

u=limu=uy+u +u; +uz+--
p-1

_ A t® N2 _ N 3«
u(x,t) =1+ cosh(2x) (1 —4i D +(41) rarD (41) TGarD + ... 4.2)
For the special case @ = 1, the form (4.2) is obtained.
u(x,t) = 1+ cosh(2x) e™*¢ 4.3)

which is the exact solution of the Schrédinger equation.
Graphs for @ = 0.25,0.50,0.75 and 1, are shown in Figure 1.
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Figure 1 The surface shows solution u(x,t)for the Eq. (4.2) when (a) a = 0.25, (b) a = 0.50, (c)
a = 0.75, (d) a = 1, (e) exact solution Eq. (4.3).

Example 5.2 Consider the following linear time-fractional Schrodinger equation;
Dfu+iu, =0 where0 <a <1, 4.4
with initial conditions;

u(x, 0) = 3+,
u(x, t) = e3* — U (Uxx)
Bzuo 1 Bzul

Uy + wypt + Upp? +ugp® + = 3 —ip]¥ (=2 +p

%u 0%u
o +p2 o+ p o

dx2 p 0x2 dx2

+.).

Consequently, the following approximants are obtained.

P’ up(x,t) = e3%,

pl: uy(x,t) =9ie3* I‘(oi+1) ,

p% u(x,t) = (9i)% e3% r(ztoz:n ,
P us(xt) = (93 3 F(;Zl) )
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The solution in the series form is given by;

uU=1uy +upt +up? + uzp + -
u=limu=uy+u +u, +uz;+--

p-1
_ 3w . tY N2t 3
u(x, t) = e**(1 +911"(a+1)+ (91) ErTEY +(91) r(3a+1)+ e ) 4.5)
For the special case @ = 1, the form (4.5) is obtained.
u(x’ t) — e3l(x+3t) (4_6)

which is the exact solution of the Schrddinger equation. Graphs for ¢ = 0.25,0.50,0.75 and 1, are
shown in Figure 2.

(d) (e)

Figure 2 The surface shows solution u(x,t)for the Eq. (4.5) when (a) a = 0.25, (b) a = 0.50,
(¢) a = 0.75, (d) @ = 1, (e) exact solution Eq. (4.6).

Example 5.3 Consider the following nonlinear time-fractional Schrodinger equation;

iDFU + Uy + 2[ul*u =0 where0 <a <1, (4.7)

Walailak J Sci & Tech 2013; 10(4) 409



A Reliable Algorithm for Fractional Schrodinger Equations Abid KAMRAN et al.

http://wjst.wu.ac.th

with initial conditions;

u(x,0) = e*
u(x, t) = e™ + iJ%(uyy + 2|ul?u)

Uy + U pt + upp? +uzp® + - =e* + (662;0 +pt (?;:21 + p? a;:zz +p3 a;xu; +

+2{(ug + ptuy + P%uy + -+ )2 (ly + ptuy + pPuyt+..))).

Consequently, the following approximants are obtained.

P%  uox,t) = e,

pt w(x,t) =ie¥ rarD

P2 uy(x,t) =i2e™ r(z:n ,

P (e ) =i €[5 - TG

The solution in the series form is given by;

u=1uy +upt +uyp® +uzp® + -

u=})i£n1u=u0+u1+u2+u3 + -

u(e,t) = eX (Lo P+ [5 - el ). (4.8)
For the special case @ = 1, the form Eq. (4.8) is obtained.

u(x, t) = et*+0, 4.9)

which is the exact solution of the Schrodinger equation. Graphs for ¢ = 0.25,0.50,0.75 and 1, are
shown in Figure 3.
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(d) (e)

Figure 3 The surface shows solution u(x,t) when (a) @ = 0.25, (b) ¢ 0.50, (¢)a = 0.75, (d)a =1,
(e) exact solution Eq. (4.9).

Example 5.4 Consider the following nonlinear time-fractional Schrédinger equation;
IDfU + Uy — 2|ul?u =0 where 0 < @ <1, (4.10)
with initial conditions;

u(x,0) = e*,
u(x, t) = e™ + iJ%(uyy — 2|ul?u)

9% 0%u 0%u 0%u
Ug + U pt + up? + ugpd + - = e + L}z)]"‘(axz0 + pt ale + p? 5 24 p3——2

x2 " P gxz o
—2{(u0 + plul + quZ + “')2(110 + plﬁl + pzﬁz'f‘)})

Consequently, the following approximants are obtained.

1. — _72; plx
pt: uw(xt) =-3ie D

P2 uy(x,t) = (3i)%e™

ra+1) ’
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18I (142a), t3%
(T(a+1))? ' TBa+1) ’

p3 uz(x,t) = —(i)% e™*[63 —

The solution in the series form is given by;

U =1uy +upt + upp? + uzp® + -
u= lin}u=u0+u1+u2 +uz + -
p—)

u(x,t) = e*(1-3i

tll

+(31)? —(1)3[63——18””2“)] ) (4.11)

T(a+1) r2a+1) (I‘(a+1))2 rGa+1)
For the special case @ = 1, the form Eq. (4.11) is obtained.
u(x, t) = et®*=30 4.12)

which is the exact solution of the Schrodinger equation. Graphs for ¢ = 0.25,0.50,0.75 and 1, are
shown in Figure 4.

(d) (e)

Figure 4 The surface shows solution u(x,t) when (a) @ = 0.25, (b) ¢ = 0.50, (¢)a = 0.75, (d) a = 1,
(e) exact solution Eq. (4.12).
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Conclusions

HPM has been implemented to find
appropriate solutions of fractional Schrodinger
partial differential equations. Numerical results
coupled with graphical representations explicitly
reveal the complete reliability and efficiency of the
proposed algorithm. Moreover, it has been
observed that the method is easier to implement as
compared to other techniques and can be used to
solve nonlinear problems of a complex physical
nature.
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