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Abstract 

The ground state energies of non-magnetic, ferromagnetic and antiferromagnetic phases of 3D 
electron crystals corresponding to hcp structure are computed. In each case, the possibility of the Wigner 
electrons having cubic or spherical constant energy surface (the region of integration in momentum 
space) is investigated. The role of correlation energy is suitably taken into account. The range of the low 
density region favourable for Wigner electron crystallization is found. The structure dependent Wannier 
functions, which give proper localized representation for the Wigner electrons in the crystal, are 
employed in the calculation. 
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Introduction   

In 1934, Wigner [1,2] suggested that an 
electronic assembly will crystallize in to an 
electron crystal in a uniform neutralizing positive 
background. Edwards and Hillel [3] have used a 
variational approach to the Hartree-Fock 
approximation and the corresponding orbitals are 
the Bloch states. Later Hedin [4] and in more detail 
Misawa [5] used the Gell-Mann-Brueckner [6] 

formalism to compute the tendency towards the 
ferromagnetism. The basic quantity, rs is a 
convenient indicator of the electron density, which 
is a dimensionless parameter. It is defined as the 
radius of the unit sphere enclosing volume equal to 
the volume per electron of the electron gas. 
Misawa [5] found that ferromagnetism could occur 
for rs > 10. Mott [7] predicted that, the transition 
from ferromagnetic gas to ferromagnetic crystal is 
at 20rs ≈ . Carr [8] and Edwards and Hillel [3] 
investigated the ferromagnetic and antiferro-

magnetic states of the Wigner electron crystal. 
Young et al. [9] experimentally found weak 
ferromagnetism in the low density electron crystal 
at high temperature. Caperley [10] explained the 
ferromagnetism of electron gas at low density 
using a Quantum Monte Carlo method. His 
calculation predicted that the electrons will spin 
align at a density less than 2×1020 cm-3 and 
crystallize at a density 2×1018 cm-3. The Hartree-
Fock ground state of the three dimensional 
electron gas was investigated by Zhang and 
Caperley [11]. Paplavskyy et al. [12] studied the 
local density of states of the electron crystal in 
graphene. Wigner electron crystallization in two 
dimensional amorphous dielectric materials was 
investigated [13]. Campbell et al. [14] have 
produced the laser cooled Wigner crystals of 229Th 
for optical excitation of the nuclear isomer. 
Recently, we have investigated the Wigner 
crystallization of quadratically dispersed electrons 
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in graphene [15]. In this work, the ground state 
energies of the non-magnetic, ferromagnetic and 
antiferromagnetic phases of 3D Wigner electron 
crystal with uniform neutralizing and Yukawa type 
positive backgrounds with hcp structure are 
computed. The crystallization density is calculated. 
 
Theory 

The Wannier functions are constructed using 
the variational principle given by Koster-Kohn 
[16,17]. In this work, we transform the Gaussians 
into orthogonalized atomic orbitals using the 
method given by Lowdin [18] and Calais and 
Appel [19]. The Wannier function thus obtained is; 
 
( ) ( ) ( )0,, 21 mrmr ∑ −∆=

m
W φ                        (1) 

 
where ( )rm,φ  is the Gaussian function and 

( )0,21 m−∆  is the reciprocal square root of the 

overlap matrix. The expression for ( )0,21 m−∆  is 
[19,20]. 
 

( )
( )[ ]

kmkm d
kd

Voa ∫=∆− 21
21 .2cos0, π                          (2) 

 
where Voa is the volume per electron and; 
 
( ) ( ) ( )∑+=

m
sd mkmk .2cos21 π        (3) 

 
and s(m) is the overlap integral, k is the reciprocal 
lattice vector and m is the lattice vector in ordinary 
space. 

We can transform Eq. (2) for different cubic 
structures. If ψ are Bloch orbitals of the state 
under consideration, then the Wannier function W 
and ψ are related by; 
 

+= UψW ,  WUψ =                                    (4) 
 
with 
 

( ) ( )mkkm .i2πexp
N
1,U =                                (5) 

 
We have considered the non-magnetic (NC), 

ferromagnetic (FC) and antiferromagnetic (AC) 
phases of the 3D electron crystal. Like Edwards 
and Hillel [3], we have; 
 

]'ββ'α)[α',(ρ)',(ρ NCNC += rrxx                        (6) 
( ) ( ) ααρρ FCFC ′′=′ rr,xx,                                        (7) 

'β)β',(ρ'α)α',(ρ)',(ρ ACACAC rrrrxx −+ +=      (8) 
 

where αα’ and 'ββ represent the spin of the 
electrons and in terms of the Wannier function.  
 

 
 

∑=
m'm,

)','()',(),()r'(r, rmmmrm *
NCNCNCNC WRWρ                                                       (9) 

( ) ( ) ( ) ( )∑
′

′′′=′
mm

FCFCFCFC WRW
,

* ,,,, rmmmrmrrρ                                                         (10) 

∑ ±± =
m'm,

)','()',(),()r'(r, rmmmrm *
NCACNCAC WRWρ                                            (11) 

 
we have; 
 

( ) ( )[ ] kmmkmm diVR
NCkoaNC ∫ ′−=′ .2exp, π                                                               (12) 

 
and is similar for the FC while a special case is needed for AC. We further notice that;  
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∫ = 2N)',( rrr dNCρ                                                                                                          (13) 

( )∫ =N, ' rrr dFCρ                                                                          (14) 

∫ = 2N)',( rrr dACρ                                                                       (15) 

 
In the calculation of the Rj (j = NC, FC, AC), we can take the region of integration in k-space as a 

cubic or spherical surface. Now, we consider the NC and FC cases. 
From Eq. (13) we can write; 
 

∑ =
m

mm
2
N),(R NC                                                                                   (16) 

 
Similarly, from Eq. (14) we can write; 
 

∑ =
m

mm N),(R FC                                                                                          (17) 

 
Combining Eq. (12) with the above equations and integrating over a cube gives; 
 

( )
'
ii

'
iij3

1i
oa

C
j

mmπ

mmbπsin
V,R

−

−
=′ ∏

=

mm                                                                (18) 

 
where jb  is the cube edge of the cubic surface. Integrating over a sphere gives; 
 

( ) ( )mmmm ′−





=′ joa

3
j

S
j k2πqVk

3
4π,R                                                                   (19) 

where 
 

( ) ( )
3

cossin3
x

xxxxq −
=                                                          (20) 

and 
 

( )mm ′−= jk2πx                                                                                    (21)       
 

where jk  is the radius of the spherical surface in k-space. Combining Eqs. (12) and (16), we get; 
 

oa
NC V2

1V =                                                                                  (22) 

 
Similarly for the FC case  
 

oa
FC V

1V =                                                                                                    (23)                                                      
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For a hcp lattice, /6aV 3
oa = , where ‘a’ is the cube edge. Thus, a cubic surface in k-space has the cube 

edge. 
 

a
3b

31

NC =                                                                                                  (24) 

and 
a

6b
31

FC =                                                        (25) 

 
The radius of the spherical surface in k-space is; 
 

a
1

4π
9k

31

NC 





=                                                              (26) 

and 

a
1

2π
9k

31

FC 





=                                                                                               (27) 

 
Effect of positive background 

The Hartree-Fock effective operator for a normal system is; 
 

( )
( )

2x
xx

r
d

r

P

R

Z
H

g g

g
eff ∫∑






 ′−

+
−

−∆=
12

2212

1
1

,1

2
11

ρ
                                              (28) 

 
For any extended system one has to evaluate carefully the matrix elements of the long range 

electrostatic part. 
 

( ) ∑ ∫





 ′

+
−

−=
g g

g
C d

rR

Z
V 2

12

22

1
1

,
x

xx

r
r

ρ
                                                                      (29)     

 
so that the large parts are cancelled out [18,21-23]. Uniform distribution and point like nuclei are the two 
extreme cases of positive charge distribution and the entire real situations lie between the above two 
cases. In the present work, we have investigated both cases. 

 
Uniform neutralizing positive background 

For the uniform distribution of positive background, the two terms in Eq. (29) cancel each other and 
( ) 0V 1c =r . Then, we are left with the kinetic energy term and exchange energy term in effH . That is; 

 

( ) 2
12

2212

1eff

,

2
11H x

xx
d

r

P



⌡

⌠ 




 ′

−∆=
ρ

                                                               (30) 

 
The kinetic energy term and the exchange energy term in Eq. (30) are evaluated using the 

expressions given by Shavift [24]. 
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Non-uniform positive background 

For the Wigner electron crystal, it is reasonable to have a non-uniform distribution of positive 
charge, which does not have to be uniform. Hall pointed out that the limit of zero for λ  yields the Wigner 
electron crystal. The non-uniform positive background is represented by a periodic array of Yukawa 
distribution with variable ripple parameter λ . 
 
Yukawa type distribution 

The background is represented by a charge distribution centered about each lattice site. 
 

( )
r

rexp
4

P(r)
2 λ
π
λ −

=                                                                        (31) 

 
where λ  is the variational parameter. 
If we can define; 
 
( ) ( ) ( )rrr P−=ρρ                                                                                          (32) 

 
then the expression for ( )1cV r  is;  
 

( ) ( )
2

12

2
1c r2

1V rrr d⌡

⌠
=

ρ .                                                                                      (33) 

 
The expression for the electrostatic energy with Yukawa type positive background is derived as; 
 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

222
2

2
2

2

',

23

22

2
0

',

22

2
0

',
c

'
22

-exp

',M',R4

'
4

00
4

-exp

F',M',R4

4
'

4
00

4
-exp

F',M',R2
2
1E

rrrmrmr

mmmm

mm

CPmmmm

mm

PQmmmm

mm

mm

mm

d∫

∑

∑

∑

×





 −−−−×







+







 −×

−

+





 −×

=

λαα

π
απ

αα

α
π
α

λαα

π
α

                                         (34) 

 
where ( )mm ′,M  is the weight factor depending upon the number of nearest neighbours and ( )tFo

 is 
defined as; 

 

( ) ( )terf
t2

1tFo
π

=                                                                                          (35) 
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Antiferromagnetic phase 

Consider a system with 2N physically equivalent sites based on a lattice with one site at each lattice 
point, the lattice consists of two equivalent interpenetrating sub-lattices, the nearest neighbours of any site 
belonging to the opposite sub-lattice. Such a system is a special case of systems called antiferromagnetic 
structures [25]. Sites are even or odd depending on their relation to a chosen site, those on the same sub-
lattice are even. 

If there are 2N electrons in the lattice then each sub-lattice will have N electrons. The first Brillouin 
zone of the sub lattice contains just kN  vectors, half as many as that of a full lattice. Let the sub-lattice 
zone be placed symmetrically around zero inside the full lattice, the remaining portion of the full lattice 
zone is also the second Brillouin zone of the sub-lattice, called a residual zone. For every K  inside the 
sub-lattice zone, there corresponds a unique conjugate K  in the residual zone, such that the functions; 

 

( ) ( ) ( )[ ]kkk ψψχ +=
2

1                                                                                    (36) 

 
where Kkk += , are sub-lattice Bloch type orbitals having density only on a single sub-lattice, ( )kχ  

being associated with the even lattice and ( )kχ  with odd sub-lattice. The Fock-Dirac matrices can be 
constructed as; 
 

( ) ( ) ( )∑
+

′=′+
AC

,,, *
AC

k

k
rkrkrr χχρ  

( ) ( ) ( )rkrkrr
k

k
,,,

*
AC

AC

χχρ ∑
−

=′−                                                               (37)  

 
then −+ += ACACAC ρρρ . In terms of Wannier functions; 
 

( )[ ] ( )rmrm
mm

′′+= ∑ −+ ,W,W
2
1 *

AC
',

ACACACAC RRρ                                       (38)  

 
That is; 
 

( )[ ] ( )rmmmrm
mm

′′= ∑ ++ ,W)',(,W
2
1 *

AC
',

ACACAC Rρ  

and ( )[ ] ( )rmmmrm
mm

′′= ∑ −− ,W)',(,W
2
1 *

AC
',

ACACAC Rρ                                                       (39) 

 
Using Eq. (15), we can write; 
 

rrmrmmm
mm

dR ),'(W),(W)',(
2
N

',
ACACAC

*

∑ ∫ +++=  

∑ ∫∑ ++ ===
+mmm

Vmm ACoa
AC

koa
',

AC VN)',(
2
N VdVR                                                          (40) 

So that; 



Investigation of Electron Crystallization with HCP Structure  R  RAJESWARAPALANICHAMY et al. 
http://wjst.wu.ac.th 

Walailak J Sci & Tech 2013; 10(4) 
 

337 

oa
AC 4

1V
V

=+                                                                                                                  (41) 

similarly;  

oa
AC 4

1V
V

=−                                                                                                                 (42) 

 
Using Eqs. (1), (5) and (36), the expressions for ( )',AC mm+R  and ( )',AC mm−R  are derived as; 
 

( ) ( )( ) ( )( )

( ) ( )( ) 















′−+

+−+′−
= ∑

+

+

mmKmK

mKmmkmm

k

k

.i2exp.i2exp

.i2exp1.i2exp
N
2',

AC

AC

ππ

ππR                          (43) 

and  

( ) ( )( ) ( )( )

( ) ( )( ) 















′−+

+−−′−
= ∑

−

−

mmKmK

mKmmkmm

k

k

.i2exp.i2exp

.i2exp1.i2exp
N
2',

AC

AC

ππ

ππR                      (44) 

 
Computational details 

Wigner [1,2] observed that, “for sufficiently large rs (low density limit), the wave function for the 
crystallized electrons should be a Gaussian”. Thus, we have selected a single Gaussian of the form. 
 

( ) ( )2
21

rαexp
π

2αrφ −





=                                                                            (45) 

 
where α is the variational parameter. The Wannier function is obtained as the linear combination of 
symmetrically orthonormalized Gaussian as indicated in Eq. (1). The reciprocal square root of the overlap 
matrix ( )0,21 m−∆  {Eq. (2)} is computed using the procedure given by Calais and Appel [19]. We then 
minimize the energy functional. 
 

( ) ( ) rrr dWHW eff∫= *ε                                                          (46) 

 
The orbital exponent of the Gaussian α  is used as the variational parameter. The Hartree-Fock 

ground state energy values are found by extremizing the above functional.                                
The correlation energy is calculated from the Wigner Interpolation formula [1,2]. 
 

7.8r
0.88ε

s
c +

−=                                                                                    (47)  

 
The correlation energy calculated from the above equation is added to the Hartree-Fock ground state 

energy. In this way the ground state energy of the non-magnetic, ferromagnetic and antiferromagnetic 
phases of the 3D Wigner electron crystal corresponding to the hcp structure are computed. 
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Results and discussion 

The ground state energies are computed for the non-magnetic, ferromagnetic and antiferromagnetic 
phases of the 3D Wigner electron crystal with a hcp structure corresponding to cubic and spherical 
surfaces as the region of occupation in k- space respectively with uniform neutralizing and Yukawa type 
positive backgrounds and are presented in Tables 1 and 2 for rs = 10 to 100. 
 
 
Table 1 Electron crystal energy with a uniform neutralizing positive background (Ryd.). 
 

rs 
Non-magnetic phase Ferromagnetic phase Antiferromagnetic phase 
cubic spherical cubic spherical cubic spherical 

10 
15 
20 
30 
50 

100 

-0.12870 
-0.10201 
-0.08328 
-0.06043 
-0.03888 
-0.02049 

-0.13965 
-0.11069 
-0.09033 
-0.06553 
-0.04211 
-0.02217 

-0.25949 
-0.19013 
-0.14923 
-0.10480 
-0.06558 
-0.03387 

-0.26319 
-0.25080 
-0.18474 
-0.12841 
-0.08042 
-0.04125 

-0.08968 
-0.07448 
-0.06215 
-0.04608 
-0.03012 
-0.01608 

-0.13162 
-0.10314 
-0.08389 
-0.06070 
-0.03895 
-0.02051 

 
 
Table 2 Electron crystal energy with a Yukawa type positive background (Ryd.). 
 

rs 
Non-magnetic phase Ferromagnetic phase Antiferromagnetic phase 
cubic spherical cubic spherical cubic spherical 

10 
15 
20 
30 
50 

100 

-0.24356 
-0.16920 
-0.12970 
-0.08807 
-0.05319 
-0.02591 

-0.26110 
-0.18120 
-0.13848 
-0.09383 
-0.05669 
-0.02757 

-0.42638 
-0.27271 
-0.22276 
-0.15031 
-0.09058 
-0.04464 

-0.43749 
-0.28730 
-0.23418 
-0.15847 
-0.09566 
-0.04719 

-0.34465 
-0.24056 
-0.18228 
-0.12504 
-0.07559 
-0.03712 

-0.35362 
-0.25906 
-0.20101 
-0.13815 
-0.08381 
-0.04136 

 
 
From Tables 1 and 2, it is found that the ground state energy of a spherical surface as the region of 

occupation in k-space is less than a cubic surface for NC, FC and AC cases. The Yukawa type positive 
background leads to a lower ground state energy. 

To evaluate the critical density for the Wigner transition, the electron crystal energies obtained with 
Yukawa type positive background with a spherical surface as the region of occupation in k-space are 
plotted against the density parameter sr for non-magnetic, ferromagnetic and antiferomagnetic phases in 
Figures 1 - 3. 
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Figure 1 Electron crystal energy versus rs - non-magnetic phase. 
 
 
 

 
 

Figure 2 Electron crystal energy versus rs - ferromagnetic phase. 
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Figure 3 Electron crystal energy versus rs - antiferromagnetic phase. 
 
 

These figures are similar to the graph obtained by Carr [8] and Herring [26]. From Figure 1, it is 
found that for the non-magnetic case, the electron crystallization is above rs = 20, which corresponds to a 
density of 20102.03× per cm3 and the Wigner crystal is stable in this limit. For the ferromagnetic phase, 
Figure 2, it is found that the electron crystallizes out in the ferromagnetic phase at rs = 15.0 
corresponding to a density of 20104.8× per cm3. From Figure 3, it is found that for the antiferromagnetic 
case, the discontinuous decrease of slope is above rs = 10 corresponding to a density of 1.62×1021 per 
cm3. This is an indication of a Wigner transition. 

 
 

Table 3 Crystallization density of 3D Wigner electron crystal (electrons per cm3). 
 

Non-magnetic phase Ferromagnetic phase Antiferromagnetic phase 

2.03×1020 
2.03×1020 [7] 
1.3×1023 [8] 
2.0×1018 - 2.0×1019 [27] 
2.03×1020  [28] 
1.56×1019 - 1.62×1021 [29] 
8.24×1019 [32] 
 

4.8×1020 
2.53×1021 [3] 
1.62×1021 [5] 
7.0×1019 [9] 
2.0×1018 [10] 
1.93×1023 [30] 
2.36×1022 [31] 

 

1.62×1021  
1.62×1021  - 2.53×1021 [3] 
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The crystallization density calculated for the 
non-magnetic, ferromagnetic and 
antiferromagnetic phases of 3D Wigner electron 
crystal are compared with other experimental 
[9,27] and theoretical results [3,5,7,8,28-32] in 
Table 3. Our computed electron density value for 
non-magnetic phase is in agreement with that of 
Mott [7] and Nozieres and Pines [28]. It is found 
that the result obtained for antiferromagnetic case 
is in agreement with the results of Edwards and 
Hillel [3]. 
 
Conclusions 

The ground state energies are computed for 
the non-magnetic, ferromagnetic and 
antiferromagnetic phases of the 3D Wigner 
electron crystal with a hcp structure corresponding 
to cubic and spherical surfaces as the region of 
occupation in k-space respectively with uniform 
neutralizing and Yukawa type positive 
backgrounds. It is found that the ground state 
energy of a spherical surface as the region of 
occupation in k-space is less than a cubic surface. 
The Yukawa type positive background leads to a 
lower ground state energy. The crystallization 
density of the non-magnetic, ferromagnetic and 
antiferromagnetic phases are 2.03×1020 cm-3, 
4.8×1020 cm-3 and 1.62×1021 cm-3, respectively. 
The computed values are in agreement with other 
experimental and theoretical results. The ground 
state energy of the ferromagnetic phase is lower 
than that of the non-magnetic and antiferro-
magnetic phases. Thus, at lower densities the 
ground state of the electron crystal is 
ferromagnetic. 
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